首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Besides their well-characterized role as the initiator of adaptive immune responses, dendritic cells (DCs) play a critical role in the induction and maintenance of self-tolerance, the failure of which could lead to autoimmune/inflammatory diseases. Although it is clear that tolerance is a property of DCs at the steady state, the molecular mechanisms governing their generation, function and regulation remain elusive. Our recent studies have uncovered the E-cadherin/β-catenin-signaling pathway as a novel maturation pathway that achieves DC maturation without inflammatory cytokines. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and more importantly, immunization with these DCs provided complete protection against autoimmune diseases in experimental autoimmune encephalomyelitis (EAE). Interestingly, while DCs matured upon disruption of E-cadherin-mediated clusters were functional tolerogenic, upon further TLR ligation, they displayed a strong Th1 cytokine profile and much enhanced antigen presentation capacity consistent with enhanced immunity. Thus, E-cadherin/β-catenin-signaling might serve as a novel signal that contributes to the elusive steady-state “tolerogenic DCs”. Targeting E-cadherin/β-catenin signaling to either enhance or reduce DC-mediated tolerance might represent an attractive new strategy to achieve antigen-specific immunotherapy for cancers and autoimmune/inflammatory diseases.  相似文献   

2.
Maturation of dendritic cells (DCs) is known to be induced by several stimuli, including microbial products, inflammatory cytokines and immobilized IgG, as demonstrated recently. Since immune complexes formed in vivo also contain C1q, moreover apoptotic cells and several pathogens fix C1q in the absence of antibodies, we undertook to investigate whether this complement protein has an impact on various functions of human DCs. Maturation of monocyte-derived immature DCs (imMDCs) cultured on immobilized C1q was followed by monitoring expression of CD80, CD83, CD86, MHCII and CCR7. The functional activity of the cells was assessed by measuring cytokine secretion and their ability to activate allogeneic T lymphocytes. Cytokine production by T cells co-cultured with C1q-matured DCs was also investigated. C1q, but not the structurally related mannose-binding lectin was found to bind to imMDC in a dose-dependent manner and induced NF-kappaB translocation to the nucleus. Immobilized C1q induced maturation of MDCs and enhanced secretion of IL-12 and TNF-alpha, moreover, elevated their T-cell stimulating capacity. As IFN-gamma levels were increased in supernatants of MDC-T cell co-cultures, our data suggest that C1q-induced DC maturation generates a Th1-type response. Interestingly, IL-10 levels were elevated by C1q-treated MDCs but not in the supernatant of their co-cultures with allogeneic T cells. Taken together, these results indicate that C1q-opsonized antigens may play a role in the induction and regulation of immune response. Moreover our data are relevant in view of the role of C1q in removal of apoptotic cells and the association between C1q-deficiency and autoimmunity.  相似文献   

3.
Visualizing dendritic cell networks in vivo   总被引:12,自引:0,他引:12  
In the steady state, dendritic cells (DCs) in the lymph node induce T cell tolerance to self antigens. Innate signals trigger the maturation of tissue DCs, which migrate into lymph nodes and activate T cells. To examine DCs in vivo, we produced transgenic mice whose DCs expressed enhanced yellow fluorescent protein. Two-photon microscopy of lymph nodes in live mice showed that most of the steady-state DCs were enmeshed in an extensive network and remained in place while actively probing adjacent T cells with their processes. Mature DCs were more motile than steady-state DCs and were rapidly dispersed and integrated into the sessile network, facilitating their interaction with migrating T cells.  相似文献   

4.
5.
Summary:  The different cell types of the innate immune system can interact with each other and influence the quality and strength of an immune response. The cross talk between natural killer (NK) cells and myeloid dendritic cells (DCs) leads to NK cell activation and DC maturation. Activated NK cells are capable of killing DCs that fail to undergo proper maturation ('DC editing'). Encounters between NK cells and DCs occur in both inflamed peripheral tissues and lymph nodes, where both cell types are recruited by chemokines released in the early phases of inflammatory responses. Different NK cell subsets (CD56brightCD16 versus CD56+CD16+) differ in their homing capabilities. In particular, CD56brightCD16 NK cells largely predominate the lymph nodes. In addition, these two subsets display major functional differences in their cytolytic activity, cytokine production, and ability to undergo proliferation. NK cell functions are also greatly influenced by the presence of polarizing cytokines such as interleukin (IL)-12 and IL-4. The cytokine microenvironment reflects the presence of different cell types that secrete such cytokines in response to microbial products acting on different Toll-like receptors (TLRs). Moreover, NK cells themselves can respond directly to microbial products by means of TLR3 and TLR9. Thus, it appears that the final outcome of a response to microbial infection may greatly vary as a result of the interactions occurring between different pathogen-derived products and different cell types of the innate immunity system. These interactions also determine the quality and strength of the subsequent adaptive responses. Remarkably, NK cells appear to play a key role in this complex network.  相似文献   

6.
Dendritic cells (DCs) are currently divided into tolerogenic immature and immunogenic mature differentiation stages. However, recent findings challenge this model by reporting mature DCs as inducers of regulatory CD4+ T cells in vivo. This implies that decisive tolerogenic and immunogenic maturation signals for DCs might exist. Closer inspection reveals that tolerance is observed when partial- or semi-maturation of DCs occurs, whereas only full DC maturation is immunogenic. The decisive immunogenic signal seems to be the release of proinflammatory cytokines from the DCs. Moreover, the semi-mature DC phenotype is comparable to steady-state migratory veiled DCs within the lymphatics, which seem to continuously tolerize lymph node T cells against tissue-derived self-antigens or apoptotic cells.  相似文献   

7.
Dendritic cell (DC) maturation state is a key parameter for the issue of DC-T cell cognate interaction, which determines the outcome of T cell activation. Indeed, immature DCs induce tolerance while fully mature DCs generate immunity. Here we show that, in the absence of any deliberate activation signal, DCs freshly isolated from mouse spleen spontaneously produce IL-12 and tumor necrosis factor-alpha and up-regulate co-stimulation molecules, even when directly re-injected into their natural environment. Furthermore, after their isolation, these cells acquire the capacity to induce specific T(h)1 responses in vivo. These results demonstrate that the sole isolation of spleen DCs leads to the full maturation of these cells, which therefore cannot be considered as immature DCs. Moreover, we also show that the kinetics of DC activation do not influence the polarization of T(h) response in vivo challenging the idea that exhausted DCs induce preferentially T(h)2 response. Altogether, these observations should be taken into account in all experiments based on the transfer of ex vivo purified DCs.  相似文献   

8.
Development of antigen cross-presentation capacity in dendritic cells   总被引:1,自引:0,他引:1  
Cross-presentation by dendritic cells (DCs) of exogenous antigens on MHC class I is important for the generation of immune responses to intracellular pathogens, as well as for maintenance of self tolerance. In mice, the CD8(+) DC lineage is specialised for this role. However, DCs of this lineage are not born with cross-presentation capacity. Several studies have demonstrated that it must be induced as a later developmental step by cytokines such as granulocyte macrophage colony-stimulating factor (GM-CSF), or by microbial products such as toll-like receptor (TLR) ligands. Increased cross-presentation capacity is thus induced in peripheral CD8 lineage DCs during inflammation or infection. However, this capacity is already fully developed in steady-state thymic CD8(+) DCs, in accordance with their role in the deletion of self-reactive developing T cells.  相似文献   

9.
Type I interferons (IFNs) are widely used therapeutically. IFN-alpha2a in particular is used as an antiviral agent, but its immunomodulatory properties are poorly understood. Dendritic cells (DCs) are the only antigen-presenting cells able to prime naive T cells and therefore play a crucial role in initiating the adaptive phase of the immune response. We studied the effects of IFN-alpha2a on DC maturation and its role in determining Th1/Th2 equilibrium. We found that IFN-alpha2a induced phenotypic maturation of DCs and increased their allostimulatory capacity. When dendritic cells were stimulated simultaneously by CD40 ligation and IFN-alpha2a, the production of interleukin (IL)-10 and IL-12 was increased. In contrast, lipopolysaccharide (LPS) stimulation in the presence of IFN-alpha2a mainly induced IL-10 release. The production of IFN-gamma and IL-5 by the responder naive T cells was also amplified in response to IFN-alpha2a-treated DCs. Furthermore, IL-12 production by IFN-alpha2a-treated DCs was enhanced further in the presence of anti-IL-10 antibody. Different results were obtained when DCs were treated simultaneously with IFN-alpha2a and other maturation factors, in particular LPS, and then stimulated by CD40 ligation 36 h later. Under these circumstances, IFN-alpha2a did not modify the DC phenotype, and the production of IL-10/IL-12 and IFN-gamma/IL-5 by DCs and by DC-stimulated naive T cells, respectively, was inhibited compared to the effects on DCs treated with maturation factors alone. Altogether, this work suggests that IFN-alpha2a in isolation is sufficient to promote DC activation, however, other concomitant events, such as exposure to LPS during a bacterial infection, can inhibit its effects. These results clarify some of the in vivo findings obtained with IFN-alpha2a and have direct implications for the design of IFN-alpha-based vaccines for immunotherapy.  相似文献   

10.
Both microbial products and T cell factors influence dendritic cell (DC) maturation. However, it is not known which T cells are capable of interacting with DCs at the initiation of adaptive immunity, when foreign antigen-specific T cells are rare. We show here that self-reactive CD1-restricted T cells can promote DC maturation by recognizing CD1 in the absence of foreign antigens. T cell recognition of all four CD1 isoforms can trigger DC maturation, but their distinct mechanisms of costimulation lead to profound differences in concomitant interleukin 12 p70 production. Distinct CD1-reactive T cells may thus differentially direct DC development early in the immune response, thereby controlling subsequent polarization of acquired immunity.  相似文献   

11.
There is growing evidence that 17 beta-estradiol (E2) modulates immune function. Recent studies indicated that certain effects of E2 on in vivo immune function are not a result of a direct action on T cells, but rather an indirect action on antigen-presenting cells. This study demonstrates that the pregnancy-associated doses of E2 plus tumor necrosis factor-alpha (TauNuF alpha) induce distorted maturation of human dendritic cells (DCs) that result in an increased capacity to induce T helper (Th) 2 responses. E2 did not affect the expression of human leukocyte antigen class II and costimulatory molecules by DCs, but elicited the ability of DC to produce CC chemokine ligand 1, which can attract CCR8-expressing Th2 cells and regulatory T cells. In addition, E2/TNF alpha-matured DCs increased the production of IL-10 relative to the IL-12p70 on CD40 ligation, thereby inducing naive T-cell differentiation into a Th2. Moreover, the increased concentration of E2 in the route of maturation did indeed further enhance Th2 deviation. The dominant Th2 deviation was induced at a high E2 concentration typical during pregnancy. These findings demonstrate that the high physiological levels of E2 may be an important endogenous component for regulating the DC function and skewing the immune response toward Th2.  相似文献   

12.
Dendritic cells maximize the memory CD8 T cell response to infection   总被引:7,自引:0,他引:7  
Costimulatory signals from dendritic cells (DCs) are required for naive T cells to respond to antigenic stimulation. To what extent DCs reactivate memory T cells during recall responses is not known. Here, an in vivo depletion system has been used to analyze the role of DCs in reactivating CD8 memory T cells during recall responses to three different microbial infections. We show a profound decrease in the numbers of responding memory CD8 T cells in both lymphoid and nonlymphoid tissues during the recall responses to infection with vesicular stomatitis virus, Listeria monocytogenes (Lm), or influenza virus. These data show that interaction with DCs is a major mechanism driving T cell reactivation in vivo, even during a tissue-specific infection of the respiratory tract.  相似文献   

13.
Dendritic cells (DCs) orchestrate the immune response establishing immunity versus tolerance. These two opposite functions may be dictated by DC maturation status with maturity linked to immunogenicity. DCs directly interact with trillions of noninvasive intestinal bacteria in vivo, a process that contributes to gut homeostasis. We here evaluated the maturation program elicited in human DCs by direct exposure to commensal-related bacteria (CB) in the absence of inflammatory signals. We showed that eight gram(+) and gram(-) CB strains up-regulated costimulatory molecule expression in DCs and provoked a chemokine receptor switch similar to that activated by gram(+) pathogens. CB strains may be classified into three groups according to DC cytokine release: high IL-12 and low IL-10; low IL-12 and high IL-10; and low IL-12 and IL-10. All CB-treated DCs produced IL-1beta and IL-6 and almost no TGF-beta. Yet, CB instructed DCs to convert naive CD4+ T cells into hyporesponsive T cells that secreted low or no IFN-gamma, IL-10, and IL-17 and instead, displayed suppressor function. These data demonstrate that phenotypic DC maturation combined to an appropriate cytokine profile is insufficient to warrant Th1, IL-10-secreting T regulatory Type 1 (Tr1), or Th17 polarization. We propose that commensal flora and as such, probiotics manipulate DCs by a yet-unidentified pathway to enforce gut tolerance.  相似文献   

14.
Dendritic cells (DCs) are key instigators of adaptive immune responses. Using an alphaviral expression cloning technology, we have identified the chemokine CCL19 as a potent inducer of T cell proliferation in a DC-T cell coculture system. Subsequent studies showed that CCL19 enhanced T cell proliferation by inducing maturation of DCs, resulting in upregulation of costimulatory molecules and the production of proinflammatory cytokines. Moreover, CCL19 programmed DCs for the induction of T helper type (Th) 1 rather than Th2 responses. Importantly, only activated DCs that migrated from the periphery to draining lymph nodes, but not resting steady-state DCs residing within lymph nodes, expressed high levels of CCR7 in vivo and responded to CCL19 with the production of proinflammatory cytokines. Migrating DCs isolated from mice genetically deficient in CCL19 and CCL21 (plt/plt) presented an only partially mature phenotype, highlighting the importance of these chemokines for full DC maturation in vivo. Our findings indicate that CCL19 and CCL21 are potent natural adjuvants for terminal activation of DCs and suggest that chemokines not only orchestrate DC migration but also regulate their immunogenic potential for the induction of T cell responses.  相似文献   

15.
Measles virus (MV) remains an important pathogen in children worldwide. The morbidity and mortality of MV is associated with severe immune suppression. Dendritic cells (DCs) were identified as initial target cells in vivo, and DCs were efficiently infected by MV in vitro. MV infection of DCs likely contributes to functional deficiency in these cells; therefore playing a role in MV‐induced immunosuppression. DCs appeared to mature phenotypically; however, the ability of infected cells to stimulate T cells was compromised. Phenotypic maturation of infected immature DCs was partially controlled by IFN production; however, infected DCs also maintained markers of an immature phenotype such as the continued uptake of antigen and lack of expression of chemokine receptor CCR7. Furthermore, mature DCs did not appear to maintain phenotypic maturation following infection demonstrated by decreased MHC and co‐stimulatory molecule expression. Several mechanisms of MV‐induced DC dysfunction have been suggested, each likely contributing to the immunosuppressive effect of MV‐infected DCs. Infected DCs responded aberrantly to secondary maturation stimuli such as CD40L or TLR4 stimulation. MV infection resulted in apoptosis in DC/T‐cell cocultures, which may contribute to a reduced T‐cell response. Additionally, the immunological synapse between infected DCs and T cells was compromised resulting in reduced T‐cell interaction times and activation signaling. The mechanisms of MV contribution to DC dysfunction appear multifaceted and central to MV‐induced immunosuppression. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

16.
Dendritic cells (DCs) are professional antigen-presenting cells that can prime T cells and polarize the cellular immune response. Because Th1-type immune responses have been connected to success in combating viral infection, a promising therapeutic application of DCs would be their differentiation in vitro and injection back into the host to boost an immune response in infected animals. This study was aimed both at developing a protocol to cultivate feline DCs in the absence of exogenous proteins for their use in vivo and at investigating what might be the most appropriate stimulus to induce their maturation in vitro and finding correlates of maturation. We generated DCs from peripheral blood monocytes in the presence of feline interleukin-4 and granulocyte-macrophage colony stimulating factor, and after 5 days their maturation was induced with either lipopolysaccharide, human recombinant tumor necrosis factor alpha, poly(I:C), or activated feline platelets. After 48 h, their CD14, CD1a, major histocompatibility complex class II, and B7.1 surface expression was analyzed in parallel with their ability to uptake antigen or prime a mixed leukocyte reaction. The results presented show that feline DCs cultured in autologous plasma differentiate and are able to mature in the presence of stimuli similar to the ones currently used for other species. The present work sets the grounds for future use of DCs obtained by the protocol described for in vivo vaccination and immunotherapy of feline immunodeficiency virus-infected cats.  相似文献   

17.
Dendritic cells as a tool to combat infectious diseases   总被引:6,自引:0,他引:6  
Moll H 《Immunology letters》2003,85(2):153-157
Dendritic cells (DCs) form a network of potent antigen-presenting cells that initiate and amplify immune responses. The detection and capture of microorganisms by DCs trigger stimulus-specific maturation programs that enable DCs to convey pathogen-associated signals to the adaptive branch of the immune system. The appropriate activation of DCs is critical for their ability to direct the development of either a Th1 or a Th2 response, thereby determining the outcome of microbial infections. Advances in the understanding of DC interactions with microbes provide new concepts for immune interventions. In different models of infectious disease, it has been demonstrated that DCs can serve as vaccine carriers, mediating protection against various types of pathogens. The studies of the requirements of ex vivo manipulations of DCs may lead to the design of vaccines that induce protective immunity to infections by appropriate targeting of DCs in vivo.  相似文献   

18.
The activation of resting dendritic cells (DCs) is a crucial step in the initiation of adaptive immunity because it links peripheral events initiated by the encounter with pathogens to the activation and expansion of antigen-specific T lymphocytes in secondary lymphoid organs. It is well recognized that a wide variety of microbial products and endogenous signals can trigger DC activation, and that different DC subsets are specialized in inducing different classes of immune responses. In this review, we will focus on how different aspects of DC maturation are regulated not only by the nature of the DC maturation stimuli, but also by their duration, combination and timing, and provide an overview of how different modes of DC activation can affect T cell responses.  相似文献   

19.
Little is known about how dendritic cells (DCs) maintain a balance between tolerance and immunity for antigens synthesized by DCs themselves. Using transgenic DCs expressing a model self-antigen, in vitro self-peptide-MHC class II complex formation and presentation increased with DC maturation, as for exogenous antigens. In vivo, however, even 'immature' DCs isolated from steady-state lymph nodes expressed MHC at mature cell levels, although many were also CD86 low. Adoptive transfer of naive specific T cells into unstimulated transgenic mice resulted in tolerance. If the mice were also injected with anti-CD40 or Listeria monocytogenes, there was robust specific T cell expansion and inflammation. Thus, DC-endogenous antigens may induce tolerance, but only in the absence of potent maturation stimuli.  相似文献   

20.
In schistosomiasis, a parasitic disease caused by helminths, the parasite eggs induce a T helper 2 cell (T(H)2) response in the host. Here, the specific role of human monocyte-derived dendritic cells (DCs) in initiation and polarization of the egg-specific T cell responses was examined. We demonstrate that immature DCs (iDCs) pulsed with schistosome soluble egg antigens (SEA) do not show an increase in expression of co-stimulatory molecules or cytokines, indicating that no conventional maturation was induced. The ability of SEA to affect the Toll-like receptor (TLR) induced maturation of iDCs was examined by copulsing the DCs with SEA and TLR-ligands. SEA suppressed both the maturation of iDCs induced by poly-I:C and LPS, as indicated by a decrease in co-stimulatory molecule expression and production of IL-12, IL-6 and TNF-alpha. In addition, SEA suppressed T(H)1 responses induced by the poly-I:C-pulsed DCs, and skewed the LPS-induced mixed response towards a T(H)2 response. Immature DCs rapidly internalized SEA through the C-type lectins DC-SIGN, MGL and the mannose receptor and the antigens were targeted to MHC class II-positive lysosomal compartments. The internalization of SEA by multiple C-type lectins may be important to regulate the response of the iDCs to TLR-induced signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号