首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We developed a novel titanium coating that has applications for preventing infection-related implant failures in dentistry and orthopedics. The coating incorporates an antimicrobial peptide, GL13K, derived from parotid secretory protein, which has been previously shown to be bactericidal and bacteriostatic in solution. We characterized the resulting physicochemical properties, resistance to degradation, activity against Porphyromonas gingivalis and in vitro cytocompatibility. Porphyromonas gingivalis is a pathogen associated with dental peri-implantitis, an inflammatory response to bacteria resulting in bone loss and implant failure. Our surface modifications obtained a homogeneous, highly hydrophobic and strongly anchored GL13K coating that was resistant to mechanical, thermochemical and enzymatic degradation. The GL13K coatings had a bactericidal effect and thus significantly reduced the number of viable bacteria compared to control surfaces. Finally, adequate proliferation of osteoblasts and human gingival fibroblasts demonstrated the GL13K coating’s cytocompatibility. The robustness, antimicrobial activity and cytocompatibility of GL13K-biofunctionalized titanium make it a promising candidate for sustained inhibition of bacterial biofilm growth. This surface chemistry provides a basis for development of multifunctional bioactive surfaces to reduce patient morbidities and improve long-term clinical efficacy of metallic dental and orthopedic implants.  相似文献   

2.
《Acta biomaterialia》2014,10(6):2379-2403
Metal ion release from metallic materials, e.g. metallic alloys and pure metals, implanted into the human body in dental and orthopedic surgery is becoming a major cause for concern. This review briefly provides an overview of both metallic alloys and pure metals used in implant materials in dental and orthopedic surgery. Additionally, a short section is dedicated to important biomaterials and their corrosive behavior in both real solutions and various types of media that model human biological fluids and tissues. The present review gives an overview of analytical methods, techniques and different approaches applied to the measurement of in vivo trace metals released into body fluids and tissues from patients carrying metal-on-metal prostheses and metal dental implants. Reference levels of ion concentrations in body fluids and tissues that have been determined by a host of studies are compiled, reviewed and presented in this paper. Finally, a collection of published clinical data on in vivo released trace metals from metallic medical implants is included.  相似文献   

3.
The initial step of thrombus formation on blood-contacting biomaterials is known to be adsorption of blood proteins followed by platelet adhesion. Poly(ethylene oxide) (PEO) has been frequently used to modify biomaterial surfaces to minimize or prevent protein adsorption and cell adhesion. PEO was grafted onto a number of biomaterials in our laboratory. Nitinol stents and glass tubes were grafted with PEO by priming the metal surface with trichlorovinylsilane (TCVS) followed by adsorption of Pluronic and y-irradiation. Nitinol stents were also coated with Carbothane for PEO grafting. Chemically inert polymeric biomaterials, such as Carbothane, polyethylene, silicone rubber, and expanded polytetrafluoroethylene (e-PTFE), were first adsorbed with PEO-polybutadiene-PEO (PEO-PB-PEO) triblock copolymers and then exposed to gamma-irradiation for covalent grafting. For PEO grafting to Dacron (polyethylene terephthalate), the surface was sequentially treated with PEO-PB-PEO and Pluronics followed by gamma-irradiation. In vitro studies showed substantial reduction in fibrinogen adsorption and platelet adhesion to the PEO-grafted surfaces compared with control surfaces. Fibrinogen adsorption was reduced by 70-95% by PEO grafting on all surfaces, except for e-PTFE. The platelet adhesion corresponded to the fibrinogen adsorption. When the PEO-grafted surfaces were tested ex vivo/in vivo, however, the expected beneficial effect of PEO grafting was inconsistent. The beneficial effect of the PEO grafting was most pronounced on the PEO-grafted nitinol stents. Thrombus formation was reduced by more than 85% by PEO grafting on metallic stents. Only moderate improvement (i.e. 35% decrease in platelet deposition) was observed with PEO-grafted tubes of polyethylene, silicone rubber, and glass. For PEO-grafted heart valves made of Dacron, however, no effect of PEO grafting was observed at all. It appears that the extent of thrombus formation on PEO-grafted biomaterials was directly related to the extent of tissue damage during implantation surgery. Platelets can be activated and form aggregates in the bulk blood, and the formed platelet aggregates may be able to deposit on the PEO monolayer overcoming its repulsive property. Our studies indicate that the testing of in vitro platelet adhesion should include adhesion of large platelet aggregates, in addition to adhesion of individual platelets. Furthermore, the surface modification methods should be improved over the current monolayer grafting concept so that the repulsive force by the grafted PEO layers is large enough to prevent adhesion of platelet aggregates formed in the bulk blood before arriving at the biomaterial surface.  相似文献   

4.
A written protocol for the investigation of candidate surgical implant materials is quite important. Biomaterials science sections of clinical protocols have been developed for porous alumina ceramic and nonporous vitreous carbon biomaterials. Published data on the properties of the biomaterials were evaluated as related to bone replacement and augmentation. Where necessary, limited laboratory studies were conducted. If decisions could not be reached with respect to a given application, animal studies were initiated. The surgeons worked with biomaterials in the laboratory and the biomaterials scientist attended the experimental surgery procedures. Biomaterials Science Laboratory nondestructive investigations including stereomicroscopic and x-ray inspections were conducted on the vitreous carbon dental implant systems. The investigations elucidated a number of unexpected features for both implant biomaterials and the overall interaction between the different disciplines resulted in a more complete protocol for the study of these biomaterials at our Medical and Dental Center.  相似文献   

5.
The role of complement activation by artificial surfaces relative to inflammatory response is not well understood. This study was performed to evaluate the inflammatory cell recruitment, distribution, and ex vivo metabolic activation of surfaces with different plasma protein adsorption and complement activation properties in vitro. The implants were (1) pure gold (reference), (2) albumin-precoated (3) IgG-precoated gold, and (4) 3-mercapto-1, 2-propanediol [mercaptoglycerol (MG)] and (5) glutathione (GSH) immobilized to gold. The implant disks were inserted subcutaneously in rats for 24 h, and the number of inflammatory cells that were recruited to the implant adjacent to the surrounding fluid phase (exudate) and the surfaces were quantified by DNA measurements. The oxidative burst was analyzed ex vivo using spontaneous and phorbol myristate acetate (PMA)-stimulated, luminol-enhanced chemiluminescence (CL). The in vitro surface-induced anti-rat C3 binding was evaluated by ellipsometry and antibody techniques after plasma incubations for 1 and 30 min. The ellipsometric results showed that immobilized mercaptoglycerol and IgG-coated, but not the immobilized glutathione or the reference Au, bound anti-C3. The in vivo results revealed that the largest amount of cells was associated with the IgG-coated surfaces, followed by immobilized GSH and MG, albumin-coated, and gold surfaces, respectively. No spontaneous ex vivo luminol-enhanced CL was recorded from the cells irrespective of surface functionality or localization. A down-regulation of surface-associated and exudate leukocyte CL was observed ex vivo, irrespective of surface functionality. The results do not indicate a clear relationship between the degree of complement activation in vitro and leukocyte recruitment and adhesion in vivo for differently functionalized surfaces.  相似文献   

6.
《Acta biomaterialia》2014,10(7):2907-2918
Dental and orthopedic implants have been under continuous advancement to improve their interactions with bone and ensure a successful outcome for patients. Surface characteristics such as surface topography and surface chemistry can serve as design tools to enhance the biological response around the implant, with in vitro, in vivo and clinical studies confirming their effects. However, the comprehensive design of implants to promote early and long-term osseointegration requires a better understanding of the role of surface wettability and the mechanisms by which it affects the surrounding biological environment. This review provides a general overview of the available information about the contact angle values of experimental and of marketed implant surfaces, some of the techniques used to modify surface wettability of implants, and results from in vitro and clinical studies. We aim to expand the current understanding on the role of wettability of metallic implants at their interface with blood and the biological milieu, as well as with bacteria, and hard and soft tissues.  相似文献   

7.
《Acta biomaterialia》2014,10(7):2894-2906
The surface wettability of biomaterials determines the biological cascade of events at the biomaterial/host interface. Wettability is modulated by surface characteristics, such as surface chemistry and surface topography. However, the design of current implant surfaces focuses mainly on specific micro- and nanotopographical features, and is still far from predicting the concomitant wetting behavior. There is an increasing interest in understanding the wetting mechanisms of implant surfaces and the role of wettability in the biological response at the implant/bone or implant/soft tissue interface. Fundamental knowledge related to the influence of surface roughness (i.e. a quantification of surface topography) on titanium and titanium alloy surface wettability, and the different associated wetting regimes, can improve our understanding of the role of wettability of rough implant surfaces on the biological outcome. Such an approach has been applied to biomaterial surfaces only in a limited way. Focusing on titanium dental and orthopaedic implants, the present study reviews the current knowledge on the wettability of biomaterial surfaces, encompassing basic and applied aspects that include measurement techniques, thermodynamic aspects of wetting and models predicting topographical and roughness effects on the wetting behavior.  相似文献   

8.
It is known that the micromotion between implant and bone inhibits direct bone growth either on or into implant surfaces in vivo. Nevertheless, biocompatibility tests in vitro of biomaterials for bone/implant interfaces are mainly performed under static conditions. This work describes a dynamic, in vitro experimental simulation of the effect of mutual, small-scale implant surface-tissue displacement on adhered cells. Disks of simulated tissue (PVP hydrogel) were subjected to cyclic micromotion ranging from 0 at the center to 1000 microm at the periphery at approximately 13 Hz, relative to biomaterial surfaces or tissue culture polystyrene controls populated with human osteoblasts in standard tissue culture plate wells. The effect of the interfacial micromotion on the number of cells remaining attached was quantitated by XTT assay. The activity level of the remaining cells was determined by an alkaline phosphatase assay, and cell stress was evaluated by nitrogen assay. Significantly more cells (ANOVA) became detached from similarly prepared surfaces of titanium, hydroxyapatite, and alumina compared to the polystyrene control, and detachment from alumina was greater than for the other two materials. The activity of the remaining attached cells was lower as compared to the static (no micromotion) control but not significantly different among the biomaterials. All nitrogen assays were negative, suggesting minimal cell stress occurred. The method is proposed as a useful and discriminating in vitro tool for biocompatibility studies focused on cell adhesion to biomaterials under conditions related to those which exist at the implant/bone interface in vivo, and it allows subsequent studies of the still-viable cells by other methods.  相似文献   

9.
In the past, several modifications of specific surface properties such as topography, structure, chemistry, surface charge, and wettability have been investigated to predictably improve the osseointegration of titanium implants. The aim of the present review was to evaluate, based on the currently available evidence, the impact of hydrophilic surface modifications of titanium for dental implants. A surface treatment was performed to produce hydroxylated/hydrated titanium surfaces with identical microstructure to either acid-etched, or sand-blasted, large grit and acid-etched substrates, but with hydrophilic character. Preliminary in vitro studies have indicated that the specific properties noted for hydrophilic titanium surfaces have a significant influence on cell differentiation and growth factor production. Animal experiments have pointed out that hydrophilic surfaces improve early stages of soft tissue and hard tissue integration of either nonsubmerged or submerged titanium implants. This data was also corroborated by the results from preliminary clinical studies. In conclusion, the present review has pointed to a potential of hydrophilic surface modifications to support tissue integration of titanium dental implants.  相似文献   

10.
Advancing dental implant surface technology--from micron- to nanotopography   总被引:3,自引:0,他引:3  
Current trends in clinical dental implant therapy include use of endosseous dental implant surfaces embellished with nanoscale topographies. The goal of this review is to consider the role of nanoscale topographic modification of titanium substrates for the purpose of improving osseointegration. Nanotechnology offers engineers and biologists new ways of interacting with relevant biological processes. Moreover, nanotechnology has provided means of understanding and achieving cell specific functions. The various techniques that can impart nanoscale topographic features to titanium endosseous implants are described. Existing data supporting the role of nanotopography suggest that critical steps in osseointegration can be modulated by nanoscale modification of the implant surface. Important distinctions between nanoscale and micron-scale modification of the implant surface are presently considered. The advantages and disadvantages of nanoscale modification of the dental implant surface are discussed. Finally, available data concerning the current dental implant surfaces that utilize nanotopography in clinical dentistry are described. Nanoscale modification of titanium endosseous implant surfaces can alter cellular and tissue responses that may benefit osseointegration and dental implant therapy.  相似文献   

11.
The foreign body reaction (FBR), which leads to the encapsulation of implanted biomaterials, has been implicated in the failure of many medical devices. The protein layer that is nonspecifically adsorbed onto the implant surface immediately after implantation is thought to dictate this reaction. It is hypothesized that biomaterial surfaces having specific proteins with precisely controlled orientations will decrease the FBR. Previously, we have reported that osteopontin (OPN) adsorbed on positively charged surfaces has a preferable orientation for in vitro cell adhesion and spreading as compared to negatively charged surfaces. It is expected that coating a layer of OPN in its preferred orientation on an implant surface will decrease the FBR. In this work, in vivo studies were performed to test this hypothesis. A positively charged polymer (p(HEMA-co-AEMA)) and a negatively charged polymer (p(HEMA-co-CEA)) coated with OPN were implanted subcutaneously in wild-type mice for 7 or 28 days. Uncoated polymers were used as control. For the 7-day implants, cells on OPN-coated p(HEMA-co-AEMA) spread more than cells on the other three materials. Following 28 days of implantation the implants were explanted and the capsule thickness and vascularity around the implants were characterized. Additionally, the macrophage and foreign body giant cells (FBGCs) around the implants were quantified. It was found in this study that the modification of the positively charged polymer surface with OPN in a controlled orientation led to a reduction in the foreign body reaction as determined by capsule thickness. Our finding provides valuable information for designing better biocompatible biomaterials with improved in vivo performance.  相似文献   

12.
Surface micro- and nanostructural modifications of dental and orthopedic implants have shown promising in vitro, in vivo and clinical results. Surface wettability has also been suggested to play an important role in osteoblast differentiation and osseointegration. However, the available techniques to measure surface wettability are not reliable on clinically relevant, rough surfaces. Furthermore, how the differentiation state of osteoblast lineage cells impacts their response to micro/nanostructured surfaces, and the role of wettability on this response, remain unclear. In the current study, surface wettability analyses (optical sessile drop analysis, environmental scanning electron microscopic analysis and the Wilhelmy technique) indicated hydrophobic static responses for deposited water droplets on microrough and micro/nanostructured specimens, while hydrophilic responses were observed with dynamic analyses of micro/nanostructured specimens. The maturation and local factor production of human immature osteoblast-like MG63 cells was synergistically influenced by nanostructures superimposed onto microrough titanium (Ti) surfaces. In contrast, human mesenchymal stem cells cultured on micro/nanostructured surfaces in the absence of exogenous soluble factors exhibited less robust osteoblastic differentiation and local factor production compared to cultures on unmodified microroughened Ti. Our results support previous observations using Ti6Al4V surfaces showing that recognition of surface nanostructures and subsequent cell response is dependent on the differentiation state of osteoblast lineage cells. The results also indicate that this effect may be partly modulated by surface wettability. These findings support the conclusion that the successful osseointegration of an implant depends on contributions from osteoblast lineage cells at different stages of osteoblast commitment.  相似文献   

13.
14.
15.
软组织缺失是整形外科关注的焦点问题之一,传统软组织重建方法存在供皮区缺损、植入物移动和吸收以及产生异物反应。近年干细胞被认为可能是一种新颖的治疗方法,脂肪干细胞(adipose-derived Stem Cells,ADSCs)是存在于脂肪组织内的一种多能干细胞,具有多向分化潜能,且数量充足、获取方便,它们在临床前试验治疗的研究和临床实验方面已有良好的记录。本文主要从ADSCs获取、ADSCs的分离和扩增、生物材料和ADSCs、生长因子在脂肪组织工程应用以及脂肪组织工程策略等研究进展做一综述,这也是脂肪组织工程研究中不可缺少的重要环节。  相似文献   

16.
With increasing regularity, biomaterials are being designed with the goal of promoting repair of the injured spinal cord. Most often, the efficacy of novel biomaterials is tested using in vitro models; however, their true potential will be realized only after they are applied and evaluated in standardized in vivo spinal cord injury (SCI) models. The purpose of this review is to (1) provide a primer on SCI research including an overview of common pathogenic mechanisms that may respond to biomaterials and the in vivo models and outcomes assessment tools used to evaluate therapeutic efficacy; (2) review the types of biomaterials that have been tested in these models; (3) discuss which biomaterials might be applied to these models in the future; and (4) recommend future engineering strategies to create better in vivo models and assessment tools.  相似文献   

17.
Prior to implantation trials in animals, the effect of steam sterilization on the surface properties of metallic and coated biomaterials was studied Pure germanium plates and cast surgical Vitallium discs and subperiosteal implants were treated to present three standard types of biomaterials surfaces prior to steam sterilization, ranging from scrupulously clean, high-energy metals to uniformly low-energy organic layers. Both before and after sterilization, the sample surfaces were characterized by a variety of nondestructive physicochemical techniques. The results indicate that steam sterilization is likely to compromise the properties of otherwise carefully prepared biomedical implants by depositing hydrophobic organic and hygroscopic salt contaminants over the implant surfaces.  相似文献   

18.
A major consideration in designing dental implants is the creation of a surface that provides strong attachment between the implant and bone, connective tissue, or epithelium. In addition, it is important to inhibit the adherence of oral bacteria on titanium surfaces exposed to the oral cavity to maintain plaque-free implants. Previous in vitro studies have shown that titanium implant surfaces coated with titanium nitride (TiN) reduced bacterial colonization compared to other clinically used implant surfaces. The aim of the present study was to examine the support of fibroblast growth by a TiN surface that has antimicrobial characteristics. Mouse fibroblasts were cultured on smooth titanium discs that were either magnetron-sputtered with a thin layer of titanium nitride, thermal oxidized, or modified with laser radiation (using a Nd-YAG laser). The resulting surface topography was examined by scanning electron microscopy (SEM), and surface roughness was estimated using a two-dimensional contact stylus profilometer. A protein assay (BCA assay) and a colorimetric assay to examine fibroblast metabolism (MTT) were used. Cellular morphology and cell spreading were analyzed using SEM and fluorescence microscopy. Fibroblasts on oxidized titanium surfaces showed a more spherical shape, whereas cells on laser-treated titanium and on TiN appeared intimately adherent to the surface. The MTT activity and total protein were significantly increased in fibroblasts cultured on titanium surfaces coated with TiN compared to all other surface modifications tested. This study suggests that a titanium nitride coating might be suitable to support tissue growth on implant surfaces.  相似文献   

19.
Implant surface topography influences osteoblastic proliferation, differentiation and extracellular matrix protein expressions. Studies on preliminary interactions of osteoblast-like cells on implant interface through in vitro systems, can give lucid insights to osseo-integrative efficacies of when in vivo implants. In the present investigation two titanium surfaces of dental implants, a sandblasted and acid-etched surface and an experimental grooved surface were compared through in vitro systems. The titanium implants were seeded with osteoblast-like primary cells and maintained for a period of 1-7 days. Expressions of fibronectin and osteonectin were assessed through immunogold labelling by scanning electron microscopy. The grooved surface, supported better osteoblastic cell adhesion and proliferation than the rough surfaces. Further, osteoblastic cells on the grooved surfaces also displayed a strong labelling for fibronectin at the cytoplasmic extensions coupled with intense osteonectin expression in comparison to the rough surfaced implants. In conclusion, grooved surfaces offered better cell attachment and proliferation than the other rough surfaces studied.  相似文献   

20.
生物材料体内外试验相关性研究——细胞与软组织毒性   总被引:4,自引:0,他引:4  
生物材料在医学领域已广泛应用 ,材料的安全性评价是极其重要的一环。研究生物材料体内外试验方法的相关性 ,以探求与体内动物试验相关性好的体外评价方法。采用白细胞趋化试验、流式细胞仪法、MTT比色法等体外方法与大鼠皮下埋植试验、兔肌肉埋植试验等体内方法 ,对七种生物材料的组织毒性进行了评定 ,并应用Spearman秩相关统计方法对体内和体外试验方法作对应进行相关性分析。结果表明 :体外方法均与体内方法有良好相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号