首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Depressed Ca-handling in cardiomyocytes is frequently attributed to impaired sarcoplasmic reticulum (SR) function in human and experimental heart failure. Phospholamban (PLN) is a key regulator of SR and cardiac function, and PLN mutations in humans have been associated with dilated cardiomyopathy (DCM). We previously reported the deletion of the highly conserved amino acid residue arginine 14 (nucleic acids 39, 40 and 41) in DCM patients. This basic amino acid is important in maintaining the upstream consensus sequence for PKA phosphorylation of Ser 16 in PLN. To assess the function of this mutant PLN, we introduced the PLN-R14Del in cardiac myocytes of the PLN null mouse. Transgenic lines expressing mutant PLN-R14Del at similar protein levels to wild types exhibited no inhibition of the initial rates of oxalate-facilitated SR Ca uptake compared to PLN-knockouts (PLN-KO). The contractile parameters and Ca-kinetics also remained highly stimulated in PLN-R14Del cardiomyocytes, similar to PLN-KO, and isoproterenol did not further stimulate these hyper-contractile basal parameters. Consistent with the lack of inhibition on SR Ca-transport and contractility, confocal microscopy indicated that the PLN-R14Del failed to co-localize with SERCA2a. Moreover, PLN-R14Del did not co-immunoprecipitate with SERCA2a (as did WT-PLN), but rather co-immunoprecipitated with the sarcolemmal Na/K-ATPase (NKA) and stimulated NKA activity. In addition, studies in HEK cells indicated significant fluorescence resonance energy transfer between PLN-R14Del-YFP and NKAα1-CFP, but not with the NKA regulator phospholemman. Despite the enhanced cardiac function in PLN-R14Del hearts (as in PLN-knockouts), there was cardiac hypertrophy (unlike PLN-KO) coupled with activation of Akt and the MAPK pathways. Thus, human PLN-R14Del is misrouted to the sarcolemma, in the absence of endogenous PLN, and alters NKA activity, leading to cardiac remodeling.  相似文献   

2.
Left ventricular hypertrophy may lead to heart failure. The transition between hypertrophy and heart failure is, however, incompletely understood. On the cellular level, human heart failure is characterized by alterations in Ca(2+)-cycling proteins and beta-adrenergic receptor density, but the hypertrophied human heart remains largely under studied. In this investigation, 21 donor hearts which could not be used for transplantation were studied. Ten of these hearts came from organ donors with documented left ventricular hypertrophy and normal cardiac function. Eleven of the hearts were non-failing, obtained from individuals with no evidence of cardiac disease. Nine failing hearts from transplant recipients were also studied. beta-adrenergic receptor density was determined by radioligand binding. mRNA for atrial natriuretic factor, calsequestrin, sarcoplasmic reticulum Ca(2+)-ATPase, and phospholamban was measured by Northern blot. Actin, calsequestrin, sarcoplasmic reticulum Ca(2+)-ATPase, and phospholamban proteins were quantified by Western blot. In both hypertrophied and failing ventricles, mRNA for atrial natriuretic factor was expressed, as compared to no expression in non-failing hearts. In failing hearts, beta -adrenergic receptor density and both mRNA and protein levels of the Ca(2+)-ATPase were significantly decreased v non-failing hearts. By comparison, hypertrophied hearts showed a reduction in mRNA expression for both the Ca(2+)-ATPase and phospholamban with no change in the corresponding protein levels, and no change in beta-receptors. These data suggest that the previously demonstrated reduction in beta-adrenergic receptors and Ca(2+)-cycling proteins in the failing human heart may be features of the decompensated state, but are not found in human hearts with left ventricular hypertrophy and preserved systolic function.  相似文献   

3.
The regulatory interaction of phospholamban (PLN) with Ca(2+)-ATPase controls the uptake of calcium into the sarcoplasmic reticulum, modulating heart muscle contractility. A missense mutation in PLN cytoplasmic domain (R9C) triggers dilated cardiomyopathy in humans, leading to premature death. Using a combination of biochemical and biophysical techniques both in vitro and in live cells, we show that the R9C mutation increases the stability of the PLN pentameric assembly via disulfide bridge formation, preventing its binding to Ca(2+)-ATPase as well as phosphorylation by protein kinase A. These effects are enhanced under oxidizing conditions, suggesting that oxidative stress may exacerbate the cardiotoxic effects of the PLN(R9C) mutant. These results reveal a regulatory role of the PLN pentamer in calcium homeostasis, going beyond the previously hypothesized role of passive storage for active monomers.  相似文献   

4.
Mutations in striated muscle alpha-tropomyosin (alpha-TM), an essential thin filament protein, cause both dilated cardiomyopathy (DCM) and familial hypertrophic cardiomyopathy. Two distinct point mutations within alpha-tropomyosin are associated with the development of DCM in humans: Glu40Lys and Glu54Lys. To investigate the functional consequences of alpha-TM mutations associated with DCM, we generated transgenic mice that express mutant alpha-TM (Glu54Lys) in the adult heart. Results showed that an increase in transgenic protein expression led to a reciprocal decrease in endogenous alpha-TM levels, with total myofilament TM protein levels remaining unaltered. Histological and morphological analyses revealed development of DCM with progression to heart failure and frequently death by 6 months. Echocardiographic analyses confirmed the dilated phenotype of the heart with a significant decrease in the left ventricular fractional shortening. Work-performing heart analyses showed significantly impaired systolic, and diastolic functions and the force measurements of cardiac myofibers revealed that the myofilaments had significantly decreased Ca(2+) sensitivity and tension generation. Real-time RT-PCR quantification demonstrated an increased expression of beta-myosin heavy chain, brain natriuretic peptide, and skeletal actin and a decreased expression of the Ca(2+) handling proteins sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine receptor. Furthermore, our study also indicates that the alpha-TM54 mutation decreases tropomyosin flexibility, which may influence actin binding and myofilament Ca(2+) sensitivity. The pathological and physiological phenotypes exhibited by these mice are consistent with those seen in human DCM and heart failure. As such, this is the first mouse model in which a mutation in a sarcomeric thin filament protein, specifically TM, leads to DCM.  相似文献   

5.
OBJECTIVES: A hallmark of human heart failure is prolonged myocardial relaxation. Although the intrinsic mechanism of phospholamban coupling to the Ca(2+)-ATPase is unaltered in normal and failed human hearts, it remains possible that regulation of phospholamban phosphorylation by cAMP-dependent mechanisms or other second messenger pathways could be perturbed, which may account partially for the observed dysfunctions of the sarcoplasmic reticulum (SR) associated with this disease. METHODS: cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaM kinase) were characterized initially by DEAE-Sepharose chromatography in hearts from patients with end-stage dilated cardiomyopathy. We measured the activity of PKA and CaM kinase in left ventricular tissue of failing (idiopathic dilated cardiomyopathy; ischemic heart disease) and nonfailing human hearts. RESULTS: Basal PKA activity was not changed between failing and nonfailing hearts. One major peak of CaM kinase activity was detected by DEAE-Sepharose chromatography. CaM kinase activity was increased almost 3-fold in idiopathic dilated cardiomyopathy. In addition, hemodynamical data (left ventricular ejection fraction, cardiac index) from patients suffering from IDC positively correlate with CaM kinase activity. CONCLUSIONS: Increased CaM kinase activity in hearts from patients with dilated cardiomyopathy could play a role in the abnormal Ca2+ handling of the SR and heart muscle cell.  相似文献   

6.
It has been suggested that dilated cardiomyopathy and end-stage heart failure result in multiple defects in Ca(2+) cycling. By genetic ablation of a muscle specific sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) inhibitor, phospholamban, the broad phenotypes of murine model of dilated cardiomyopathy could be almost completely rescued. Thus, phospholamban inactivation or disruption of interaction between phospholamban and SERCA2a may provide a novel therapeutic approach for preventing the progression of heart failure.  相似文献   

7.
OBJECTIVE: The T-tubule membrane network is integrally involved in excitation-contraction coupling in ventricular myocytes. Ventricular myocytes from canine hearts with tachycardia-induced dilated cardiomyopathy exhibit a decrease in accessible T-tubules to the membrane-impermeant dye, di8-ANNEPs. The present study investigated the mechanism of loss of T-tubule staining and examined for changes in the subcellular distribution of membrane proteins essential for excitation-contraction coupling. METHODS: Isolated ventricular myocytes from canine hearts with and without tachycardia-induced heart failure were studied using fluorescence confocal microscopy and membrane fractionation techniques using a variety of markers specific for sarcolemmal and sarcoplasmic reticulum proteins. RESULTS: Probes for surface glycoproteins, Na/K ATPase, Na/Ca exchanger and Ca(v)1.2 demonstrated a prominent but heterogeneous reduction in T-tubule labeling in both intact and permeabilised failing myocytes, indicating a true depletion of T-tubules and associated membrane proteins. Membrane fractionation studies showed reductions in L-type Ca(2+) channels and beta-adrenergic receptors but increased levels of Na/Ca exchanger protein in both surface sarcolemma and T-tubular sarcolemma-enriched fractions; however, the membrane fraction enriched in junctional complexes of sarcolemma and junctional sarcoplasmic reticulum demonstrated no significant changes in the density of any sarcolemmal protein or sarcoplasmic reticulum protein assayed. CONCLUSION: Failing canine ventricular myocytes exhibit prominent depletion of T-tubules and changes in the density of a variety of proteins in both surface and T-tubular sarcolemma but with preservation of the protein composition of junctional complexes. This subcellular remodeling contributes to abnormal excitation-contraction coupling in heart failure.  相似文献   

8.
OBJECTIVES: The relation between the occurrence of pacing-induced mechanical alternans and prognosis in patients with mild-to-moderate idiopathic dilated cardiomyopathy (IDCM) in sinus rhythm was investigated prospectively. The myocardial expression of genes for Ca2+-handling proteins in such patients was also examined. BACKGROUND: Mechanical alternans occurs in some patients with severe heart failure, but the relation between the occurrence of mechanical alternans and prognosis in patients with IDCM has remained unknown. METHODS: Left ventricular (LV) pressure was measured during atrial pacing, and LV endomyocardial biopsy specimens were collected in 36 IDCM patients and 8 controls. Idiopathic dilated cardiomyopathy patients were divided into two groups consisting of 22 individuals who did not develop mechanical alternans at heart rates up to 140 beats/min (group A) and of 14 individuals who did (group B). The patients were followed up for a mean of 3.7 years. RESULTS: There was no significant difference in LV ejection fraction or the plasma concentration of brain natriuretic peptide between groups A and B. The myocardial abundance of ryanodine receptor 2 messenger ribonucleic acid (mRNA) was significantly lower in groups A and B than in controls, whereas that of sarcoplasmic reticulum Ca2+-ATPase mRNA was significantly lower in group B than in group A or controls. Stepwise multivariate analysis identified pacing-induced mechanical alternans as the strongest predictor of cardiac events. Event-free survival in group A was significantly greater than that in group B. CONCLUSIONS: The occurrence of pacing-induced mechanical alternans is a potentially useful indicator of poor prognosis in patients with mild-to-moderate IDCM in sinus rhythm.  相似文献   

9.
The cardiac SR Ca(2+)-ATPase (SERCA2a) regulates intracellular Ca(2+)-handling and thus, plays a crucial role in initiating cardiac contraction and relaxation. SERCA2a may be modulated through its accessory phosphoprotein phospholamban or by direct phosphorylation through Ca(2+)/calmodulin dependent protein kinase II (CaMK II). As an inhibitory component phospholamban, in its dephosphorylated form, inhibits the Ca(2+)-dependent SERCA2a function, while protein kinase A dependent phosphorylation of the phospho-residues serine-16 or Ca(2+)/calmodulin-dependent phosphorylation of threonine-17 relieves this inhibition. Recent evidence suggests that direct phosphorylation at residue serine-38 in SERCA2a activates enzyme function and enhances Ca(2+)-reuptake into the sarcoplasmic reticulum (SR). These effects that are mediated through phosphorylation result in an overall increased SR Ca(2+)-load and enhanced contractility. In human heart failure patients, as well as animal models with induced heart failure, these modulations are altered and may result in an attenuated SR Ca(2+)-storage and modulated contractility. It is also believed that abnormalities in Ca(2+)-cycling are responsible for blunting the frequency potentiation of contractile force in the failing human heart. Advanced gene expression and modulatory approaches have focused on enhancing SERCA2a function via overexpressing SERCA2a under physiological and pathophysiological conditions to restore cardiac function, cardiac energetics and survival rate.  相似文献   

10.
Abnormal Ca(2+) cycling in the failing heart might be corrected by enhancing the activity of the cardiac Ca(2+) pump, the sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) isoform. This can be obtained by increasing the pump's affinity for Ca(2+) by suppressing phospholamban (PLB) activity, the in vivo inhibitor of SERCA2a. In SKO mice, gene-targeted replacement of SERCA2a by SERCA2b, a pump with a higher Ca(2+) affinity, results in cardiac hypertrophy and dysfunction. The stronger PLB inhibition on cardiac morphology and performance observed in SKO was investigated here in DKO mice, which were obtained by crossing SKO with PLB(-/-) mice. The affinity for Ca(2+) of SERCA2 was found to be further increased in these DKO mice. Relative to wild-type and SKO mice, DKO mice were much less spontaneously active and showed a reduced life span. The DKO mice also displayed a severe cardiac phenotype characterized by a more pronounced concentric hypertrophy, diastolic dysfunction and increased ventricular stiffness. Strikingly, beta-adrenergic or forced exercise stress induced acute heart failure and death in DKO mice. Therefore, the increased PLB inhibition represents a compensation for the imposed high Ca(2+)-affinity of SERCA2b in the SKO heart. Limiting SERCA2's affinity for Ca(2+) is physiologically important for normal cardiac function. An improved Ca(2+) transport in the sarcoplasmic reticulum may correct Ca(2+) mishandling in heart failure, but a SERCA pump with a much higher Ca(2+) affinity may be detrimental.  相似文献   

11.
We created knock-in mice in which a deletion of 3 base pairs coding for K210 in cardiac troponin (cTn)T found in familial dilated cardiomyopathy patients was introduced into endogenous genes. Membrane-permeabilized cardiac muscle fibers from mutant mice showed significantly lower Ca(2+) sensitivity in force generation than those from wild-type mice. Peak amplitude of Ca(2+) transient in cardiomyocytes was increased in mutant mice, and maximum isometric force produced by intact cardiac muscle fibers of mutant mice was not significantly different from that of wild-type mice, suggesting that Ca(2+) transient was augmented to compensate for decreased myofilament Ca(2+) sensitivity. Nevertheless, mutant mice developed marked cardiac enlargement, heart failure, and frequent sudden death recapitulating the phenotypes of dilated cardiomyopathy patients, indicating that global functional defect of the heart attributable to decreased myofilament Ca(2+) sensitivity could not be fully compensated by only increasing the intracellular Ca(2+) transient. We found that a positive inotropic agent, pimobendan, which directly increases myofilament Ca(2+) sensitivity, had profound effects of preventing cardiac enlargement, heart failure, and sudden death. These results verify the hypothesis that Ca(2+) desensitization of cardiac myofilament is the absolute cause of the pathogenesis of dilated cardiomyopathy associated with this mutation and strongly suggest that Ca(2+) sensitizers are beneficial for the treatment of dilated cardiomyopathy patients affected by sarcomeric regulatory protein mutations.  相似文献   

12.
In skeletal muscle, Ca(2+)-cycling through the sarcoplasm regulates the excitation-contraction-relaxation cycle. Since uncoupling between sarcolemmal excitation and fibre contraction may play a key role in the functional decline of aged muscle, this study has evaluated the expression levels of key Ca(2+)-handling proteins in senescent preparations using immunoblotting and confocal microscopy. Sarcalumenin, a major luminal Ca(2+)-binding protein that mediates ion shuttling in the longitudinal sarcoplasmic reticulum, was found to be greatly reduced in aged rat tibialis anterior, gastrocnemius and soleus muscle as compared to adult specimens. Minor sarcolemmal components of Ca(2+)-extrusion, such as the surface Ca(2+)-ATPase and the Na(+)-Ca(2+)-exchanger, were also diminished in senescent fibres. No major changes were observed for calsequestrin, sarcoplasmic reticulum Ca(2+)-ATPase and the ryanodine receptor Ca(2+)-release channel. In contrast, the age-dependent reduction in the alpha(1S)-subunit of the dihydropryridine receptor was confirmed. Hence, this report has shown that downstream from the well-established defect in coupling between the t-tubular voltage sensor and the junctional Ca(2+)-release channel complex, additional age-related alterations exist in the expression of essential Ca(2+)-handling proteins. This may trigger abnormal luminal Ca(2+)-buffering and/or decreased plasmalemmal Ca(2+)-removal, which could exacerbate impaired signaling or disturbed intracellular ion balance in aged fibres, thereby causing contractile weakness.  相似文献   

13.
Pathological intracellular calcium handling has been proposed to underlie the alterations of contractile behavior in hypertrophied myocardium. However, the myocardial protein expression of intracellular calcium transport proteins in compensated human left ventricular hypertrophy has not yet been studied. We investigated septal myocardial specimens of patients suffering from hypertrophic obstructive cardiomyopathy (n=14) or from acquired aortic valve stenosis (n=11) undergoing myectomy or aortic valve replacement, respectively. For comparison, we studied non-hypertrophied myocardium of six non-failing hearts which could not be transplanted for technical reasons. The myocardial density of the calcium release channel of the sarcoplasmic reticulum (SR) was determined by(3)H-ryanodine binding. Myocardial contents of SR Ca(2+)-ATPase, phospholamban, calsequestrin and Na(+)/Ca(2+)-exchanger were analysed by Western blot analysis. The myocardial SR calcium release channel density was not significantly different in hypertrophied and non-failing human myocardium. In both hypertrophic obstructive cardiomyopathy and in aortic valve stenosis, SR Ca(2+)-ATPase expression was reduced by about 30% compared to non-failing myocardium (P<0.05), whereas the expression of phospholamban, calsequestrin, and the Na(+)/Ca(2+)-exchanger was unchanged. The decrease of SR Ca(2+)-ATPase expression was still observable when related to its regulatory protein phospholamban or to the myosin content of the homogenates (P<0.05). Furthermore, the SR Ca(2+)-ATPase expression was inversely correlated to the septum thickness assessed by echocardiography, but not to age, cardiac index or outflow tract gradient. In primary as well as in secondary hypertrophied human myocardium, the expression of SR Ca(2+)-ATPase is reduced and inversely related to the degree of the hypertrophy. The diminished SR Ca(2+)-ATPase expression might result in reduced Ca(2+)reuptake into the SR and might contribute to altered contractile behavior in hypertrophied human myocardium.  相似文献   

14.
Orphaned ryanodine receptors in the failing heart   总被引:1,自引:0,他引:1  
Heart muscle is characterized by a regular array of proteins and structures that form a repeating functional unit identified as the sarcomere. This regular structure enables tight coupling between electrical activity and Ca(2+) signaling. In heart failure, multiple cellular defects develop, including reduced contractility, altered Ca(2+) signaling, and arrhythmias; however, the underlying causes of these defects are not well understood. Here, in ventricular myocytes from spontaneously hypertensive rats that develop heart failure, we identify fundamental changes in Ca(2+) signaling that are related to restructuring of the spatial organization of the cells. Myocytes display both a reduced ability to trigger sarcoplasmic reticulum Ca(2+) release and increased spatial dispersion of the transverse tubules (TTs). Remodeled TTs in cells from failing hearts no longer exist in the regularly organized structures found in normal heart cells, instead moving within the sarcomere away from the Z-line structures and leaving behind the sarcoplasmic reticulum Ca(2+) release channels, the ryanodine receptors (RyRs). These orphaned RyRs appear to be responsible for the dyssynchronous Ca(2+) sparks that have been linked to blunted contractility and, probably, Ca(2+)-dependent arrhythmias in diverse models of heart failure. We conclude that the increased spatial dispersion of the TTs and orphaned RyRs lead to the loss of local control and Ca(2+) instability in heart failure.  相似文献   

15.
Abnormal regulation of intracellular Ca(2+) by sarcoplasmic reticulum plays a part in the mechanism underlying contractile and relaxation dysfunction in heart failure (HF). The protein-kinase-A-mediated hyperphosphorylation of ryanodine receptors in the sarcoplasmic reticulum has been shown to cause the dissociation of FKBP12.6 (also known as calstabin-2) from ryanodine receptors in HF. In addition, several disease-linked mutations in the ryanodine receptors have been reported in patients with catecholaminergic polymorphic ventricular tachycardia or arrhythmogenic right ventricular cardiomyopathy type 2. The unique distribution of these mutation sites has led to the concept that the interaction among the putative regulatory domains within the ryanodine receptors has a key role in regulating channel opening. The knowledge gained from various studies of ryanodine receptors under pathologic conditions might lead to the development of new pharmacological or genetic strategies for the treatment of HF or cardiac arrhythmia. In this review, we focus on the role of the Ca(2+)-release channel, the ryanodine receptor, in the pathogenesis of HF and fatal arrhythmia, and the possibility of developing new therapeutic strategies for targeting this receptor.  相似文献   

16.
17.
18.
OBJECTIVES: We sought to assess whether mechanical unloading has beneficial effects on cardiomyocytes from doxorubicin-induced cardiomyopathy in rats. BACKGROUND: Mechanical unloading by a left ventricular assist device (LVAD) improves the cardiac function of terminal heart failure in humans. However, previous animal studies have failed to demonstrate beneficial effects of mechanical unloading in the myocardium. METHODS: The effects of mechanical unloading by heterotopic abdominal heart transplantation were evaluated in the myocardium from doxorubicin-treated rats by analyzing the intracellular free calcium level ([Ca(2+)](i)) and the levels of intracellular Ca(2+)-regulatory proteins. RESULTS: In doxorubicin-treated rats, the duration of cell shortening and [Ca(2+)](i) transients in cardiomyocytes was prolonged (432 +/- 28.2% of control in 50% relaxation time; 184 +/- 10.5% of control in [Ca(2+)](i) 50% decay time). Such prolonged time courses significantly recovered after mechanical unloading (114 +/- 10.4% of control in 50% relaxation time; 114 +/- 5.8% of control in 50% decay time). These effects were accompanied by an increase in sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) protein levels (0.97 +/- 0.05 in unloaded hearts vs. 0.41+/- 0.09 in non-unloaded hearts). The levels of other intracellular Ca(2+)-regulatory proteins (phospholamban and ryanodine receptor) were not altered after mechanical unloading in doxorubicin-treated hearts. These parameters in unloaded hearts without doxorubicin treatment were similar to normal hearts. CONCLUSIONS: Mechanical unloading increases functional sarcoplasmic reticulum Ca(2+) ATPase and improves [Ca(2+)](i) handling and contractility in rats with doxorubicin-induced cardiomyopathy. These beneficial effects of mechanical unloading were not observed in normal hearts.  相似文献   

19.
Abnormal intracellular Ca(2+) handling by the sarcoplasmic reticulum (SR) is a critical factor in the development of heart failure (HF). Not only decreased Ca(2+) uptake, but also uncoordinated Ca(2+) release plays a significant role in contractile and relaxation dysfunction. Spontaneous Ca(2+) release through ryanodine receptor (RyR) 2, a huge tetrameric protein, during diastole leads to a decrease in the SR Ca(2+) content, and also triggers delayed after depolarization that is a substrate for lethal arrhythmia. Several disease-linked mutations of RyR have been reported in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) or arrhythmogenic right ventricular cardiomyopathy type 2 (ARVC2). The unique distribution of these mutation sites has lead to the concept that an interaction among the putative regulatory domains within RyR may play a key role in regulating channel opening, and that there seems to be a common abnormality in the channel disorder of HF and CPVT/ARVC2. Recent knowledge gained from pathological conditions may lead to the development of a new therapeutic strategy for the treatment of HF or cardiac arrhythmia.  相似文献   

20.
It has been reported that sarcoplasmic reticulum (SR) Ca(2+) uptake is more rapid in rat than rabbit ventricular myocytes, but little information is available on the relative SR Ca(2+) uptake activity in others species, including humans. We induced Ca(2+) transients with a short caffeine pulse protocol (rapid solution switcher, 10 mM caffeine, 100 ms) in single ventricular myocytes voltage clamped (-80 mV) with pipettes containing 100 microM fluo-3 and nominal 0 Ca(2+), in 0 Na(+)(o)/0 Ca(2+)(o) solution to inhibit Na/Ca exchange. SR in non-paced human, dog, rabbit, and mouse ventricular myocytes could be readily loaded with Ca(2+) under our experimental conditions with a pipette [Ca(2+)] = 100 nM. Resting [Ca(2+)](i) was similar in four types of ventricular myocytes. Activation of the Ca(2+)-release channel with a 100-ms caffeine pulse produced a rise in [caffeine](i) to slightly above 2 mM, the threshold for caffeine activation of Ca(2+) release. This caused a similar initial rate of rise and peak [Ca(2+)](i) in the four types of ventricular myocytes. However, there were significant differences in the duration of the plateau (top 10%) [Ca(2+)](i) transients and the time constant of the [Ca(2+)](i) decline (reflecting activity of the SR Ca(2+)-ATPase), with values for human > dog > rabbit > mouse. In paced myocytes under physiologic conditions, SR Ca(2+) content was greater in mouse than in rabbit myocytes, while peak I(Ca,L) was smaller in mouse. These findings confirm substantial species difference in SR Ca(2+)-ATPase activity, and suggest that the smaller the animal and the more rapid the heart rate, greater the activity of the SR Ca(2+)-ATPase. In addition, it appears that substantial species differences exist in the degree of SR Ca(2+) loading and I(Ca,L) under physiologic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号