首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MK-0767 (KRP-297; 2-methoxy-5-(2,4-dioxo-5-thiazolidinyl)-N-[[4-(trifluoromethyl)phenyl] methyl]benzamide) is a thiazolidinedione (TZD)-containing dual agonist of the peroxisome proliferator-activated receptors alpha and gamma that has been studied as a potential treatment for patients with type 2 diabetes. The metabolism and excretion of [14C]MK-0767 were evaluated in six human volunteers after a 5-mg (200 microCi) oral dose. Excretion of 14C radioactivity was found to be nearly equal into the urine (approximately 50%) and feces (approximately 40%). Elimination of [14C]MK-0767 was primarily by metabolism, with minimal excretion of parent compound into the urine (<0.5% of dose) and feces (approximately 14% of the dose). [14C]MK-0767 was the major circulating compound-related entity (>96% of radioactivity) through 48 h postdose. It was also found that approximately 91% of the total radioactivity area under the curve was due to intact MK-0767. Several minor metabolites were detected in plasma (<1% of radioactivity, each), formed by cleavage of the TZD ring and subsequent S-methylation and oxidation. All the metabolites excreted into urine were formed by TZD cleavage, whereas the major metabolite in feces was the O-demethylated derivative of MK-0767.  相似文献   

2.
In this experiment, the absorption, excretion, distribution and metabolism of 2,6-dimethyl-3,5-dimethoxycarbonyl-4-(o-difluoromethoxyphenyl)-1, 4-dihydropyridine (PP-1466) were investigated following oral or intravenous administration, single dose or repeated dose administration using male SLC-Wistar rats and the results of this investigation were summarized as follows: After oral administration of 14C-PP-1466 to rats, the blood level reached the maximum at 1 h and decreased with the biological half-life of about 5 h. The unchanged drug concentration in plasma was 30% of total concentration in plasma and disappeared at 6 h. The high radioactivities in the liver, kidney, fat, lung and adrenal gland were observed after oral and intravenous administration. After oral and intravenous administrations, the excretion in feces and urine during 48 h was 63.0 and 32.4, 58.6 and 41.6%, respectively. Biliary excretion amounted to 57.6 and 46.2% during 48 h, respectively. Six metabolites were found in the urine of rats. Three of them were identified as 2,6-dimethyl-3-carbomethoxy-4-(2-difluoromethoxyphenyl)-5-carboxylic acid pyridine, 2-methyl-3-carbomethoxy-4-(2-difluoromethoxyphenyl)-5-carboxylic acid-6-hydroxymethyl pyridine and its lactonizing analogue. These three metabolites covered 54% of total urinary metabolites. After oral repeated administration for three weeks, the excretion ratio of radioactivity in urine and feces was constant during the administration and no accumulation was observed in rat tissues.  相似文献   

3.
The disposition and metabolism of the new antihypertensive agent 2-(2"(1", 3"-dioxolan-2-yl)-2-methyl-4-(2'-oxopyrrolidin-1-yl)-6-nitro -2H-1-benzopyran (SKP-450) were investigated in male rats after single oral and i.v. doses of 14C-labeled compound. After an oral 2.0 mg/kg dose, mean radiocarbon recovery was 98.2 +/- 2.3% with 31.1 +/- 7.3% in the feces and 67.1 +/- 14.3% in the urine. Biliary excretion of radioactivity for the first 24-h period was approximately 40%, suggesting that SKP-450 is cleared either by hepatobiliary excretion or by renal excretion. SKP-450 was well absorbed; bioavailability calculated on the basis of radioactivity was 68 to 97%. Tissue distribution of the radioactivity was widespread with high concentrations in the liver and kidney but low central nervous system penetration. Radio-HPLC analysis of bile and urine from rats indicated the extensive metabolism of SKP-450 into oxidative metabolites. Oxidative metabolism of the dioxolanyl ring resulted in an aldehyde intermediate, subsequently confirmed in vitro, which was further oxidized to the corresponding carboxylic acid (M1) or reduced to the corresponding alcohol (M3). No parent drug was detected in the urine or bile. Glucuronide conjugate of M3 was also detected in urine and bile, accounting for 5.8 +/- 2.1 and 8.9 +/- 3. 7% of the excreted radioactivity, respectively. Quantitative data obtained from plasma samples suggest that the majority of circulating radioactivity was associated with metabolites. Our results suggest that the long duration of pharmacological activity of SKP-450 (>10 h) is largely attributable to its metabolites.  相似文献   

4.
Studies of the metabolic disposition of (S)-2-(3-tert-butylamino-2-hydroxypropoxy)-3-[14C]cyanopyridine (I) have been performed in humans, dogs, and spontaneously hypertensive rats. After an iv injection of I (5 mg/kg), a substantial fraction of the radioactivity was excreted in the feces of rats (32%) and dogs (31%). After oral administration of I (5 mg/kg) the urinary recoveries of radioactivity for rat and dog were 19% and 53%, respectively, and represented a minimum value for absorption because of biliary excretion of radioactivity. In man, bililary excretion of I appeared to be of minor significance because four male subjects, after receiving 6 mg of I p.o., excreted 76% and 9% of the dose of radioactivity in the urine and feces, respectively. Unchanged I represented 58% of the radioactivity excreted in human urine. The half-life for renal elimination of I was determined to be 4.0 +/- 0.9 /hr. In contrast, unchanged I represented 7% and 1% of excreted radioactivity in rat and dog urine, respectively. A metabolite of I common to man, dog, and rat was identified as 5-hydroxy-I, which represented approximately 5% of the excreted radioactivity in all species. Minor metabolites of I in which the pyridine nucleus had undergone additional hydroxylation were present in dog urine along with an oxyacetic acid metabolite, also bearing a hydroxylated pyridine nucleus.  相似文献   

5.
The disposition of 2-(2-quinolyl)-1,3-indandione (D. C. yellow #11, DCY) in male Fischer rats dosed intravenously or by feeding was determined. For rats given [14C]DCY in the feed (0.00044-0.41% of the diet), recovery of radioactivity during the 24-h dosing period and the 72-h period thereafter ranged from 89.1 to 93.9% for feces and from 4.98 to 6.25 for urine. Tissues contained only trace amounts. Following intravenous dosing with [14C]DCY (0.93 mg/kg), radioactivity distributed readily into most tissues; maximum amounts were present at 5 min, the earliest time of assay. Maximum amounts of radioactivity in fat, skin, and gut tissue, however, were present at 30 min after dosing. These three tissues also had relatively long alpha phases for the elimination of radioactivity. In 24 h after intravenous dosing, rats excreted 81.1% of the dose in the feces and 16.0% of the dose in the urine. For rats fitted with biliary cannulas, 54.5% of the dose, all of which was metabolites of [14C]DCY, was recovered in the bile in 4 h. Associated with the rapid and extensive biliary excretion of metabolites of intravenously administered [14C]DCY was the appearance of large amounts of radioactivity in the feces and also, at intermediate time points, in the liver, gut contents, and gut tissue. In conclusion, rats rapidly distribute, metabolize, and excrete [14C]DCY.  相似文献   

6.
The in vivo metabolism and excretion of RWJ-333369 [1,2-ethanediol, 1-(2-chlorophenyl)-, 2-carbamate, (S)-], a novel neuromodulator, were investigated in mice, rats, rabbits, and dogs after oral administration of (14)C-RWJ-333369. Plasma, urine, and feces samples were collected, assayed for radioactivity, and profiled for metabolites. In almost all species, the administered radioactive dose was predominantly excreted in urine (>85%) with less than 10% in feces. Excretion of radioactivity was rapid and nearly complete at 96 h after dosing in all species. Unchanged drug excreted in urine was minimal (<2.3% of the administered dose) in all species. The primary metabolic pathways were O-glucuronidation (rabbit > mouse > dog > rat) of RWJ-333369 and hydrolysis of the carbamate ester followed by oxidation to 2-chloromandelic acid. The latter metabolite was subsequently metabolized in parallel to 2-chlorophenylglycine and 2-chlorobenzoic acid (combined hydrolytic and oxidative pathways: rat > dog > mouse > rabbit). Other metabolic pathways present in all species included chiral inversion in combination with O-glucuronidation and sulfate conjugation (directly and/or following hydroxylation of RWJ-333369). Species-specific pathways, including N-acetylation of 2-chlorophenylglycine (mice, rats, and dogs) and arene oxidation followed by glutathione conjugation of RWJ-333369 (mice and rats), were more predominant in rodents than in other species. Consistent with human metabolism, multiple metabolic pathways and renal excretion were mainly involved in the elimination of RWJ-333369 and its metabolites in animal species. Unchanged drug was the major plasma circulating drug-related substance in the preclinical species and humans.  相似文献   

7.
Accelerator mass spectrometry (AMS) has been used in a human mass balance and metabolism study to analyze samples taken from four healthy male adult subjects administered nanoCurie doses of the farnesyl transferase inhibitor 14C-labeled (R)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone ([14C]R115777). Plasma, urine, and feces samples were collected at fixed timepoints after oral administration of 50 mg [14C]R115777 (25.4 Bq/mg or 687 pCi/mg i.e., equivalent to 76.257 x 10(3) dpm) per subject. AMS analysis showed that drug-related (14)C was present in the plasma samples with C(max) values ranging from 1.6055 to 2.9074 dpm/ml (1.0525-1.9047 microg/ml) at t(max) = 2 to 3 h. The C(max) values for acetonitrile extracts of plasma samples ranged from 0.3724 to 0.7490 dpm/ml in the four male subjects. Drug-related 14C was eliminated from the body both in the urine and the feces, with a mean total recovery of 79.8 +/- 12.9% in the feces and 13.7 +/- 6.2% in the urine. The majority of drug-related radioactivity in urine and feces was excreted within the first 48 h. High-performance liquid chromatography (HPLC)-AMS profiles were generated from radioactive parent drug plus metabolites from pooled diluted urine, plasma, and methanolic feces extracts and matched to retention times of synthetic reference substances, postulated as metabolites. All HPLC separations used no more than 5 dpm injected on-column. The radioactive metabolite profiles obtained compared well with those obtained using liquid chromatography/tandem mass spectometry. This study demonstrates the use of AMS in a human phase I study in which the administered radioactive dose was at least 1000-fold lower than that used for conventional radioactive studies.  相似文献   

8.
The synthesis, as well as the in vivo and in vitro disposition, of 3-[2-(4-methylphenyl)thioethyl]-sydnone-5-14C (5) in the rat is described. After intraperitoneal injection of a single dose of 5 in female Sprague-Dawley rats, the distribution and excretion of radioactive substances was monitored (24 h). Radioactivity in the blood declined in a biphasic manner with half-lives of 0.55 and 15.2 h for the alpha- and beta-phase, respectively. About 8% of the administered radioactivity was detected in feces and approximately 90% in urine (24 h). In 3.75 h, 50% of the radio-dose was excreted in the urine. Tissue distribution studies demonstrated a selective uptake of radioactivity only by the adrenal glands and the ovaries. The radioactivity in these organs reached a maximum approximately 1 h after dosing and then declined rapidly. None of the parent drug was excreted from such a single dose (i.p. injection) which indicated rapid in vivo metabolism. Nor could there be found any metabolites related to the whole structure, for example, the sulfoxide or aromatic hydroxy compounds. The sydnone 5, its sulfoxide and unconjugated metabolites were detected and quantitated by GC/MS methodology using unlabelled authentic samples. Radioactive carbon dioxide was not detected during the in vivo or in vitro experiments, nor was it released from alkaline urine samples upon acidification. Radiolabelled urinary metabolites were glycolic acid-1-14C 9 (34%), its glycine conjugate 10 (52%) and 3-vinylsydnone-5-14C 11 (4%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The metabolic fate of 2-ethylhexyl diphenyl phosphate (EHDPP) was studied in male rats. Orally administered 14C-EHDPP was rapidly absorbed and about 80% of the radioactivity was excreted in the urine and feces in the first 24 h. By 7 days, 48% and 52% of the radioactivity was recovered in urine and feces, respectively. Since biliary excretion was low (6% for 2 days), urine seems to be the major excretion route of EHDPP. Radioactivity was widely distributed in all tissues examined. At 2 h, the concentration was relatively high in blood, liver kidney and adipose tissue. The elimination of radioactivity from adipose tissue and liver was somewhat delayed, but almost all the radioactivity was eliminated by 7 days. The major metabolites in the urine were diphenyl phosphate (DPP) and phenol. p-Hydroxyphenyl phenyl phosphate (OH-DPP) and monophenyl phosphate (MPP) were also identified as minor metabolites.  相似文献   

10.
Absorption, distribution and excretion of 2,4-diamino-6-(2,5-dichlorophenyl)-s-triazine maleate (MN-1695) were studied in rats, dogs and monkeys after administration of [14C]-MN-1695. MN-1695 was found to be well absorbed from the small intestine after oral administration in all species examined. Plasma level of unchanged MN-1695 reached a maximum at 1 to 4 h after oral administration of [14C]-MN-1695 in rats, dogs and monkeys. The mean elimination half-life of unchanged MN-1695 from plasma was about 3, 4 and 50 h in rats, dogs and monkeys, respectively. Tissue levels of radioactivity after oral administration of [14C]-MN-1695 in rats indicated that [14C]-MN-1695 was distributed throughout the body and the radioactivity in tissues disappeared with a rate similar to that in plasma. A stomach autoradiogram after intravenous administration of [14C]-MN-1695 in the rat revealed the radioactivity localized in the gastric mucosa where MN-1695 was assumed to exert its pharmacological activity. In pregnant rats, [14C]-MN-1695 was distributed to the fetus with levels similar to maternal blood levels. After oral administration of [14C]-MN-1695 in rats, 39 to 46% of the dose was excreted into the urine and 50 to 63% of the dose into the feces, within 96 h. In dogs, about 40% of the dose was excreted into the urine and about 50% of the dose into the feces, within 6 days after oral administration. In monkeys, within 14 days after oral administration, about 60 and 30% of the dose were excreted into the urine and feces, respectively, and the main excretion route was the urine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The disposition of radioactive (-)-3-phenoxy-N-methyl[2-3H]morphinan in dogs after oral administration has been investigated. Unchanged drug was not found in bile, urine, or feces. Excretion of total radioactivity in feces ranged from 67 to 78% of an oral dose. Two unconjugated metabolites were isolated from feces and identified by NMR and GC/MS. Both were substituted on the phenoxy group; they were found to be the p-hydroxy (pOH-PMM) and the m-methoxy-p-hydroxy (mOCH3-pOH-PMM) metabolites. Further, levorphanol and norlevorphanol were identified in feces both as free and conjugated metabolites, as well as a small amount of levomethorphan. Urine contained mostly unknown metabolites and conjugated levorphanol and pOH-PMM. Although the glucuronide of mOCH3-pOH-PMM was the major metabolite in bile, smaller amounts of the glucuronide and sulfate conjugated of both levorphanol and pOH-PMM were also found. Estimates for the total urinary and fecal excretion (as percentages of the dose) by two dogs for the five known metabolites were as follows: levorphanol, 18.8-21.5%; pOH-PMM, 14.4-20.6%; mOCH3-pOH-PMM, 14.9%; norlevorphanol, 2.8-6.1%; levomethorphan, 0.5%. Two of these metabolites, pOH-PMM and levorphanol, are potent analgesics.  相似文献   

12.
左旋黄皮酰胺在大鼠体内的排泄   总被引:1,自引:0,他引:1  
左旋黄皮酰胺[(-)-clausenamide]是从芸香科黄皮属植物黄皮[Clausena lansium(lour) sheels]叶的水浸膏中分离得到的有效成分,经不对称合成和拆分制备而得。药效学研究表明,左旋黄皮酰胺促进突触体谷氨酸释放,增加大鼠脑皮层厚度和海马CAL区突触数及NMDA受体密度,提高小鼠脑皮层和海马的胆碱乙酰转移酶活性,对抗樟柳碱引起的乙酰胆碱含量降低。这些结果表明左旋黄皮酰胺具有较好的促智和神经保护作用以及潜在的抗老年痴呆作用;右旋体作用不明显,且有较强的毒性。  相似文献   

13.
Biliary excretion of bendamustin (Cytostasan, 5-[bis(2-chloroethyl)amino]-i-methylbenzimidazole-2-butyric acid; 1) and its metabolites was studied in rats after i.v. administration of 14C-1. The most significant finding was the rapid excretion of 1 related radioactivity in the bile occurring shortly after injection. While radioactivity eliminated by bile within 2 h was 41.8%, in the course of subsequent 22 h it amounted only to 3.2%. Bile samples analyzed by TLC indicated that the total amount of radioactivity was excreted in the form of conjugates and two hydroxy metabolites. A significant amount of radioactivity was excreted in urine. The diversion of bile by cannulation of the bile duct led to a significant decrease of elimination by feces.  相似文献   

14.
[(3R)-4-(4-Chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopentaindol-3-yl]acetic acid (MK-0524) is a potent orally active human prostaglandin D(2) receptor 1 antagonist that is currently under development for the prevention of niacin-induced flushing. The metabolism and excretion of [(14)C]MK-0524 in humans were investigated in six healthy human volunteers following a single p.o. dose of 40 mg (202 microCi). [(14)C]MK-0524 was absorbed rapidly, with plasma C(max) achieved 1 to 1.5 h postdose. The major route of excretion of radioactivity was via the feces, with 68% of the administered dose recovered in feces. Urinary excretion averaged 22% of the administered dose, for a total excretion recovery of approximately 90%. The majority of the dose was excreted within 96 h following dosing. Parent compound was the primary radioactive component circulating in plasma, comprising 42 to 72% of the total radioactivity in plasma for up to 12 h. The only other radioactive component detected in plasma was M2, the acyl glucuronic acid conjugate of the parent compound. The major radioactive component in urine was M2, representing 64% of the total radioactivity. Minor metabolites included hydroxylated epimers (M1/M4) and their glucuronic acid conjugates, which occurred in the urine as urea adducts, formed presumably during storage of samples. Fecal radioactivity profiles mainly comprised the parent compound, originating from unabsorbed parent and/or hydrolyzed glucuronic acid conjugate of the parent compound. Therefore, in humans, MK-0524 was eliminated primarily via metabolism to the acyl glucuronic acid conjugate, followed by excretion of the conjugate into bile and eventually into feces.  相似文献   

15.
After application of alimemazine (1) 14 phenothiazine derivatives were detected in the rat urine. The structure of 9 metabolites was elucidated (TLC detection, UV, MS), which are hydroxy, N-dealkyl, S-oxide, and sulfone derivatives of 1. The hydroxy compounds, which are the main metabolites (greater than 50%), are partly conjugated. 5-10% of sulfones were observed. Some of the metabolites were detected in the feces, too. The relationship of the excretion products in urine and feces is 75:25%.  相似文献   

16.
This study determined the disposition of irinotecan hydrochloride trihydrate (CPT-11) after i.v. infusion of 125 mg/m(2) (100 microCi) [(14)C]CPT-11 in eight patients with solid tumors. Mean +/- S.D. recovery of radioactivity in urine and feces was 95.8 +/- 2.7% (range 92.2-100.3%, n = 7) of dose. Radioactivity in blood, plasma, urine, and feces was determined for at least 168 h after dosing. Fecal excretion accounted for 63.7 +/- 6.8 (range 54.2-74.9%, n = 7) of dose, whereas urinary excretion accounted for 32.1 +/- 6.9% (range 21.7-43.8%; n = 7) of dose. One patient with a biliary T-tube excreted 30.1% of dose in bile, 14.2% in feces, and 48.2% in urine. Quantitative radiometric HPLC revealed that CPT-11 was the major excretion product in urine, bile, and feces. Aminopentane carboxylic acid (APC) and SN-38 glucuronide (SN-38G) were the most significant metabolites in urine and bile, whereas SN-38 and NPC, a primary amine metabolite, were relatively minor excretion products. SN-38 and APC were the most significant metabolites in feces. The relatively higher amount of SN-38 in feces compared with bile is presumably due to hydrolysis of SN-38G to SN-38 by enteric bacterial beta-glucuronidases. There was close correspondence between quantitative fluorescence HPLC and mass balance findings. CPT-11 was the major circulating component in plasma (55% of the mean radiochemical area under the curve), and CPT-11, SN-38, SN-38G, and APC accounted for 93% of the mean radiochemical AUC. These results show that the parent drug and its three major metabolites account for virtually all CPT-11 disposition, with fecal excretion representing the major elimination pathway.  相似文献   

17.
The elimination of [3H]pafenolol and metabolites was investigated in fasted and fed rats. Separate groups received intravenous doses (0.3 and 3.0 µmol/kg) and oral doses (1 and 25 µmol/kg). After iv administration of pafenolol, the excretion of unchanged drug into urine and feces was about 50 and 25–30% of the given dose, respectively. The predominating mechanism for the excretion of pafenolol into feces was intestinal excretion (exsorption) directly from blood into gut lumen, since only about 3% of a given iv dose was recovered as pafenolol in the bile. When the oral dose was raised from 1 to 25 µmol/kg, the mean (±SD) bioavailability, calculated from urine data, increased from 14 ± 9 to 30 ± 11% (P < 0.05) in the starved rats and from 14 ± 3 to 16 ± 3% in the fed animals. In parallel, the fraction absorbed from the gut (f a) increased from 19 ± 9 to 31 ± 10% in the starved rats and from 16 ± 4 to 19 ± 5% in the fed animals, respectively. This indicates that the low bioavailability is due primarily to poor intestinal uptake.  相似文献   

18.
The metabolism and excretion of [(14)C]sitagliptin, an orally active, potent and selective dipeptidyl peptidase 4 inhibitor, were investigated in humans after a single oral dose of 83 mg/193 muCi. Urine, feces, and plasma were collected at regular intervals for up to 7 days. The primary route of excretion of radioactivity was via the kidneys, with a mean value of 87% of the administered dose recovered in urine. Mean fecal excretion was 13% of the administered dose. Parent drug was the major radioactive component in plasma, urine, and feces, with only 16% of the dose excreted as metabolites (13% in urine and 3% in feces), indicating that sitagliptin was eliminated primarily by renal excretion. Approximately 74% of plasma AUC of total radioactivity was accounted for by parent drug. Six metabolites were detected at trace levels, each representing <1 to 7% of the radioactivity in plasma. These metabolites were the N-sulfate and N-carbamoyl glucuronic acid conjugates of parent drug, a mixture of hydroxylated derivatives, an ether glucuronide of a hydroxylated metabolite, and two metabolites formed by oxidative desaturation of the piperazine ring followed by cyclization. These metabolites were detected also in urine, at low levels. Metabolite profiles in feces were similar to those in urine and plasma, except that the glucuronides were not detected in feces. CYP3A4 was the major cytochrome P450 isozyme responsible for the limited oxidative metabolism of sitagliptin, with some minor contribution from CYP2C8.  相似文献   

19.
The metabolism of 2-(N-propyl-N-2-thienylethylamino)-5-hydroxytetralin (N-0437) was investigated in conscious monkeys after subsequent i.v., oral, and ocular administration. The administration of the drug caused some physiological effects, such as bradycardia and sedation of the monkeys. During a collection period of 120 hr, on average 83% was recovered after iv administration and 90% after p.o. dosing. After i.v. administration, 44% was excreted in the bile, as compared to 38% in the urine and about 1% in the feces. After oral administration, bile is the major excretion route, accounting for about 60% of the dose, as compared to 25% in the urine and about 5% in the feces. After ocular administration, on average 62% was recovered after 7 hr, excreted in bile and urine in about equal amounts. All percentages given above reflect the total amount of radioactivity recovered, thus comprising the unchanged drug plus various metabolites. After all three dosing routes, N-0437 was metabolized almost completely prior to elimination. Direct glucuronidation of the phenolic group proved to be the major metabolic pathway of N-0437, comprising about 44% of the dose after i.v. and ocular administration and 72% after oral dosing. Hydroxylation of N-0437 at the position ortho to the phenolic group present yielded a catechol intermediate, which was excreted as a glucuronide and accounted for about 10% of the dose. In the monkey, a clear regioselective preference towards glucuronidation at the 6-position was observed. Besides the glucuronide, the sulfoconjugate of N-0437 was a major metabolite after i.v. and ocular administration, accounting for about 15% of the dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The excretion and metabolism of neurotoxic 1,2-diethylbenzene (1, 2-DEB) was studied in male Sprague-Dawley rats after i.v. (1 mg/kg) or oral (1 or 100 mg/kg) administration of 1,2-diethyl[U-(14)C]benzene ([(14)C]1,2-DEB). Whatever the treatment, radioactivity was mainly excreted in urine (65-76% of the dose) and to a lower extent in feces (15-23% of the dose), or via exhaled air (3-5% of the dose). However, experiments with rats fitted with a biliary cannula demonstrated that about 52 to 64% of the administered doses (1 or 100 mg/kg) were initially excreted in bile. Biliary metabolites were extensively reabsorbed from the gut and ultimately excreted in urine after several enterohepatic circulations. Insignificant amounts of unchanged 1,2-DEB were recovered in the different excreta (urine, bile, and feces). As reported previously, presence of 1-(2'-ethylphenyl)ethanol (EPE) was confirmed in urine and demonstrated in bile and feces. The two main [(14)C]1,2-DEB metabolites accounted for 57 to 79% of urinary and biliary radioactivity, respectively. Beta-Glucuronidase hydrolysis and electron impact mass spectra results strongly supported their glucuronide structure. Additionally, these two main metabolites were thought to be the glucuronide conjugates of the two potential enantiomers of EPE. The results indicate that the main initial conversion step of the primary metabolic pathway of 1,2-DEB appears to be the hydroxylation of the alpha-carbon atom of the side chain. The presence of two glucuronide conjugates of EPE in the urine in a ratio different from one suggests that the metabolic conversion of 1, 2-DEB is under stereochemical control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号