首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we examined the role of simian immunodeficiency virus (SIV)-specific cytotoxic T lymphocytes (CTLs) in macaques immunized with an attenuated strain of simian immunodeficiency virus (SIVmac239Deltanef) in protection against pathogenic challenge with SIVmac251. Our results indicate that attenuated SIVmac239Deltanef can elicit specific CTL precursor cells (CTLp), but no correlation was observed between breadth or strength of CTLp response to structural proteins SIV-Env, -Gamg or -Pol (as measured by limiting dilution assay) and protection against infection. In one animal, we longitudinally followed the SIV-Gag-specific response to an MHC class I Mamu-A*01-restricted epitope p11C, C-M using a tetrameric MHC/peptide complex reagent. A low frequency of SIV p11C, C-M peptide-specific tetramer-reactive cells was present at the time of challenge but could be expanded in vitro. Surprisingly, the low level of Mamu-A*01/p11C, C-M-specific CTLs induced through attenuated SIVmac239Deltanef vaccination increased in the absence of detectable SIVmac251 or SIVmac239Deltanef proviral DNA. Overall, our results suggest that protection against infection in this model can be achieved through more than one mechanism, with SIV-specific CTLs being important in controlling SIVmac239Deltanef viral replication postchallenge.  相似文献   

2.
The precise measurement of epitope-specific cytotoxic T lymphocyte (CTL) responses in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected or vaccinated rhesus monkeys has been important in the evaluation of potential HIV vaccine strategies. This quantitation of CTL has been limited to date by the identification of only one dominant SIV/SHIV epitope in these monkeys. We have recently defined a Nef CTL epitope p199RY (YTSGPGIRY) that is recognized by CD8(+) T lymphocytes from all SIV/SHIV-infected Mamu-A*02(+) rhesus monkeys that have been evaluated. We now measure the frequency of p199RY-specific CD8(+) T lymphocytes in the peripheral blood of these monkeys with quantitative precision, using MHC class I/peptide tetramer staining and peptide-stimulated interferon-gamma Elispot assays. These epitope-specific CD8(+) T lymphocytes are present at a very high frequency and represent a significant proportion of the entire SIV- or SHIV-specific CD8(+) T lymphocyte population in SIV/SHIV-infected Mamu-A*02(+) rhesus monkeys. Knowledge of this dominant CTL epitope should prove valuable in the evaluation of HIV vaccine strategies using this animal model.  相似文献   

3.
In the study under evaluation, optimized SIV DNA were used to boost T-cell responses induced by a highly immunogenic SIV Ad5-prime in Chinese rhesus macaques. A regular prime-boost regimen (SIV DNA-prime and rAd boost) and naive macaques were used as the control. After vaccination, the animals were challenged intrarectally with SIVmac251, and partial protection was observed in the macaques immunized by the Ad5-prime DNA-boost regimen. SIV-specific T-cell responses in the enzyme-linked immunospot assay were significantly higher in the Ad5-prime DNA-boost, compared with the responses in the control macaques. Viral control correlated with the generation of HLA-DR+ T cells 2 weeks after the viral challenge. Further studies using prime and boost strategies and alternative routes of vaccination (including a simultaneous approach) are warranted to fully explore the potential of prime and boost regimens for HIV-1 vaccine development.  相似文献   

4.
Structured treatment interruption (STI) of antiretroviral drugs has been proposed as an alternative approach for managing patients infected with HIV-1. While STI is thought to spare drug-related side effects and enhance the HIV-1-specific immune response, the long-lasting clinical benefit of this approach remains uncertain, particularly in patients with long-standing HIV-1 infection. Here, we investigated the basis of unabated virological replication following different STI regimens in rhesus macaques that expressed the MHC class I Mamu-A*01 molecule treated during acute and long-standing infection with SIVmac251. An amino acid change at the anchor residue within the immunodominant Mamu-A*01-restricted Gag(181-189) CM9 epitope (T --> A) in one of six macaques with acute SIVmac251 infection and in three of four macaques with long-standing SIVmac251 infection (T --> A; T --> S; S --> C) was found in the majority of plasma virus. These amino acid changes have been shown to severely decrease binding of the corresponding peptides to the Mamu-A*01 molecule and, in the case of the T --> A change, escape from CTL. In one macaque with long-standing SIVmac251 infection, a mutation emerged that conferred resistance to one of the antiretroviral drugs (PMPA) as well. These results provide insights into the mechanism underlying the limited capacity of repeated interruption of antiretroviral therapy as an approach to restrain viral replication. In addition, these data also suggest that interruption of therapy may be less effective in chronic infection because of preexisting immune escape and that immune escape is a risk of interruption of therapy.  相似文献   

5.
SIV infection of rhesus macaques is an excellent model for HIV infection of humans. Unfortunately, it is has been difficult to identify macaques expressing particular MHC class I alleles. Here we describe the use of PCR-SSP for Mamu-A *01 typing of rhesus macaques. The Mamu-A *01 allele was amplified from genomic DNA using Mamu-A *07 -specific primers and positive PCR products were directly sequenced. Our technique identified 15 Mamu-A*01-positive animals of 68 tested. We validated our molecular analysis by showing that lymphocytes from 8 Mamu-A *01 -positive animals expressed Mamu-A*01 as determined by immunoprecipitation and 1-D IEF. The technical simplicity and accuracy of this typing method should facilitate selection of Mamu-A *01 -positive rhesus macaques for AIDS virus pathogenesis and vaccine studies.  相似文献   

6.
Simian immunodeficiency virus (SIV) infection of rhesus macaques provides an excellent model for investigating the basis of protective immunity against human immunodeficiency virus (HIV). One limitation of this model, however, has been the availability of a small number of known MHC class I-restricted CTL epitopes for investigating virus-specific immune responses. We assessed CTL responses against SIV Gag in a cohort of DNA/modified vaccinia virus Ankara (MVA)-vaccinated/simian-human immunodeficiency virus (SHIV)-challenged rhesus macaques. Here, we report the identification of five novel SIV CTL epitopes in Gag for the first time (Gag(39-46) NELDRFGL, Gag(169-177) EVVPGFQAL, Gag(198-206) AAMQIIRDI, Gag(257-265) IPVGNIYRR and Gag(296-305) SYVDRFYKSL) that are restricted by the common MHC class I molecule Mamu-B*01. CTL responses to these epitopes were readily detected in cryopreserved PBMC in multiple animals up to 62 weeks post-infection, both by IFN-gamma enzyme-linked immunospot assay and intracellular IFN-gamma staining. Importantly, viral sequencing results revealed that these epitopes are highly conserved in the SIV-challenged macaques over a long period of time, indicating functional constraints in these regions. Moreover, the presence of CTL responses targeting these epitopes has been confirmed in two independent cohorts of rhesus macaques that have been challenged by SHIV or SIV. Our findings provide valuable candidates for poly-epitope vaccines and for long-term quantitative monitoring of epitope-specific CD8(+) responses in the context of this common Mamu class I allele. It may thus help increase the supply of rhesus macaques in which epitope-specific immunity can be studied in the context of SIV vaccine design.  相似文献   

7.
Previously, priming with replication-competent adenovirus-SIV multigenic vaccines and boosting with envelope subunits strongly protected 39% of rhesus macaques against rectal SIV(mac251) challenge. To evaluate protection durability, eleven of the protected and two SIV-infected unimmunized macaques that controlled viremia were re-challenged rectally with SIV(mac251). Strong protection was observed in 8/11 vaccinees, including two exhibiting <50 SIV RNA copies. Decreased viremia compared to na?ve controls was observed in the other three. The SIV-infected unimmunized macaques modestly controlled viremia but exhibited CD4 counts < or =200, unlike the protected macaques. Durable protection was associated with significantly increased SIV-specific ELISPOT responses and lymphoproliferative responses to p27 at re-challenge. After CD8 depletion, 2 of 8 re-challenged, protected vaccinees maintained <50 SIV RNA copies; SIV RNA emerged in 6. Re-appearance of CD8 cells and restoration of SIV-specific cellular immunity coincided with viremia suppression. Overall, cellular immunity induced by vaccination and/or low-level, inapparent viremia post-first SIV(mac251) challenge, was associated with durable protection against re-challenge.  相似文献   

8.
Simian immunodeficiency virus (SIV) infection of rhesus macaques is a valuable animal model for human immunodeficiency virus (HIV)-1 vaccine development. Our laboratory recently described the immunogenicity and limited efficacy of a vif-deleted SIVmac239 proviral DNA (SIV/CMVΔvif) vaccine. The current report characterizes immunogenicity and efficacy for the SIV/CMVΔvif proviral DNA vaccine when co-inoculated with an optimized rhesus interleukin (rIL)-15 expression plasmid. Macaques co-inoculated with rIL-15 and SIV/CMVΔvif proviral plasmids showed significantly improved SIV-specific CD8 T cell immunity characterized by increased IFN-γ ELISPOT and polyfunctional CD8 T cell responses. Furthermore, these animals demonstrated a sustained suppression of plasma virus loads after multiple low dose vaginal challenges with pathogenic SIVmac251. Importantly, SIV-specific cellular responses were greater in immunized animals compared to unvaccinated controls during the initial 12 weeks after challenge. Taken together, these findings support the use of IL-15 as an adjuvant in prophylactic anti-HIV vaccine strategies.  相似文献   

9.
Interactions between HIV-1 and dendritic cells (DCs) play an important role in the initial establishment and spread of infection and development of antiviral immunity. We used chemically inactivated aldrithiol-2 (AT-2) simian immunodeficiency virus (SIV) with functional envelope glycoproteins to study virus interactions with DCs and developed an in vitro system to evaluate the quality of SIV antigen (Ag) presentation by DCs to T cells. AT-2 SIV interacts authentically with T cells and DCs and thus allows assessment of natural SIV-specific responses. CD4+ and CD8+ T cells from blood or lymph nodes of SIV-infected macaques released interferon-gamma (IFN gamma) and proliferated in response to a variety of AT-2 SIV isolates. Responses did not vary significantly as a function of the quantitative envelope glycoprotein content of the virions. Presentation of Ags derived from AT-2 SIV by DCs was more potent than presentation by comparably Ag-loaded monocytes. Interestingly, SIV-pulsed mature DCs stimulated both CD4+ and CD8+ T-cell responses, whereas immature DCs primarily stimulated CD4+ T cells. Further studies using AT-2 inactivated virus may help to define better the details of the virus-DC interactions critical for infection versus induction of antiviral immune responses.  相似文献   

10.
We have developed a murine model expressing the rhesus macaque (RM) Mamu-A?01 MHC allele to characterize immune responses and vaccines based on antigens of importance to human disease processes. Towards that goal, transgenic (Tg) mice expressing chimeric RM (α1 and α2 Mamu-A?01 domains) and murine (α3, transmembrane, and cytoplasmic H-2Kb domains) MHC Class I molecules were derived by transgenesis of the H-2KbDb double MHC Class I knockout strain. After immunization of Mamu-A?01/Kb Tg mice with rVV-SIVGag-Pol, the mice generated CD8+ T-cell IFN-γ responses to several known Mamu-A?01 restricted epitopes from the SIV Gag and Pol antigen sequence. Fusion peptides of highly recognized CTL epitopes from SIV Pol and Gag and a strong T-help epitope were shown to be immunogenic and capable of limiting an rVV-SIVGag-Pol challenge. Mamu-A?01/Kb Tg mice provide a model system to study the Mamu-A?01 restricted T-cell response for various infectious diseases which are applicable to a study in RM.  相似文献   

11.
Viv Peut 《Virology》2009,384(1):21-7510
It is unknown which HIV proteins to target by vaccination in order to generate the most effective CD8 T-cell immunity. We recently immunized SIVmac251-infected pigtail macaques with Gag peptides or a cocktail of peptides spanning all SIV proteins, including SIV Env. High-level SIV Env-specific CD8 T-cell responses were generated and 7 novel Env-specific CD8 T-cell epitopes in 10 animals were mapped. Env-specific CD8 T-cell responses were significantly inferior to Gag-specific responses, and no better than unvaccinated control animals, in the control of SIV replication and prevention of disease. Escape mutations emerged within several Env-specific CTL epitopes, suggesting at least some pressure imparted by the Env CTL responses, but this did not correlate with significantly reduced SIV replication. We conclude Env-specific CTL may not be the most effective response to induce by vaccination.  相似文献   

12.
Systemically administered DNA encoding a recombinant human immunodeficiency virus (HIV) derived immunogen effectively primes a cytotoxic T lymphocyte (CTL) response in macaques. In this further pilot study we have evaluated mucosal delivery of DNA as an alternative priming strategy. Plasmid DNA, pTH.HW, encoding a multi-CTL epitope gene, was incorporated into poly(D,L-lactic-co-glycolic acid) microparticles of less than 10 microm in diameter. Five intrarectal immunizations failed to stimulate a circulating vaccine-specific CTL response in 2 Mamu-A*01(+) rhesus macaques. However, 1 week after intradermal immunization with a cognate modified vaccinia virus Ankara vaccine MVA.HW, CTL responses were detected in both animals that persisted until analysis postmortem, 12 weeks after the final boost. In contrast, a weaker and less durable response was seen in an animal vaccinated with the MVA construct alone. Analysis of lymphoid tissues revealed a disseminated CTL response in peripheral and regional lymph nodes but not the spleen of both mucosally primed animals.  相似文献   

13.
Development of an effective preventive or therapeutic vaccine against HIV-1 is an important goal in the fight against AIDS. Effective virus clearance and inhibition of spread to target organs depends principally on the cellular immune response. Therefore, a vaccine against HIV-1 should elicit virus-specific cytotoxic lymphocyte (CTL) responses to eliminate the virus during the cell-associated stages of its life cycle. The vaccine should also be capable of inducing immunity at the mucosal surfaces, the primary route of transmission. Recombinant Bacille Calmette-Guérin (BCG) expressing viral proteins offers an excellent candidate vaccine in view of its safety and ability to persist intracellularly, resulting in the induction of long-lasting immunity and stimulation of the cellular immune response. BCG can be administered orally to induce HIV-specific immunity at the mucosal surfaces. The immunogenicity of four recombinant BCG constructs expressing simian immunodeficiency virus (SIV) Gag, Pol, Env, and Nef proteins was tested in rhesus macaques. A single simultaneous inoculation of all four recombinants elicited SIV-specific IgA and IgG antibody, and cellular immune responses, including CTL and helper T cell proliferation. Our results demonstrate that BCG recombinant vectors can induce concomitant humoral and cellular immune responses to the major proteins of SIV.  相似文献   

14.
Plasma virus in human immunodeficiency virus type 1/simian immunodeficiency virus (HIV-1/SIV) infection most likely results from the combination of viruses produced in different tissues. As immunological pressure may be higher in effector sites than secondary lymphoid tissues, we investigated quantitative and qualitative changes in viral RNA in blood and tissues of 10 Mamu-A*01-positive SIV-infected macaques in parallel with the frequency of CD8+ T cells recognizing the dominant Gag181-189 CM9 epitope. The plasma virus level in these macaques directly correlated with the viral RNA levels in lymph nodes, spleen, lungs, colon, and jejunum. In contrast, the frequency of the Gag181-189 CM9 tetramer did not correlate with SIV RNA levels in any compartment. We investigated the presence of viral immune escape in RNA from several tissues. The complete substitution of wild-type genotype with viral immune-escape variant within the Gag181-189 CM9 epitope was associated with low tetramer response in all tissues and blood of two macaques. In one macaque, the replacement of wild type with an immune-escape mutant was asynchronous. While the mutant virus was prevalent in blood and effector tissues (lungs, jejunum, and colon), secondary lymphoid organs such as spleen and lymph nodes still retained 80% and 40%, respectively, of the wild-type virus. These results may imply that there are differences in the immunological pressure exerted by cytotoxic T lymphocytes (CTLs) in tissue compartments of SIVmac251-infected macaques.  相似文献   

15.
Both enzyme-linked immunospot (ELISPOT) and cytokine flow cytometry (CFC) methods have been developed for the detection of low-frequency, antigen-specific, cytokine-producing T cells following short-term in vitro stimulation. Peptide-based ELISPOT and CFC assays were compared for the quantitative detection of interferon gamma-positive (IFN-gamma+) antigen-specific T cells in rhesus macaques. Ten normal and nine simian immunodeficiency virus (SIV)-infected monkeys were tested for the detection of IFN-gamma+ memory T cells specific for p27(gag) peptides of SIV with both assays. The CFC assay detected more IFN-gamma+ cells than the ELISPOT assay and this assay was more informative in identifying the phenotype of responding cells. Cryopreserved cells were as functional as fresh cells in heparinized blood samples and compared to EDTA, heparin was the better anticoagulant for yielding IFN-gamma+ cells. Using overlapping peptide pools, 20-mer peptides were more efficient in stimulating CD4+ T cells than 15-mer peptides in the ELISPOT assay, but there was no significant difference between 20- and 15-mer peptides in detecting CD4 or CD8+, IFN-gamma+ T cells in the CFC assay.  相似文献   

16.
CD8(+) T lymphocytes play a key role in controlling viremia during primary human immunodeficiency virus-1 and in maintaining disease-free infection. It has recently been shown that DNA immunization of rhesus monkeys can elicit strong, long-lived antigen-specific cytotoxic T lymphocyte (CTL) responses. In previous work, it was shown that macaque CTL responses to lipopeptide vaccination were directed against a limited number of epitopes. In the present study, we used the DNA immunization approach to enlarge T cell responses to several epitopes and to multiple isolates. We immunized macaques with a mixture of six plasmids reflecting the variability of Nef epitopic regions in the simian immunodeficiency virus (SIV) mac251 primary isolate. The Nef genes from viruses included in the SIVmac251 primary isolate were sequenced and the six selected sequences were individually subcloned into the pCI vector, under cytomegalovirus enhancer/promoter control, and injected into macaques. We show that DNA immunization with Nef sequences induced interferon-gamma (IFN-gamma) secreting cell responses directed against several regions of Nef. Reacting T cell lines were expanded in vitro and multispecific CTL responses mapping the 96-138 Nef region were analyzed. Several peptides recognized by CTL were identified and studies using peptides reflecting the variability of Nef indicated that all of the Nef variants were recognized in the 96-138 region. Moreover, CTL responses were directed against an immunodominant epitope located in a functional region within the Nef protein that is essential for viral replication. This work shows that our approach of DNA immunization with several sequences induced multispecific T cell responses recognizing variants included in the SIVmac251 primary isolate.  相似文献   

17.
Rosemarie D. Mason 《Virology》2009,388(2):315-323
Cytotoxic T lymphocyte responses to conserved proteins such as Gag within HIV- or SIV-infected hosts can facilitate partial control of viremia. However, the utility of targeting variable viral proteins by CTL responses is unclear. We studied CTL responses to regulatory and accessory proteins of SIV in pigtail macaques. The regulatory and accessory proteins were the most commonly targeted proteins by CTL responses from pigtail macaques. We identified 2 novel Tat-specific CTL responses that were both restricted by the Mane-A?10 allele. Viral escape at one of the Tat epitopes, KSA10, was slower in comparison to another Tat epitope KVA10. The kinetics of escape of the KSA10 Tat epitope were more similar to an immunodominant KP9 Gag epitope also restricted by Mane-A?10. Our results suggest that some regulatory or accessory CTL epitopes may be useful targets for vaccination against HIV.  相似文献   

18.
While DNA vaccines have been shown to prime cellular immune responses, levels are often low in nonhuman primates or humans. Hence, efforts have been directed toward boosting responses by combining DNA with different vaccination modalities. To this end, a polyvalent DNA prime/protein boost vaccine, consisting of codon optimized HIV-1 env (A, B, C, E) and gag (C) and homologous gp120 proteins in QS-21, was evaluated in rhesus macaques and BALB/c mice. Humoral and cellular responses, detected following DNA immunization, were increased following protein boost in macaques and mice. In dissecting cellular immune responses in mice, protein-enhanced responses were found to be mediated by CD4+ and CD8+ T cells with a Th1 cytokine bias. Our study reveals that, in addition to augmenting humoral responses, protein boosting of DNA-primed animals augments cellular immune responses mediated by CD8+ CTL, CD4+ T-helper cells and Th1 cytokines; thus, offering much promise in controlling HIV-1 in vaccinees.  相似文献   

19.
DNA vaccines and recombinant Listeria monocytogenes that express and secrete SIV Gag and Env antigens were combined in a nonhuman primate prime-boost immunogenicity study followed by a challenge with SIV239. We report that recombinant DNA vaccine delivered intramuscularly, and recombinant L. monocytogenes delivered orally each individually have the ability to induce CD8+ and CD4+ T cell immune responses in a nonhuman primate. Four rhesus monkeys were immunized at weeks 0, 4, 8, and 12 with the pCSIVgag and pCSIVenv DNA plasmids and boosted with SIV expressing L. monocytogenes vaccines at weeks 16, 20, and 28. Four rhesus monkeys received only the L. monocytogenes vaccines at weeks 16, 20, and 28. A final group of monkeys served as a control group. Blood samples were taken before vaccination and 2 weeks post each injection and analyzed by ELISPOT for CD4+ and CD8+ T cell responses. Moderate vaccine induced SIV-specific cellular immune responses were observed following immunization with either DNA or L. monocytogenes vectors. However, the SIV antigen-specific immune responses were significantly increased when Rhesus macaques were primed with SIV DNA vaccines and boosted with the SIV expressing L. monocytogenes vectors. In addition, the combined vaccine was able to impact SIV239 viral replication following an intrarectal challenge. This study demonstrates for the first time that oral L. monocytogenes can induce a cellular immune response in a nonhuman primate and is able to enhance the efficacy of a DNA vaccine as well as provide modest protection against SIV239 challenge.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号