首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The need for controlled release formulations of diclofenac sodium (DFS) tablets is well recognized. In this study, controlled release tablets of DFS were formulated using ethyl cellulose as retardant by matrix‐embedding technique, the membrane barrier technique, and a combination of the two. Tablets of all the formulations were found to be of good physical quality with respect to appearance, drug content uniformity, hardness, weight variation, friability, and coat thickness uniformity. In vitro release rate studies showed that increasing the proportion of ethyl cellulose extended the release of DFS. In the case of polymer‐coated tablets, an increase in the thickness of the coat (by increasing the concentration of the coating solution or by increasing the number of coats applied) controlled and extended the release. The release pattern was found to follow Higuchi’s square root kinetics in matrix‐embedded tablets and zero‐order kinetics in polymer‐coated tablets. However, for an ideal controlled release formulation of water‐soluble drugs like DFS, a combination of both matrix‐embedding and the membrane barrier technique was found to be a better proposition for extended release beyond 12 h. Such formulations exhibited dual control: matrix‐embedding controlled the release rate in the initial 3–4 h of release and membrane coat‐controlled the release profile after that. At pH 6.8, the release rate was higher, probably due to increased solubility of DFS and/or increased swelling of ethyl cellulose at higher pH. However, reduction in the granule size in matrix‐embedded tablets provided a more controlled and extended release due to more tortuosity and compaction. All the formulations were found to be highly stable and possessed reproducible release kinetics across the batches. Drug Dev. Res. 53:1–8, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

2.
Mebeverine HCl is a water soluble drug commonly used to treat irritable bowel syndrome by acting directly on the smooth muscles of the colon. This work was aimed at the formulation and in vitro evaluation of a colon-targeted drug delivery system containing mebeverine HCl. Matrix tablets were prepared using ethyl cellulose (EC), Eudragit RL 100 either solely or in combination by wet granulation technique. Dissolution was carried out in 0.1 N HCl for 2?h followed by pH 6.8 phosphate buffer for eight hours. Uncoated forms released more than 5% drug in 0.1 N HCl therefore, Eudragit L100 was used as a coat. The results indicated very slow release profile. As a result, single retardant was used to prepare the matrix and coated by Eudragit L 100. The matrix containing 7% Eudragit RL 100 and 6% of binder was subjected to further studies to assess the effect of different coats (Eudragit L 100-55 and cellulose acetate phthalate) and different binders (pectin and sodium alginate) on the release profile. Eudragit L 100 and pectin were the best coating agent and binder, respectively. The final formula was stable and it can be concluded that the prepared system has the potential to deliver mebeverine HCl in vivo to the colon.  相似文献   

3.
齐多夫定缓释片的制备及体外评价   总被引:1,自引:1,他引:1  
邹寿涛  胡普强 《中南药学》2008,6(6):693-695
目的利用亲水性的Eudragit系列高分子物质单用、与疏水性的乙基纤维素合用制备齐多夫定骨架型缓释片。方法确定5个不同的处方,采用湿法制粒法制备骨架片。结果单独使用Eudragit系列产品作辅料,缓释片只能维持6h的药物持续释放,而RLPO、RSPO与乙基纤维素合用后可以维持12h的持续释药。结论齐多夫定缓释片与常规片比较,缓释片可以雏持12h的药物持续释放,这样会产生更好的治疗效果,减轻药物的副作用,大大改善患者依存率。  相似文献   

4.
The aim of the present investigation was to develop and evaluate matrix tablet of mesalamine for colonic delivery by using Eudragit RSPO, RLPO and combination of both. The tablets were further coated with different concentration of pH-dependent methacrylic acid copolymers (Eudragit S100), by dip immerse method. The physicochemical parameters of all the formulations were found to be in compliance with the pharmacopoeial standards. The in vitro drug release study was conducted using sequential dissolution technique at pH 1.2 (0.1N) HCl, phosphate buffers pH 6.8 and 7.4, with or without rat cecal content mimicking different regions of gastro intestinal tract. The result demonstrated that the tablet containing Eudragit RLPO coated with Eudragit S100 (1 %) showed a release of 94.91 % for 24 h whereas in the presence of rat cecal content the drug release increases to about 98.55 % for 24 h. The uncoated tablets released the drug within 6 h. The in vitro release of selected formulation was compared with marketed formulation (Octasa MR). In vitro dissolution kinetics followed the Higuchi model via non-Fickian diffusion controlled release mechanism. The stability studies of tablets showed less degradation during accelerated and room temperature storage conditions. The enteric coated Eudragit S100 coated matrix of mesalamine showing promising site specific drug delivery in the colon region.  相似文献   

5.
The rate and extent of drug release from most controlled release systems are influenced by the pH of the dissolution medium for drugs with pH-dependent solubility. This dependency of drug release on pH may lead to additional inter- and intra-subject variability in drug absorption. In the present study, a pH-independent controlled release matrix system for acidic drugs was designed by incorporating release-modifiers in the formulation. Controlled release matrix tablets were prepared by compression of divalproex sodium, Methocel K4M and Eudragit E 100 or Fujicalin as the release-modifier. For formulations without any release-modifier, the extent and rate of drug release at pH 6.8 was much higher than that at pH 1.0. Formulations containing Eudragit E 100 provided drug release that was essentially independent of pH. This was achieved because Eudragit E 100 significantly increased the drug release in acidic medium and slightly decreased the release rate at higher pH. The increased release in the acidic medium can be attributed to the elevation of the micro-environmental pH in the swollen polymer gel layer. Formulations containing Fujicalin were less effective than those containing Eudragit E 100. This was attributed to the relative inability to elevate the pH and shorter residence time of Fujicalin in the matrix relative to Eudragit E 100.  相似文献   

6.
Anionic polymers, namely Eudragit S, Eudragit L 100-55, and sodium carboxymethylcellulose, were incorporated into hydroxypropylmethylcellulose (HPMC K100M) to modify the drug release from HPMC matrices. The effects of changing the ratio of HPMC to anionic polymers were examined in water and in media with different pH. The dissolution profiles were compared according to release rates. The interaction between propranolol hydrochloride and anionic polymers was confirmed using the UV difference spectra method. The drug release was controlled with the type of anionic polymer and the interaction between propranolol hydrochloride and anionic polymers. The HPMC-anionic polymer ratio also influenced the drug release. The matrix containing HPMC-Eudragit L 100-55 (1:1 ratio) produced pH-independent extended-release tablets in water, 0.1 N HCl, and pH 6.8 phosphate buffer.  相似文献   

7.
Omeprazole pellets containing mucoadhesive tablets were developed by direct punch method. Three mucoadhesive polymers namely hydroxypropylemethylcellulose K4M, sodium carboxy methylcellulose, carbopol-934P and ethyl cellulose were used for preparation of tablets which intended for prolong action may be due to the attachment with intestinal mucosa for relief from active duodenal ulcer. Mucoadhesive tablets were coated with respective polymer and coated with Eudragit L100 to fabricate enteric coated tablets. The prepared tablets were evaluated for different physical parameters and dissolution study were performed in three dissolution mediums like 0.1N hydrochloric acid for 2h, pH 6.5 and pH 7.8 phosphate buffer solution for 12hr. Sodium carboxymethylcellulose showed above 95% release within 10 h where as carbopol-934P showed slow release about 88% to 92% over a period of 12 h. having excellent mucoadhesive strength but ethyl cellulose containing tablets showed less than 65% release. The release mechanism of all formulation was diffusion controlled confirmed from Higuchi's plot. Thus, the present study concluded that, carbopol-934P containing mucoadhesive tablets of omeprazole pellets can be used for local action in the ulcer disease as well as for oral controlled release drug delivery.  相似文献   

8.
The aim of this study was to design and develop microspheres of indomethacin with pH and transit time dependent release properties for achieving targeted delivery to the colon. Microspheres containing varying proportions of ethyl cellulose and Eudragit (L100 or S100) either alone or in combination were prepared using an oil-in-oil emulsion-based solvent evaporation technique. System comprising of acetone (internal phase) and liquid paraffin (external phase) in the ratio of 1 : 1 and 1 : 9 yielded microspheres with good physical properties (spherical and discrete), high drug loading (70-80%) and entrapment efficiency (70-85%). The lag time in the initial release depended on the proportion of pH-sensitive polymer Eudragit, while the duration of indomethacin release from microspheres was found to be directly proportional to proportion of the total polymer. Thus, a pH- and time-modulated sigmoidal release pattern could be observed in optimized formulations with less than 10% drug release in 4-6 h followed by controlled release extending up to 14-16 h.  相似文献   

9.
A coated matrix tablet formulation has been used to develop controlled release diltiazem HCl (DIL) tablets. The developed drug delivery system provided prolonged drug release rates over a defined period of time. DIL tablets prepared using dry mixing and direct compression and the core consisted of hydrophilic and hydrophobic polymers such as hydroxypropylmethylcellulose (HPMC), Eudragits RLPO/RSPO, microcrystalline cellulose, and lactose. Tablets were coated with Eudragit NE 30D, and the influence of varying the inert hydrophobic polymers and the amount of the coating polymer were investigated. The release profile of the developed formulation was described by the Higuchi model. Stability trials up to 6 months displayed excellent reproducibility.  相似文献   

10.
The objective of this study was to evaluate the combination of pH-dependent and time-dependent polymers as a single coating for design of colon delivery system of indomethacin pellets. Eudragit S100 and Eudragit L100 were used as pH-dependent polymers and Eudragit RS was used as a time-dependent polymer. A statistical full factorial design was used in order to optimize formulations. Factors studied in design were percent of Eudragit RS in combination with Eudragit S and L and coating level. Dissolution studies of pellets in the media with different pH (1.2, 6.5, 6.8 and 7.2) showed that drug release in colon could be controlled by addition of Eudragit RS to the pH-dependent polymers. The lag time prior to drug release was highly affected by coating level. With combination of two factors, i.e. the percent of Eudragit RS and coating level, the optimum formulation was found to be the one containing 20% Eudragit RS, 64% Eudragit S and 16% Eudragit L, and a coating level of 10%. This formulation was reproduced and tested in continuous condition of dissolution, and also separately at pH 7.5. The results of in vitro experiments indicate that the proposed combined time-dependent and pH-dependent polymethacrylate polymer coating may provide a colonic delivery system for indomethacin.  相似文献   

11.
The release of dextromethorphan hydrobromide from matrices containing hydroxypropylmethyl cellulose (HPMC K100LV) and methacrylic acid copolymer (Eudragit L100-55) has been evaluated at different ratios of the polymers. The physicochemical properties (including weight, thickness, crushing strengh, friability and disintegration time) were also determined at 1000, 2000 and 4000 p compression forces. No significant differences in weight uniformity and thickness values were observed between the different formulations. The crushing strength of the tablets increased with increasing compression force and it reached a constant level at 4000 p. The formulations containing only HPMC K100LV resulted in an extended release pattern, however, Eudragit L100-55 alone could not effectively prolong the drug release. A combination of HPMC K100LV and Eudragit L100-55 in a 1:1 ratio at the 40% level provided an almost similar drug release profile than the marketed product.  相似文献   

12.
The primary objective of the study was to develop a pH and transit time controlled sigmoidal release polymeric matrix for colon-specific delivery of indomethacin. Tablet matrices were prepared using a combination of hydrophilic polymers (polycarbophil or carbopol) having pH sensitive swelling properties with hydrophobic polymer ethyl cellulose. The prepared matrices were characterized for physical properties and in vitro release kinetics. The presence of ethyl cellulose in a hydrophilic polymer matrix resulted in a sigmoidal in vitro drug release pattern with negligible to very low drug release in the initial phase (0–6?h) followed by controlled release for 14–16?h. The retardation in initial release can be attributed to the presence of ethyl cellulose that reduced swelling of hydrophilic polymer(s) while in the later portion, polymer relaxation at alkaline pH due to the ionization of acrylic acid units on carbopol and polycarbophil resulted in enhanced drug release. Thus, a sigmoidal release pattern was obtained that could be ideal for colonic delivery of indomethacin in the potential treatment of colon cancer.  相似文献   

13.
Controlled release preparations have been reported to reduce the gastro irritant and ulcerogenic effects of non steroidal antiinflammatory drugs. In the present study, an attempt was made to develop matrix tablet-based controlled release formulations of ibuprofen, using ethyl cellulose as the rate-controlling polymer. In order to prevent initial release of the drug in the acidic environment of the stomach, cellulose acetate phthalate was incorporated in the matrix in varying amounts. It was found that with increasing the proportion of ethyl cellulose in the matrix, the drug release was extended for 14-16 h. Incorporation of cellulose acetate phthalate in ethyl cellulose matrix provided very low initial release of the drug in the first 2-3 h followed by enhanced release rate in alkaline medium owing to the high solubility of cellulose acetate phthalate at basic pH which led to creation of a porous matrix. It was concluded that combination of cellulose acetate phthalate with ethyl cellulose in the matrix base can be an effective means of developing a controlled release formulation of ibuprofen with very low initial release followed with controlled release up to 14-16 h.  相似文献   

14.
The primary objective of the study was to develop a pH and transit time controlled sigmoidal release polymeric matrix for colon-specific delivery of indomethacin. Tablet matrices were prepared using a combination of hydrophilic polymers (polycarbophil or carbopol) having pH-sensitive swelling properties with hydrophobic polymer ethyl cellulose. The prepared matrices were characterized for physical properties and in vitro release kinetics. The presence of ethyl cellulose in a hydrophilic polymer matrix resulted in a sigmoidal in vitro drug release pattern with negligible-to-very low drug release in the initial phase (0–6?h) followed by controlled release for 14–16?h. The retardation in initial release can be attributed to the presence of ethyl cellulose that reduced swelling of hydrophilic polymer(s), while in the later portion, polymer relaxation at alkaline pH due to the ionization of acrylic acid units on carbopol and polycarbophil resulted in enhanced drug release. Thus, a sigmoidal release pattern was obtained that could be ideal for colonic delivery of indomethacin in the potential treatment of colon cancer.  相似文献   

15.
A new oral drug delivery system for colon targeting has been developed based on enteric-coated matrix tablets which suitably exploits both pH-sensitive and time-dependent functions. Matrix-tablets were prepared by direct compression of mixtures of hydroxyethylcellulose (HEC), a hydrophilic swellable polymer, with the inert insoluble ethylcellulose (EC) or micro-crystalline cellulose (MCC) polymers, in which theophylline, selected as model drug, was dispersed. Eudragit S100, a methacrylic acid copolymer soluble at pH 7, was used as pH-sensitive coating polymer. The influence of varying the cellulose-derivative combinations and their relative ratios as well as the level of the coating polymer was investigated. Surface morphology of the tablets was monitored by SEM analysis before and after the release test. The results of release studies, performed according to the USP basket method using a sequence of dissolution media simulating the gastrointestinal physiological pH variation, indicated that the Eudragit S100 enteric-coated matrix tablets were successful in achieving gastric resistance and timed-release of the drug, assuring an adequate lag time for the intended colonic targeting, followed by a controlled-release phase. The enteric-coating level emerged as the critical factor in determining the duration of the lag-phase, whereas the release rate mainly depended on the matrix composition. Formulations with higher HEC content showed a faster drug release rate than those with greater content in inert polymer and the MCC-HEC combinations were more effective than the corresponding EC-HEC ones. The best results were given by the 27% coated 1:0.3:0.7 (w/w) drug/MCC/HEC tablets, which, after a 260 min lag time, regularly released the drug, achieving about 90% of release after 10 h.  相似文献   

16.
A series of either hydrophilic or hydrophobic polymers were used to prepare controlled release Ambroxol hydrochloride (AMX) matrix tablets by direct compression. Both the compatibility and flow properties of AMX/polymer mixtures were investigated. The effect of the amount and type of polymer on the physical properties and in vitro drug release was studied and compared to commercially available Ambroxol(?) SR capsules. A kinetic study of the release profile of AMX from the prepared matrix tablets was performed. All excipients used in the study were compatible with the model drug. AMX/drug mixtures containing sodium alginate (NA) and hydroxypropylmethyl cellulose (HPMC) showed better flow properties than other polymers used in the study. The in vitro drug release studies showed that matrix tablets formulae containing 10% HPMC (S7) or a combination of 30% NA and 5% HPMC (Ah) exhibited a higher ability to control the release of AMX. The kinetic study revealed that a diffusion controlled mechanism prevailed except when carbopol was used. Formula Ah followed a non-fickian diffusion mechanism similar to Ambroxol(?) SR capsules. Both formulae S7 and Ah could be considered as potential candidates for formulation of AMX controlled release matrix tablets.  相似文献   

17.
Mechanisms governing the release of drugs from controlled delivery systems are mainly diffusion, osmosis and erosion. For poorly soluble drugs, the existing mechanisms are limited to osmosis and matrix erosion, that are commonly observed in single unit matrix dosage forms. This study reports formulation and dissolution performance of Eudragit L 100 55 and Eudragit S 100 based multi-unit controlled release system of a poorly soluble thiazole based leukotriene D(4) antagonist, that was obtained by an extrusion/spheronization technique. Effect of triethyl citrate, that was incorporated in the matrix, on the dissolution performance of the drug was also evaluated. In vitro matrix erosion and drug release from the pellets were determined by the use of USP Dissolution Apparatus I, pH 6.8 phosphate buffer, gravimetry and UV spectrophotometry, respectively. Results obtained demonstrated that matrix erosion and drug release occurred simultaneously from the pellets. Pellets eroded with a consequent reduction in size without any change in the pellet geometry for over 12 h. Matrix erosion and drug release followed zero order kinetics. Data obtained strongly suggested a polymer controlled, surface erosion mechanism.  相似文献   

18.
The objective of this study was to develop controlled release matrix embedded formulations of celecoxib (CCX) as candidate drug using hydroxy propyl methyl cellulose (HPMC) and ethyl cellulose (EC), either alone or in combination, using optimization techniques like polynomial method and composite design. This would enable development of controlled release formulations with predictable and better release characteristics in lesser number of trials. Controlled release matrix tablets of CCX were prepared by wet granulation method. The in vitro release rate studies were carried out in USP dissolution apparatus (paddle method) in 900 ml of sodium phosphate buffer (pH 7.4) with 1% v/v tween-80. The in vitro drug release data was suitably transformed and used to develop mathematical models using first order polynomial equation and composite design techniques of optimization. In the formulations prepared using HPMC alone, the release rate decreased as the polymer proportion in the matrix base was increased. Whereas in case of formulations prepared using EC alone, only marginal difference was observed in the release rate upon increasing the polymer proportion. In case of formulations containing combination of HPMC and EC, the release of the drug was found to be dependent on the relative proportions of HPMC and EC used in the tablet matrix. The release of the drug from these formulations was extended up to 21 h indicating they can serve as once daily controlled release formulations for CCX. Mathematical analysis of the release kinetics indicates a near approximate Fickian release character for most of the designed formulations. Mathematical equation developed by transforming the in vitro release data using composite design model showed better correlation between observed and predicted t(50%) (time required for 50% of the drug release) when compared to first order polynomial equation model. The equation thus developed can be used to predict the release characteristics of the drug from matrix embedded formulations depending upon the proportion of HPMC and EC used in the formulation.  相似文献   

19.
The aim of this study was to design site specific, controlled release tablets of N-acetyl-d-glucosamine (NAG), maltose monohydrate and maltopentaose by using hydrophobic matrix formers starch acetate (SA) and ethyl cellulose (EC). The optimized matrices, which had either low porosity and high drug load or high porosity and low drug load, released the saccharides within the desired 2-4 h. In general, it was possible to control the release rate of saccharides by altering the relative amount of hydrophobic matrix former in the tablet and tablet porosity. The release type of saccharides from these formulations varied from immediate release to sustained release. In the case of sustained release formulations, it was found that the release of maltose monohydrate and maltopentaose was biphasic and slower than the release rate of NAG from similar tablets. NAG release kinetics followed square root of time kinetics, while in the case of maltose monohydrate and maltopentaose, the release kinetics were zero order in both phases. The biphasic dissolution profile was proposed to be caused by water mediated recrystallisation of the disordered material formed during the dissolution. Both SA and EC matrices were found to represent suitable controlled oral delivery vehicles for saccharides.  相似文献   

20.
目的采用O/O型乳化溶剂挥发法制备瑞舒伐他汀钙肠溶缓释微球,评价各因素对微球性质的影响。方法以微球的粒径、收率、包封率和释放度作为微球的质量评价指标,研究Eudragit类型、乙基纤维素黏度、两种囊材的质量比、搅拌速度、理论载药量和乳化剂用量对微球性质的影响。结果 Eudragit L100-55制得的微球在酸中突释严重,Eudragit L100能很好地抑制药物在酸中的释放;乙基纤维素(20 cp)制得的微球能在pH值6.8的磷酸盐缓冲液中持续释药10 h;Eudragit L100和乙基纤维素(20 cp)的质量比为70∶30时能得到理想的释放曲线;搅拌速度为600 r.min-1、理论载药量为10%和乳化剂Span 80的质量占液体石蜡质量的2%时能得到较好的微球。结论联合应用pH敏感型材料Eudragit L100和缓释材料乙基纤维素,应用乳化溶剂挥发法可以制备瑞舒伐他汀钙肠溶缓释微球。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号