首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Taniguchi  H Kaba 《Neuroscience》2001,108(3):365-370
Reciprocal dendrodendritic synapses between mitral and granule cells in the accessory olfactory bulb have been implicated in a specialized form of olfactory learning in mice, in which a female forms a memory to the pheromonal signal of the male that mates with her. Relatively little is known, however, about the mechanism of synaptic transmission at the reciprocal synapses. We analyzed synaptic currents generated in accessory olfactory bulb mitral cells in slice preparations with the patch-clamp technique in nystatin-perforated whole-cell configuration. A brief (5-20-ms) depolarizing voltage step from -70 to 0 mV applied to a single mitral cell evoked GABA(A) receptor-mediated inhibitory postsynaptic currents. The inhibitory postsynaptic currents persisted in the presence of tetrodotoxin, indicating that the inhibitory postsynaptic current in mitral cells can be elicited through purely dendritic interactions. The inhibitory postsynaptic currents were greatly enhanced by washout of extracellular Mg(2+). In Mg(2+)-free solution, the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphonovaleric acid greatly reduced the inhibitory postsynaptic currents, whereas the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-(1H,4H)-dione (CNQX) slightly reduced them.These data demonstrate that NMDA receptors play an important role in the generation of dendrodendritic inhibition in mitral cells of the mouse accessory olfactory bulb.  相似文献   

2.
Most neuronal interactions within the olfactory bulb network are mediated by dendrodendritic synapses. Dendritic transmitter release potentially could affect the parent dendrite as well as local neuronal elements that have receptors for the released transmitter. Here we report that under conditions that facilitate N-methyl-D-aspartate (NMDA) receptor activity (reduced GABAA inhibition and extracellular Mg2+), a single action potential evoked by brief intracellular current pulses in mitral cells is followed by a prolonged depolarization, which is blocked by an NMDA receptor antagonist. This depolarization also is evoked by a presumed calcium spike in the presence of tetrodotoxin. A similar NMDA-receptor-dependent prolonged depolarization is elicited by stimulation of the lateral olfactory tract at current intensities subthreshold for antidromic activation of the recorded neuron. These observations suggest that glutamate released from the dendrites of mitral cells excites the same and neighboring mitral cell dendrites. Further evidence suggests that both the apical and lateral dendrites of mitral cells participate in this recurrent excitation. These dendrodendritic interactions may play a role in the prolonged, NMDA-receptor-dependent depolarization of mitral/tufted cells evoked by olfactory nerve stimulation.  相似文献   

3.
Usui M  Kawasaki Y  Kaba H 《Neuroscience letters》1999,263(2-3):185-188
The present report describes neurosteroid modulation of olfactory bulb function by examining the effects of intrabulbar infusion of dehydroepiandrosterone sulfate (DHEAS), a neurohormone discovered in rat brain, on field potentials in the granule cell layer evoked by paired-pulse stimulation of the mouse lateral olfactory tract. Infusion of DHEAS (5 nmol) significantly decreased the test response without affecting the conditioning response. As a consequence, DHEAS selectively potentiated paired-pulse depression, which is believed to be due to granule cell-mediated inhibition of the mitral/tufted cells. The granule-to-mitral/tufted dendrodendritic synapse is GABAergic. Taken together, these results suggest that DHEAS potentiates the GABAergic dendrodendritic inhibition exerted by the granule cells on the mitral/tufted cells.  相似文献   

4.
Recurrent and lateral inhibition play a prominent role in patterning the odor-evoked discharges in mitral cells, the output neurons of the olfactory bulb. Inhibitory responses in this brain region are mediated through reciprocal synaptic connections made between the dendrites of mitral cells and GABAergic interneurons. Previous studies have demonstrated that N-methyl-D-aspartate (NMDA) receptors on interneurons play a critical role in eliciting GABA release at reciprocal dendrodendritic synapses. In acute olfactory bulb slices, these receptors are tonically blocked by extracellular Mg2+, and recurrent inhibition is disabled. In the present study, we examined the mechanisms by which this tonic blockade could be reversed. We demonstrate that near-coincident activation of an excitatory pathway to the proximal dendrites of GABAergic interneurons relieves the Mg2+ blockade of NMDA receptors at reciprocal dendrodendritic synapses and greatly facilitates recurrent inhibition onto mitral cells. Gating of recurrent and lateral inhibition in the presence of extracellular Mg2+ requires gamma-frequency stimulation of glutamatergic axons in the granule cell layer. Long-range excitatory axon connections from mitral cells innervated by different subpopulations of olfactory receptor neurons may provide a gating input to granule cells, thereby facilitating the mitral cell lateral inhibition that contributes to odorant encoding.  相似文献   

5.
Olfactory receptor neurons of the nasal epithelium project via the olfactory nerve (ON) to the glomeruli of the main olfactory bulb, where they form glutamatergic synapses with the apical dendrites of mitral and tufted cells, the output cells of the olfactory bulb, and with juxtaglomerular interneurons. The glomerular layer contains one of the largest population of dopamine (DA) neurons in the brain, and DA in the olfactory bulb is found exclusively in juxtaglomerular neurons. D2 receptors, the predominant DA receptor subtype in the olfactory bulb, are found in the ON and glomerular layers, and are present on ON terminals. In the present study, field potential and single-unit recordings, as well as whole cell patch-clamp techniques, were used to investigate the role of DA and D2 receptors in glomerular synaptic processing in rat and mouse olfactory bulb slices. DA and D2 receptor agonists reduced ON-evoked synaptic responses in mitral/tufted and juxtaglomerular cells. Spontaneous and ON-evoked spiking of mitral cells was also reduced by DA and D2 agonists, and enhanced by D2 antagonists. DA did not produce measurable postsynaptic changes in juxtaglomerular cells, nor did it alter their responses to mitral/tufted cell inputs. DA also reduced 1) paired-pulse depression of ON-evoked synaptic responses in mitral/tufted and juxtaglomerular cells and 2) the amplitude and frequency of spontaneous, but not miniature, excitatory postsynaptic currents in juxtaglomerular cells. Taken together, these findings are consistent with the hypothesis that activation of D2 receptors presynaptically inhibits ON terminals. DA and D2 agonists had no effect in D2 receptor knockout mice, suggesting that D2 receptors are the only type of DA receptors that affect signal transmission from the ON to the rodent olfactory bulb.  相似文献   

6.
Taurine is abundant in the main olfactory bulb, exceeding glutamate and GABA in concentration. In whole-cell patch-clamp recordings in rat olfactory bulb slices, taurine inhibited principal neurons, mitral and tufted cells. In these cells, taurine decreased the input resistance and caused a shift of the membrane potential toward the chloride equilibrium potential. The taurine actions were sustained under the blockade of transmitter release and were reversible and dose-dependent. At a concentration of 5 mM, typically used in this study, taurine showed 90% of its maximal effect. GABA(A) antagonists, bicuculline and picrotoxin, blocked the taurine actions, whereas the glycine receptor antagonist strychnine and GABA(B) antagonists, CGP 55845A and CGP 35348, were ineffective. These findings are consistent with taurine directly activating GABA(A) receptors and inducing chloride conductance. Taurine had no effect on periglomerular and granule interneurons. The subunit composition of GABA(A) receptors in these cells, differing from those in mitral and tufted cells, may account for taurine insensitivity of the interneurons. Taurine suppressed olfactory nerve-evoked monosynaptic responses of mitral and tufted cells while chloride conductance was blocked. This action was mimicked by the GABA(B) agonist baclofen and abolished by CGP 55845A; CGP 35348, which primarily blocks postsynaptic GABA(B) receptors, was ineffective. The taurine effect most likely was due to GABA(B) receptor-mediated inhibition of presynaptic glutamate release. Neither taurine nor baclofen affected responses of periglomerular cells. The lack of a baclofen effect implies that functional GABA(B) receptors are absent from olfactory nerve terminals that contact periglomerular cells. These results indicate that taurine decreases the excitability of mitral and tufted cells and their responses to olfactory nerve stimulation without influencing periglomerular and granule cells. Selective effects of taurine in the olfactory bulb may represent a physiologic mechanism that is involved in the inhibitory shaping of the activation pattern of principal neurons.  相似文献   

7.
The olfactory input to the brain is carried out by olfactory nerve axons that terminate in the olfactory bulb glomeruli and make synapses onto dendrites of glutamatergic projection neurons, mitral and tufted cells, and GABAergic interneurons, periglomerular cells. The dendrites are reciprocally connected through asymmetric synapses of mitral/tufted cells with periglomerular cells and symmetric synapses of the opposite direction. Transmission at the first synapse in the olfactory pathway is regulated presynaptically, and this regulation is mediated, in part, by metabotropic GABAB receptors that, when activated, inhibit transmitter release from the olfactory nerve. Functional GABAB receptors are heterodimers composed of the GABAB1 and GABAB2 subunits. Studies using double immunofluorescence have shown colocalization of both subunits in the glomerular neuropil, and ultrastructural studies have localized GABAB1 to extrasynaptic, synaptic, and perisynaptic sites on the plasma membrane of olfactory nerve terminals. We studied the subcellular localization of GABAB2 in the mouse olfactory glomeruli using a subunit-specific antibody and preembedding immunogold labeling. Immunoreactivity for GABAB2 was associated with symmetric dendrodendritic synapses of periglomerular cells with mitral/tufted cells and was localized to the extrasynaptic plasma membrane of presynaptic dendrites, and extrasynaptic, synaptic, and perisynaptic sites on the plasma membrane of postsynaptic dendrites. The results suggest that postsynaptic, and perhaps presynaptic, GABAB receptors may be expressed at GABAergic synapses between dendrites of periglomerular interneurons and projection neurons. Immunolabeling was observed at junctions of the olfactory nerve with mitral/tufted cell dendrites, providing ultrastructural evidence for the expression of the GABAB2 subunit at the primary olfactory synapse.  相似文献   

8.
Excitatory synaptic transmission in cultures of rat olfactory bulb   总被引:11,自引:0,他引:11  
1. Olfactory bulb neurons were dissociated from neonatal rats and plated at low density on a confluent layer of olfactory bulb astrocytes. Intracellular stimulation of presumptive mitral/tufted (M/T) cells evoked monosynaptic excitatory postsynaptic potentials (EPSPs) in adjacent neurons. Whole-cell recording techniques and a flow-pipe drug delivery system were used to compare EPSPs with voltage-clamp recordings of currents evoked by excitatory amino acids (EAA) including N-acetylaspartylglutamate (NAAG), a putative mitral cell transmitter. 2. Cultured olfactory bulb neurons were morphologically and physiologically distinct. Large pyramidal-shaped neurons were present, which were NAAG immunoreactive; stimulation of these neurons invariably evoked EPSPs, suggesting that they were M/T cells. The majority of small bipolar neurons were glutamic acid decarboxylase (GAD) immunoreactive consistent with granule or periglomerular gamma-aminobutyric acid (GABA)ergic interneurons. 3. Monosynaptic EPSPs between M/T cells could be separated into fast and slow components by the use of EAA receptor antagonists. A fast component with a time-to-peak of 7.7 +/- 1.0 (SE) ms and half-width of 31.8 +/- 7.4 ms was blocked by the non-NMDA receptor antagonist 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline (CNQX, 2.5 microM). The slow component (time-to-peak = 41.4 +/- 7.2 ms; half-width = 218.9 +/- 40.4 ms) was blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5, 100 microM). 4. Under voltage clamp, flow-pipe applications of NAAG (10-1,000 microM) evoked inward currents at a holding potential of -60 mV in Mg-free solutions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Small-conductance calcium-activated potassium channels (SK) regulate dendritic excitability in many neurons. In the olfactory bulb, regulation of backpropagating action potentials and dendrodendritic inhibition depend on the dendritic excitability of mitral cells. We report here that SK channel currents are present in mitral cells but are not detectable in granule cells in the olfactory bulb. In brain slices from PND 14-21 mice, long step depolarizations (100 ms) in the mitral cell soma evoked a cadmium- and apamin-sensitive outward SK current lasting several hundred milliseconds. Block of the SK current unmasked an inward N-methyl-D-aspartate (NMDA) autoreceptor current due to glutamate released from mitral cell dendrites. In low extracellular Mg(2+) (100 microM), brief step depolarizations (2 ms) evoked an apamin-sensitive current that was reduced by D,L-2-amino-5-phosphonopentanoic acid. In current- clamp, block of SK channels increased action potential firing in mitral cells as well as dendrodendritic inhibition. Our results indicate that SK channels can be activated either by calcium channels or NMDA channels in mitral cell dendrites, providing a mechanism for local control of dendritic excitability.  相似文献   

10.
The output of the olfactory bulb is governed by the interaction of synaptic potentials with the intrinsic conductances of mitral cells. While mitral cells often are considered as simple relay neurons, conveying activity in olfactory receptor cells to the piriform cortex, there is strong physiological and behavioral evidence that local synaptic interactions within the olfactory bulb modulate mitral cell discharges and facilitate odorant discrimination. Understanding the circuitry of the olfactory bulb is complicated by the fact that most dendrites in this region are both pre- and postsynaptic. Feedback inhibition is mediated through reciprocal dendrodendritic synapses between the secondary dendrites of mitral cells and GABAergic granule cells. Here we show that glutamate released from mitral cell dendrites also activates local N-methyl-D-aspartate (NMDA) autoreceptors, generating an inward tail current following depolarizing voltage steps. Autoreceptor-mediated self-excitation is calcium dependent, can be evoked by single action potentials in the presence of magnesium, and is graded with the number of spikes in a train. We find that dendrodendritic inhibition also is evoked by single action potentials but saturates rapidly during repetitive discharges. Self-excitation also underlies the prolonged afterdischarges apparent in mitral cells following potassium channel blockade. Both afterdischarges and autoreceptor-mediated tail currents persist in TTX, suggesting that they are produced by local rather than polysynaptic actions of glutamate. Blockade of NMDA autoreceptors with 2-amino-5-phosphonovaleric acid (APV) reduces the firing frequency within action potential cluster. The rapid kinetics of self-excitation suggests a functional role of NMDA autoreceptors in prolonging periods of phasic firing in mitral cells.  相似文献   

11.
Microcircuits composed of principal neuron and interneuron dendrites have an important role in shaping the representation of sensory information in the olfactory bulb. Here we establish the physiological features governing synaptic signaling in dendrodendritic microcircuits of olfactory bulb glomeruli. We show that dendritic gamma-aminobutyric acid (GABA) release from periglomerular neurons mediates inhibition of principal tufted cells, retrograde inhibition of sensory input and lateral signaling onto neighboring periglomerular cells. We find that L-type dendritic Ca(2+) spikes in periglomerular cells underlie dendrodendritic transmission by depolarizing periglomerular dendrites and activating P/Q type channels that trigger GABA release. Ca(2+) spikes in periglomerular cells are evoked by powerful excitatory inputs from a single principal cell, and glutamate release from the dendrites of single principal neurons activates a large ensemble of periglomerular cells.  相似文献   

12.
In the external plexiform layer (EPL) of the main olfactory bulb, apical dendrites of inhibitory granule cells form large numbers of synapses with mitral and tufted (M/T) cells, which regulate the spread of activity along the M/T cell dendrites. The EPL also contains intrinsic interneurons, the functions of which are unknown. In the present study, recordings were obtained from cell bodies in the EPL of mouse olfactory bulb slices. Biocytin-filling confirmed that the recorded cells included interneurons, tufted cells, and astrocytes. The interneurons had fine, varicose dendrites, and those located superficially bridged the EPL space below several adjacent glomeruli. Interneuron activity was characterized by high frequency spontaneous excitatory postsynaptic potential/currents that were blocked by the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione and largely eliminated by the voltage-sensitive Na+ channel blocker, tetrodotoxin. Interneuron activity differed markedly from that of tufted cells, which usually exhibited spontaneous action potential bursts. The interneurons produced few action potentials spontaneously, but often produced them in response to depolarization and/or olfactory nerve (ON) stimulation. The responses to depolarization resembled responses of late- and fast-spiking interneurons found in other cortical regions. The latency and variability of the ON-evoked responses were indicative of polysynaptic input. Interneurons expressing green fluorescent protein under control of the mouse glutamic acid decarboxylase 65 promoter exhibited identical properties, providing evidence that the EPL interneurons are GABAergic. Together, these results suggest that EPL interneurons are excited by M/T cells via AMPA/kainate receptors and may in turn inhibit M/T cells within spatial domains that are topographically related to several adjacent glomeruli.  相似文献   

13.
Egaña JI  Aylwin ML  Maldonado PE 《Neuroscience》2005,134(3):1069-1080
Olfactory perception initiates in the nasal epithelium wherefrom olfactory receptor neurons--expressing the same receptor protein--project and converge in two different glomeruli within each olfactory bulb. Recent evidence suggests that glomeruli are isolated functional units, arranged in a chemotopic manner in the olfactory bulb. Exposure to odorants leads to the activation of specific populations of glomeruli. In rodents, about 25-50 mitral/tufted cells project their primary dendrites to a single glomerulus receiving similar sensory input. Yet, little is known about the properties of neighboring mitral/tufted cells connected to one or a few neighboring glomeruli. We used tetrodes to simultaneously record multiple single-unit activity in the mitral cell layer of anesthetized, freely breathing rats while exposed to mixtures of chemically related compounds. First, we characterized the odorant-induced modifications in firing rate of neighboring mitral/tufted cells and found that they do not share odorant response profiles. Individual units showed a long silent (11.01 ms) period with no oscillatory activity. Cross-correlation analysis between neighboring mitral/tufted cells revealed negligible synchronous activity among them. Finally, we show that respiratory-related temporal patterns are dissimilar among neighboring mitral/tufted cells and also that odorant stimulation results in an individual modification that is not necessarily shared by neighboring mitral/tufted cells. These results show that neighboring mitral/tufted cells frequently exhibit dissimilar response properties, which are not consistent with a precise chemotopic map at the mitral/tufted cell layer in the olfactory bulb.  相似文献   

14.
The glomerular layer of the olfactory bulb (OB) contains synaptic connections between olfactory sensory neurons and OB neurons as well as connections among OB neurons. A subpopulation of external tufted cells and periglomerular cells (juxtaglomerular neurons) expresses dopamine, and recent reports suggest that dopamine can inhibit olfactory sensory neuron activation of OB neurons. In this study, whole cell electrophysiological and primary culture techniques were employed to characterize the neuromodulatory properties of dopamine on glutamatergic transmission between rat OB mitral/tufted (M/T) cells and interneurons. Immunocytochemical analysis confirmed the expression of tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, in a subpopulation of cultured neurons. D2 receptor immunoreactivity was also observed in cultured M/T cells. Dopamine reduced spontaneous excitatory synaptic events recorded in interneurons. Although the D1 receptor agonist SKF38393 and the D2 receptor agonist bromocriptine mesylate mimicked this effect, evoked excitatory postsynaptic potentials (EPSPs) recorded from monosynaptically coupled neuron pairs were attenuated by dopamine and bromocriptine but not by SKF38393. Neither glutamate-evoked currents nor the membrane resistance of the postsynaptic interneuron were affected by dopamine. However, evoked calcium channel currents in the presynaptic M/T cell were diminished during the application of either dopamine or bromocriptine, but not SKF38393. Dopamine suppressed calcium channel currents even after nifedipine blockade of L-type channels, suggesting that inhibition of the dihydropyridine-resistant high-voltage activated calcium channels implicated in transmitter release may mediate dopamine's effects on spontaneous and evoked synaptic transmission. Together, these data suggest that dopamine inhibits excitatory neurotransmission between M/T cells and interneurons via a presynaptic mechanism.  相似文献   

15.
H Kaba  E B Keverne 《Neuroscience》1992,49(2):247-254
The accessory olfactory bulb of the mouse was studied by current source-density analysis of field potentials to determine the laminar and temporal distribution of synaptic currents evoked by electrical stimulation of the vomeronasal organ. The one-dimensional current source-density analysis revealed two major spatially and temporally distinct inward membrane currents (sinks): one in the glomerular layer and the other in the external plexiform layer. The glomerular layer sink preceded the external plexiform layer sink by a mean of 5.5 ms. Local infusions of the broad-spectrum excitatory amino acid antagonist, kynurenate, into the accessory olfactory bulb blocked the external plexiform layer sink without an obvious effect on the glomerular layer sink. The selective non-N-methyl-D-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione produced a dose-dependent blockade of the external plexiform layer sink, whereas the selective N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonovalerate was without effect. These results, taken together with the cytoarchitecture of the accessory olfactory bulb, suggest that the glomerular layer sink results mainly from synaptic excitation evoked in the glomerular dendritic branches of mitral cells by the vomeronasal afferent fibres and the external plexiform layer sink mainly from non-N-methyl-D-aspartate receptor-mediated synaptic excitation in the peripheral processes of granule cells via the mitral to granule cell dendrodendritic synapse.  相似文献   

16.
Olfactory receptor neuron axons form the olfactory nerve (ON) and project to the glomerular layer of the olfactory bulb, where they form excitatory synapses with terminal arborizations of the mitral cell (MC) tufted primary dendrite. Clusters of MC dendritic tufts define olfactory glomeruli, where they involve in complex synaptic interactions. The computational function of these cellular interactions is not clear. We used patch-clamp electrophysiology combined with whole field or two-photon Ca2+ imaging to study ON stimulation-induced Ca2+ signaling at the level of individual terminal branches of the MC primary dendrite in mice. ON-evoked subthreshold excitatory postsnaptic potentials induced Ca2+ transients in the MC tuft dendrites that were spatially inhomogeneous, exhibiting discrete "hot spots." In contrast, Ca2+ transients induced by backpropagating action potentials occurred throughout the dendritic tuft, being larger in the thin terminal dendrites than in the base of the tuft. Single ON stimulation-induced Ca2+ transients were depressed by the NMDA receptor antagonist D-aminophosphonovaleric acid (D-APV), increased with increasing stimulation intensity, and typically showed a prolonged rising phase. The synaptically induced Ca2+ signals reflect, at least in part, dendrodendritic interactions that support intraglomerular coupling of MCs and generation of an output that is common to all MCs associated with one glomerulus.  相似文献   

17.
Main olfactory bulb (MOB) granule cells (GCs) express high levels of the group I metabotropic glutamate receptor (mGluR), mGluR5. We investigated the role of mGluRs in regulating GC activity in rodent MOB slices using whole cell patch-clamp electrophysiology. The group I/II mGluR agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD) or the selective group I agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) depolarized ( approximately 20 mV) and increased the firing rate of GCs. In the presence of ionotropic glutamate and GABA receptor antagonists, DHPG evoked a more modest depolarization ( approximately 8 mV). In voltage clamp, DHPG, but not group II [(2S,2'R,3)-2-(2',3'-dicarboxycyclopropyl)glycine, DCG-IV] or group III [L(+)-2-amino-4-phosphonobutyric acid, L-AP4] mGluR agonists, induced an inward current. The inward current reversed polarity near the potassium equilibrium potential, suggesting mediation by closure of potassium channels. The DHPG-evoked inward current was unaffected by the mGluR1 antagonist (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY367385), was blocked by the group I/II mGluR antagonist (alphaS)-alpha-amino-alpha-[(1S,2S)-2-carboxycyclopropyl]-9H-xanthine-9-propanoic acid (LY341495), and was absent in GCs from mGluR5 knockout mice. LY341495 also attenuated mitral cell-evoked voltage-sensitive dye signals in the external plexiform layer and mitral cell-evoked spikes in GCs. These results suggest that activation of mGluR5 increases GC excitability, an effect that should increase GC-mediated GABAergic inhibition of mitral cells. In support of this: DHPG increased the frequency of spontaneous GABAergic inhibitory postsynaptic currents in mitral cells and LY341495 attenuated the feedback GABAergic postsynaptic potential elicited by intracellular depolarization of mitral cells. Our results suggest that activation of mGluR5 participates in feedforward and/or feedback inhibition at mitral cell to GC dendrodendritic synapses, possibly to modulate lateral inhibition and contrast in the MOB.  相似文献   

18.
Individual glomeruli in the mammalian olfactory bulb represent a single or a few type(s) of odorant receptors. Signals from different types of receptors are thus sorted out into different glomeruli. How does the neuronal circuit in the olfactory bulb contribute to the combination and integration of signals received by different glomeruli? Here we examined electrophysiologically whether there were functional interactions between mitral/tufted cells associated with different glomeruli in the rabbit olfactory bulb. First, we made simultaneous recordings of extracellular single-unit spike responses of mitral/tufted cells and oscillatory local field potentials in the dorsomedial fatty acid-responsive region of the olfactory bulb in urethan-anesthetized rabbits. Using periodic artificial inhalation, the olfactory epithelium was stimulated with a homologous series of n-fatty acids or n-aliphatic aldehydes. The odor-evoked spike discharges of mitral/tufted cells tended to phase-lock to the oscillatory local field potential, suggesting that spike discharges of many cells occur synchronously during odor stimulation. We then made simultaneous recordings of spike discharges from pairs of mitral/tufted cells located 300-500 microm apart and performed a cross-correlation analysis of their spike responses to odor stimulation. In approximately 27% of cell pairs examined, two cells with distinct molecular receptive ranges showed synchronized oscillatory discharges when olfactory epithelium was stimulated with one or a mixture of odorant(s) effective in activating both. The results suggest that the neuronal circuit in the olfactory bulb causes synchronized spike discharges of specific pairs of mitral/tufted cells associated with different glomeruli and the synchronization of odor-evoked spike discharges may contribute to the temporal binding of signals derived from different types of odorant receptor.  相似文献   

19.
The effects of centrifugal afferents on single unit discharge in the main olfactory bulb were studied in anaesthetized rats. Recording with extracellular micropipettes revealed spontaneous firing in all bulb layers. Units were located to different laminae using evoked field-potential profiles and histological verification. Output neurons were identified by antidromic response to stimulation of the lateral olfactory tract. Single- or brief multiple-pulse stimulation in the nucleus of the horizontal limb of the diagonal band, but not in adjacent regions, facilitated 17 out of 27 mitral cells with no effect on 10, but inhibited 21 out of 33 granule cell layer units with no effect on 12. Of 13 presumed tufted cells, six were facilitated and the rest unaffected. In contrast, stimulation of olfactory cortex inhibited mitral cells and facilitated most granule layer cells. The results are consistent with an inhibition of tonic granule cell discharge by the horizontal diagonal band nucleus, with resultant disinhibition of mitral cells via the dendrodendritic synapses of granule cells on mitral cell secondary dendrites.  相似文献   

20.
1. Recordings of extracellular spike responses were made from single mitral/tufted cells in the main olfactory bulb of urethan-anesthetized rabbits. Olfactory epithelium ipsilateral to the recorded olfactory bulb was stimulated with homologous series of aliphatic compounds using periodic artificial inhalations. 2. In the dorsomedial part of the main olfactory bulb, single mitral/tufted cells were activated by subsets of n-fatty acids with similar hydrocarbon chain lengths. Response selectivities of single mitral/tufted cells were examined in detail using a series of n-fatty acids at five different concentrations. The results indicate that although the range of effective fatty acids is broader at the higher concentrations, the best response at higher concentrations was similar to that determined at lower concentrations. 3. Analysis of single-unit responses to the panel of fatty acids, including those with branched hydrocarbon chains, suggested that the determinants for the response specificities of individual mitral/tufted cells in the dorsomedial region include the overall size of hydrocarbon chains of the odor ligand molecules. 4. Single mitral/tufted cells in the dorsomedial region tended to be activated not only by fatty acids but also by n-aliphatic aldehydes. For a panel of a homologous series of n-aldehydes at five different concentrations, individual mitral/tufted cells showed response selectivity to subsets of aldehydes with similar hydrocarbon chain lengths. 5. In most cases, normal aliphatic alcohols and alkanes were ineffective in activating mitral/tufted cells in the dorsomedial region. This suggests that carbonyl group (--C = O) in the odor molecules plays an important role in determining response specificity of these neurons. 6. Examination with an expanded panel of stimulus odor molecules that included ketones and esters indicated that single mitral/tufted cells sensitive to subsets of fatty acids and n-aliphatic aldehydes were also responsive to subsets of ketones and/or esters having hydrocarbon chain lengths similar to those of the effective fatty acids and aldehydes. 7. The present results show a clear correlation between the tuning specificity of individual mitral/tufted cells and the stereochemical structure of the odor molecules, with respect to 1) length and/or structure of hydrocarbon chain, 2) difference in functional group, and 3) position of the functional group within the molecule. 8. A hypothetical diagram suggesting functional convergence of olfactory nerve input to individual glomeruli is proposed to explain the mechanism for selective activation of individual mitral/tufted cells by a range of odor molecules with similar stereochemical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号