首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bladder cancer cell line BK-10 was established from a grade III-IV transitional cell carcinoma (TCC). BK-10 is near-tetraploid (+/-4n) and consists of two subclones with 20-25 structural aberrations. Here we report the cytogenetic analysis of BK-10 by G-banding, spectral karyotyping (SKY), and FISH. SKY refers to the hybridization of 24 differentially labeled chromosome painting probes and the simultaneous visualization of all human chromosomes using spectral imaging. SKY enabled us to confirm 12 markers in BK-10 previously described by G-banding, redefine 11 aberrations, and detect 4 hidden chromosomal rearrangements, 2 of which had been identified as normal or deleted copies of chromosome 20 and 1 as a normal chromosome 3. Twenty out of 21 translocations identified were unbalanced. FISH analysis of BK-10 using chromosome arm-specific paints, centromere probes, and oncogene/tumor suppressor gene-specific probes revealed a deletion of CDKN2A (p16) in all copies of chromosome 9, a low-level amplification of MYC (five copies), and loss of one copy of TP53; detected the presence of the Y chromosome in a hidden translocation; and detected four copies of ERBB-2. A probe set for BCR and ABL verified breakpoints for all translocations involving chromosomes 9 and 22. A new karyotype presentation, "SKY-gram," is introduced by combining data from G-banding, SKY, and FISH analysis. This study demonstrates the approach of combining molecular cytogenetic techniques to characterize fully the multiple complex chromosomal rearrangements found in the bladder cancer cell line BK-10, and to refine the chromosomal breakpoints for all translocations.  相似文献   

2.
Muroid rodents are composed of a wide range of species characterized by extensive karyotypic evolution. Even if this group includes such important laboratory animal models as domestic mouse (Mus musculus), Norway rat (Rattus norvegicus), Chinese hamster (Cricetulus griseus), and golden hamster (Mesocricetus auratus), comparative cytogenetic studies between rodents are difficult due to the characteristic rapid karyotypic evolution. Molecular cytogenetic methods can help resolve problems of comparing muroid chromosomes. Here, we used cross-species comparative multicolour banding with probes obtained from mouse chromosomes 3, 6, 18, and 19 to study the karyotypes of nine muroid species from the three subfamilies Murinae, Cricetinae, and Arvicolinae. Results from multicolour banding with these murine probes (mcb) allowed us to improve the comparative homology maps between these species and to obtain new insights into their karyotypic evolution. We identified evolutionary conserved chromosomal breakpoints and revealed four previously unrecognized homologous segments, four inversions, and 14 evolutionary new centromeres in the nine muroid species studied. We found Mus apomorphic rearrangements, not seen in other muroids, and defined several subfamily specific chromosome breaks, characteristic for Arvicolinae and Cricetinae. We show that mcb libraries are an effective tool both for the cytogenetic characterisation of important laboratory models such as the rat and hamster as well as elucidating the complex phylogenomics relationships of muroids.  相似文献   

3.
Nasopharyngeal carcinoma (NPC) cell lines and xenografts represent valuable models for functional and therapeutic studies on this common malignancy in Southeast Asia. The karyotypic information in most NPC cell lines and xenografts, however, remains largely unclear to date. We have characterized the chromosomal aberrations in six commonly used human NPC cell lines and xenografts using the molecular cytogenetic technique of comparative genomic hybridization (CGH). Genomic imbalances identified in cell lines were further correlated with structural abnormalities indicated from spectral karyotyping (SKY) analysis. CGH revealed consistent overrepresentations of 8q (six out of six cases) with a smallest overlapping region identified on 8q21.1q22. Other common gains included 7p (4/6 cases), 7q (4/6 cases), 12q (4/6), and 20q (4/6 cases), where minimal overlapping regions were suggested on 7p15p14, 7q11.2q21, and 12q22q24.1. Common losses were detected on 3p12p21 (4/6 cases) and 11q14qter (4/6 cases). Although SKY analysis on cell lines revealed predominantly unbalanced rearrangements, reciprocal translocations that involved chromosome 2 [i.e., t(1;2), t(2;3), and t(2;4)] were suggested. Furthermore, SKY examination illustrated additional breakpoints on a number of apparently balanced chromosomes. These breakpoints included 3p21, 3q26, 5q31, 6p21.1p25, 7p14p22, and 8q22. Our finding of regional gains and losses and breakpoints represents information that may contribute to NPC studies in vitro.  相似文献   

4.
The overall pattern of chromosomal changes detected by spectral karyotype (SKY) analysis of two cell lines of each major histological subtype of NSCLC, namely squamous cell carcinoma (SQCC) and adenocarcinoma (ADC), indicated a greater degree of chromosomal rearrangement, than was present or predicted by either comparative genomic hybridization (CGH) or G-banding analysis alone. To investigate these observations, CGH was used to screen DNA derived from 8 primary tumors and 15 cell lines. The results indicated that the most frequently gained chromosome arms were 5p (70%), 8q (65%), 15q (52%), 20q (48%), 1q (43%), 19q (39%), 3q (35%), and 11q (35%). Chromosomal losses were less frequently observed, and included 18q (39%), 9 (35%), 6q (30%), 13q (21%), 5q12-q32 (17%), and 19p (17%). Amplifications were found on 2p23-p24, 3q24-q27, 5p, 6cen-p21.1, 6q26, 7p21, 7q31, 8q, 11q13-qter, 20q12-q13.2. Comparison between CGH findings of the two major histological subtypes showed that gains at 1q22-q32.2, 15q, 20q, and losses at 6q, 13q, and 18q was common in ADCs, whereas SQCCs exhibited gains/amplifications at 3q. Distal 8q was gained by CGH in 65% of tumors of both subtypes. Low level MYCC amplification was confirmed by direct fluorescence in situ hybridization (FISH) analysis. The pattern of overall chromosomal changes detected using combinations of molecular cytogenetic analytical methods suggests that it will be easier to detect recurrent subtype-dependent aberrations in NSCLC.  相似文献   

5.
6.
7.
Combining fluorescence R-banding, fluorescence in situ hybridization and spectral karyotyping allowed us to precisely define chromosomal breakpoints, gains, losses and a newly detected amplification in the human mantle cell lymphoma (MCL) cell line GRANTA-519. GRANTA-519 is characterized by the t(11;14)(q13;q32) resulting in overexpression of cyclin D1, a key player in cell cycle control. Hitherto unresolved complex rearrangements involve 1p, 1q, 3cen, 9p, 11q, 12p, 12q, 16p, 17p, and 18cen. Moreover, a 4- to 6-fold gain of sequences on 18q leads to a low-level amplification of the BCL2 gene and to an overexpression of the BCL2 protein. These results provide the basis for the identification of not only candidate oncogenes responsible for MCL in gained regions, but also for the identification of putative tumor suppressor genes in commonly deleted regions like 1p22, which would eventually enable functional studies of these genes.  相似文献   

8.
9.
We investigated relationships between DNA copy number aberrations and chromosomal structural rearrangements in 11 different cell lines derived from oral squamous cell carcinoma (OSCC) by comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH). CGH frequently showed recurrent chromosomal gains of 5p, 20q12, 8q23 approximately qter, 20p11 approximately p12, 7p15, 11p13 approximately p14, and 14q21, as well as losses of 4q, 18q, 4p11 approximately p15, 19p13, 8p21 approximately pter, and 16p11 approximately p12. SKY identified the following recurrent chromosomal abnormalities: i(5)(p10), i(5)(q10), i(8)(q10), der(X;1)(q10;p10), der(3;5)(p10;p10), and der(3;18)(q10;p10). In addition, breakpoints detected by SKY were clustered in 11q13 and around centromeric regions, including 5p10/q10, 3p10/q10, 8p10/q10 14q10, 1p10/1q10, and 16p10/16q10. Cell lines with i(5)(p10) and i(8)(q10) showed gains of the entire chromosome arms of 5p and 8q by CGH. Moreover, breakages near the centromeres of chromosomes 5 and 8 may be associated with 5p gain, 8q gain, and 8p loss in OSCC. FISH with a DNA probe from a BAC clone mapping to 5p15 showed a significant correlation between the average numbers of i(5)(p10) and 5p15 (R(2) = 0.8693, P< 0.01) in these cell lines, indicating that DNA copy number of 5p depends upon isochromosome formation in OSCC.  相似文献   

10.
Molecular studies of advanced-stage neuroblastoma (NBL) have revealed a marked genetic heterogeneity. In addition to MYCN amplification and chromosome 1 short-arm deletions/translocations detected by conventional cytogenetics, application of fluorescence in situ hybridization has disclosed a high prevalence of 17q gain, whereas allelotyping and comparative genomic hybridization techniques also have revealed loss of 11q and of other chromosomal material. Using the recently developed technique of spectral karyotyping (SKY), we sought to refine the cytogenetic information, identify hidden recurrent structural chromosomal abnormalities, and compare them to the molecular findings. Thirteen samples of metaphase spreads from 11 patients with advanced-stage NBL were analyzed by SKY. Most of them were found to have complex karyotypes (more than three changes per metaphase) and complex unbalanced rearrangements. Recurrent aberrations leading to 17q gain, deletion of 1p, MYCN amplification, and loss of 11q appeared in 7, 4, 4, and 5 patients, respectively, in simple and complex karyotypes. Chromosome 3 changes and gain of 1q and 7q appeared in 6, 5, and 4 patients, respectively, in complex karyotypes only, reflecting later changes. A strikingly high prevalence of the unbalanced translocation der(11)t(11;17), leading to concomitant 11q loss and 17q gain in 4 patients, delineated a distinct cytogenetic group, none having 1p deletion and/or MYCN amplification. der(11)t(11;17) was associated with complex karyotypes with changes in chromosomes 3 and 7q. The 17q translocations with partners other than 11q were associated with 1p deletion and/or MYCN amplification. The distinct cytogenetic subgroups identified by SKY confirm and extend the recent molecular observations, and suggest that different genes may interact in the der(11)t(11;17) pathway of NBL development and progression.  相似文献   

11.
The L5178Y/Tk+/- -3.7.2C mouse lymphoma cell line is characterized, at the cytogenetic level, by a karyotype involving both numerical and complex structural aberrations. While the karyotype is remarkably normal for a transformed cell line that has been in culture for almost half a century, there are a number of chromosomal alterations that because of their complexity cannot be fully characterized by routine or even high-resolution G-banding studies. Multicolor spectral karyotyping (SKY) was performed on the cell line in anticipation of identifying the previously unresolved chromosome aberrations and confirming interpretations previously identified by banding studies. New chromosome aberrations detected by SKY include numerical aberrations of chromosome 15, duplications of regions of chromosomes 4, 5, 12, and 18, and deletion of chromosome 14. Complex unbalanced translocations involved segments of chromosomes 6, 14, and 15. In total, the SKY technique was able to provide new refined designations on segments of eight different chromosome pairs (4, 5, 6, 9, 12, 14, 15, 18) and identified all three previously unidentified marker chromosomes. This analysis provides an updated standard reference for the karyotype of the L5178Y/Tk+/- -3.7.2C cell line used in the in vitro mouse lymphoma mutation assay.  相似文献   

12.
Cytogenetic analysis including multicolor spectral karyotyping (SKY) and interphase fluorescence in situ hybridization (FISH) was performed on 154 consecutive cases with suspected lymphoma. The cytogenetic results were reviewed in correlation with the final pathologic diagnosis. A diagnosis of lymphoma was established in 94 cases, with 16 Hodgkin lymphomas and 78 non-Hodgkin lymphomas (NHL). Cytogenetic results were obtained in 63 NHLs (81%); 61 of those showed abnormal karyotypes (97%). The t(14;18) or IGH-BCL2 fusion was detected in 83% (20/24) of follicular lymphomas and in 57% (12/21) of diffuse large B-cell lymphomas (DLBCL). The application of interphase FISH and SKY has contributed to a high detection rate of t(14;18) in DLBCLs. This study showed that genes at 1q25, 3p21, 3q21, 5q31, 6p23, 7q22, 8q11 approximately q12, 9q34, 11q23, 12q13, and 19q13.1 may have been involved as the less common changes in follicular lymphoma and DLBCL. Comparison of the recurrent secondary aberrations in the groups of follicular lymphoma and DLBCL revealed a pattern of clonal evolution from the changes rea(1)(p36), del(6q), +7, +12 or dup or trp(12)(q13q22), +der(18)t(14;18), and +21 in follicular lymphoma to the changes rea(1)(p36), del(6q), +6, +7, +9, rea(11)(q23), +12, -13 or del(13(q12q14), +18, +21, and +X in DLBCL. The clonal evolution of the secondary aberrations is thought to contribute to the progression of the disease. About 90% (16/18) of other types of NHL had abnormal karyotypes showing specific translocations or gene rearrangements consistent with the pathologic diagnosis. A comprehensive cytogenetics approach including SKY and interphase FISH using probes for specific genes, such as IGH, BCL2, CCND1, and ALK, is a very useful ancillary diagnostic tool for lymphomas. The combined approach also led to the identification of t(2;19)(p23;q13.1) as a new variant of t(2;5)(p23;q35) in a case of Ki-1-positive anaplastic large cell lymphoma with a null cell phenotype.  相似文献   

13.
Alveolar rhabdomyosarcomas (ARMS) are soft-tissue tumors that are genetically characterized by the presence of reciprocal translocations that generate the fusion gene PAX3-FOXO1A or PAX7-FOXO1A. For the study of the biologic consequences of such rearrangements, several cell lines have been generated. However, established cell lines accumulate chromosome and genetic aberrations that make it difficult to draw significant conclusions. We have applied a set of techniques that includes spectral karyotyping, fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and microarray CGH, to the most commonly used cell lines carrying the two fusion genes that are present in ARMS. We have identified the bacterial artificial chromosomes that cover the breakpoints at genes PAX3, PAX7, and FOXO1A, which can be used as FISH probes for the translocations. The RH30 cell line, positive for the PAX3-FOXO1A fusion gene, was found to be highly complex: wide range of chromosome number, more than 50 chromosome rearrangements, amplification of the hybrid gene, 24 DNA changes detected by conventional CGH, and 21 gene copy changes detected by microarray CGH (including several high-level amplifications). RMZ-RC2 cell line, positive for the PAX7-FOXO1A, was in the near-tetraploid range with only nonclonal structural rearrangements, amplification of the hybrid gene, 24 DNA changes by CGH, and 8 gene copy changes, confirming the previously reported high-level amplification of MYCN.  相似文献   

14.
Anogenital cancers are closely associated with human papillomavirus (HPV), and HPV-infected individuals, particularly those with high-grade dysplasias, are at increased risk for cervical and anal cancers. Although genomic instability has been documented in HPV-infected keratinocytes, the full spectrum of genetic changes in HPV-associated lesions has not been fully defined. To address this, we examined an HPV16-transformed foreskin keratinocyte cell line, 16-MT, by GTG-banding, spectral karyotyping (SKY), and array comparative genomic hybridization (array CGH); these analyses revealed multiple numerical, complex, and cryptic chromosome rearrangements. Based on GTG-banding, the 16-MT karyotype was interpreted as 78-83,XXY,+add(1)(p36.3),+3,+4,+5,+5,+7,+8,+i(8)(q10)x2,+10,?der(12),der(13;14)(q10;q10),+15,+16,add(19)(q13.3),+21,+21,-22[cp20]. Multicolor analysis by SKY confirmed and further characterized the anomalies identified by GTG banding. The add(1) was identified as a der(1)(1qter-->1q25::1p36.1-->1qter), the add(19) as a dup(19), and the der(12) interpreted as a der(11) involving a duplication of chromosome 11 material and rearrangement with chromosome 19. In addition, previously unidentified der(9)t(9;22), der(3)t(3;19), and der(4)t(4;9) were noted. The 16-MT cell line showed losses and gains of DNA due to unbalanced translocations and complex rearrangements of regions containing known tumor suppressor genes. Chromosomal changes in these regions might explain the increased risk of cancer associated with HPV. Also, array CGH detected copy-number gains or amplifications of chromosomes 2, 8, 10, and 11 and deletions of chromosomes 3, 4, 11, and 15. These results provide the basis for the identification of candidate oncogenes responsible for cervical and anal cancer in amplified regions, and for putative tumor suppressor genes in commonly deleted regions like 11q22-23. Furthermore, these data represent the first full characterization of the HPV-positive cell line 16-MT.  相似文献   

15.
16.
High-resolution multicolor banding (mBAND) analysis was applied to precisely fine-map the genomic extent of 7q deletions in a series of 26 marginal zone lymphoma patients displaying the abnormality on conventional karyotypes. Using this approach, the breakpoints and the extent of deletions revealed by conventional banding techniques had to be re-defined in 70% of cases. Although no common minimal region of deletion was delineated, mBAND demonstrated the involvement of the 7q32 region in more than 90% of cases. In addition, unsuspected translocations and intrachromosomal changes could be identified in four cases. Taken together, these data demonstrate that mBAND represents an alternative cytogenetic tool in the comprehensive analysis of chromosome aberrations in hematologic malignancies, allowing rapid screening and precise delineation of structural rearrangements of a defined chromosome. This also confirms the localization in the vicinity of band 7q32 of putative candidate gene(s) involved in the pathogenic development of the disease.  相似文献   

17.
Chronic myelogenous leukemia (CML) is a clonal bone marrow disease with progression from a chronic phase to an aggressive blast crisis. The cell line NALM-1 was originally established by Minowada and coworkers from the peripheral blood of a patient in CML blastic crisis. A karyotype analysis of the NALM-1 cell line was performed in the 1970s. To the best of our knowledge, this karyotype was not re-analyzed by molecular cytogenetic techniques, although this cell line is the source of many molecular investigations including expression studies. To establish this cell line as a CML control in our own laboratory, NALM-1 was analyzed by GTG banding, fluorescence in situ hybridization, and spectral karyotyping. Our results differ from the original publication of Sonta and coworkers. We describe for the first time the karyotype of the NALM-1 cell line: 44,X,-X,der(7)t(7;9;15)(q10;?;q15),der(9)t(9;9)(p24;q33 approximately q34)t(9;22)(q34;q11),der(15)t(7;9;15) (?;?;q15),der(22)t(9;22)(q34;q11).  相似文献   

18.
We characterized the chromosomal alterations in eight osteosarcoma cell lines (OST, HOS, U-2 OS, ZK-58, MG-63, SJSA-1, Saos-2, and MNNG) by comparative genomic hybridization (CGH); gains and losses of DNA sequences were defined as chromosomal regions with a fluorescence ratio, wherein all of the 95% confidence interval was above 1.25 and below 0.75, respectively. In four of 8 cell lines, multicolor karyotyping (MK) was added. CGH revealed the average number of aberrations per cell line was 20.8 (range: 10–31); the average numbers of gains and losses were 11.1 and 9.6, respectively. The frequent gains were identified on 1p21q24, 1q25q31, 7p21, 7q31, 8q23q24, and 14q21; frequent losses were at 18q21q22, 18q12, 19p, and 3p12p14. High-level gains were observed on 8q23q24, 5p, and 1p21p22. MK revealed the most common translocations in the four cell lines were t(8;9), t(1;3), t(3;5), t(1;13), t(2;6), t(3;17), t(1;15), t(10;20), and t(6;20). Chromosomes 1, 3, 8, 9, and 20 were most frequently involved in translocation events. The concordance rate of aberrations in CGH and translocations in MK was 76%. MK was useful to identify the chromosomal alterations and as a supplement to the CGH results in three of four chromosomes.  相似文献   

19.
Recent studies have identified several chromosome regions that are altered in primary prostate cancer and prostatic carcinoma cell lines. These targeted regions may harbor genes involved in tumor suppression. We used multiplex fluorescence in situ hybridization (M-FISH) to screen for genetic rearrangements in four prostate cancer cell lines, LNCaP, LNCaP.FCG, DU145, and PC3, and compared our results with those recently obtained using spectral karyotyping (SKY). A number of differences was noted between abnormalities characterized by SKY and M-FISH, suggesting variation in karyotype evolution and characterization by these two methodologies. M-FISH analysis showed that hormone-resistant cell lines (DU145 and PC3) contained many genetic alterations (> or =15 per cell), suggesting high levels of genetic instability in hormone-refractory prostate cancer. Most chromosome regions previously implicated in prostate cancer were altered in one or more of these cell lines. Several specific chromosome aberrations were also detected, including a del(4)(p14) and a del(6)(q21) in the hormone-insensitive cell lines, a t(1;15)(p?;q?) in LNCaP, LNCaP, and PC3, and a i(5p) in LNCaP.FCG, DU145, and PC3. These clonal chromosome abnormalities may pinpoint gene loci associated with prostate tumourigenesis, cancer progression, and hormone sensitivity.  相似文献   

20.
A human lung adenocarcinoma cell line, designated KU-T1, was established from a Japanese man in Kochi Medical School. Conventional banding and multicolor fluorescence in situ hybridization (M-FISH) analyses of KU-T1 cells revealed a hyperdiploid chromosomal constitution and complex karyotypes. Comparative genomic hybridization showed several chromosomal copy number changes, and five regions that were highly amplified. Two of the five highly amplified regions, 1q and 3q, were identified from distributions of DNA sequences on a metaphase cell by FISH using chromosome microdissection-generated probes hybridized to 1q32 approximately q34 and 3q26 approximately q28, respectively. The 3q probe depicted a homogeneously staining region (hsr) in a derivative chromosome 3 of KU-T1. An hsr probe was regenerated by chromosome microdissection and was hybridized back to KU-T1 and normal metaphases. This hybridization experiment confirmed the probe derived from an hsr and indicated original locations of DNA sequences of hsr on normal chromosome 3. Intense hybridized signals shown at three loci (3p12, 3q26.3, and 3q28) suggests that oncogenes may be involved in the hsr formation. The present study provides a comprehensive analysis of the chromosomal abnormalities, including hsr formation and related oncogenes, in the KU-T1 cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号