共查询到20条相似文献,搜索用时 0 毫秒
1.
Roger B. H. Tootell Janine D. Mendola Nouchine K. Hadjikhani Arthur K. Liu Anders M. Dale 《Proceedings of the National Academy of Sciences of the United States of America》1998,95(3):818-824
Previous studies of cortical retinotopy focused on influences from the contralateral visual field, because ascending inputs to cortex are known to be crossed. Here, functional magnetic resonance imaging was used to demonstrate and analyze an ipsilateral representation in human visual cortex. Moving stimuli, in a range of ipsilateral visual field locations, revealed activity: (i) along the vertical meridian in retinotopic (presumably lower-tier) areas; and (ii) in two large branches anterior to that, in presumptive higher-tier areas. One branch shares the anterior vertical meridian representation in human V3A, extending superiorly toward parietal cortex. The second branch runs antero-posteriorly along lateral visual cortex, overlying motion-selective area MT. Ipsilateral stimuli sparing the region around the vertical meridian representation also produced signal reductions (perhaps reflecting neural inhibition) in areas showing contralaterally driven retinotopy. Systematic sampling across a range of ipsilateral visual field extents revealed significant increases in ipsilateral activation in V3A and V4v, compared with immediately posterior areas V3 and VP. Finally, comparisons between ipsilateral stimuli of different types but equal retinotopic extent showed clear stimulus specificity, consistent with earlier suggestions of a functional segregation of motion vs. form processing in parietal vs. temporal cortex, respectively. 相似文献
2.
3.
Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia 下载免费PDF全文
Kyra J. Becker Richard M. McCarron Christl Ruetzler Olgica Laban Esther Sternberg Kathleen C. Flanders John M. Hallenbeck 《Proceedings of the National Academy of Sciences of the United States of America》1997,94(20):10873-10878
Immune mechanisms contribute to cerebral ischemic injury. Therapeutic immunosuppressive options are limited due to systemic side effects. We attempted to achieve immunosuppression in the brain through oral tolerance to myelin basic protein (MBP). Lewis rats were fed low-dose bovine MBP or ovalbumin (1 mg, five times) before 3 h of middle cerebral artery occlusion (MCAO). A third group of animals was sensitized to MBP but did not survive the post-stroke period. Infarct size at 24 and 96 h after ischemia was significantly less in tolerized animals. Tolerance to MBP was confirmed in vivo by a decrease in delayed-type hypersensitivity to MBP. Systemic immune responses, characterized in vitro by spleen cell proliferation to Con A, lipopolysaccharide, and MBP, again confirmed antigen-specific immunologic tolerance. Immunohistochemistry revealed transforming growth factor β1 production by T cells in the brains of tolerized but not control animals. Systemic transforming growth factor β1 levels were equivalent in both groups. Corticosterone levels 24 h after surgery were elevated in all sham-operated animals and ischemic control animals but not in ischemic tolerized animals. These results demonstrate that antigen-specific modulation of the immune response decreases infarct size after focal cerebral ischemia and that sensitization to the same antigen may actually worsen outcome. 相似文献
4.
A model of long-term memory storage in the cerebellar cortex: A possible role for plasticity at parallel fiber synapses onto stellate/basket interneurons 下载免费PDF全文
Garrett T. Kenyon 《Proceedings of the National Academy of Sciences of the United States of America》1997,94(25):14200-14205
By evoking changes in climbing fiber activity, movement errors are thought to modify synapses from parallel fibers onto Purkinje cells (pf*Pkj) so as to improve subsequent motor performance. Theoretical arguments suggest there is an intrinsic tradeoff, however, between motor adaptation and long-term storage. Assuming a baseline rate of motor errors is always present, then repeated performance of any learned movement will generate a series of climbing fiber-mediated corrections. By reshuffling the synaptic weights responsible for any given movement, such corrections will degrade the memories for other learned movements stored in overlapping sets of synapses. The present paper shows that long-term storage can be accomplished by a second site of plasticity at synapses from parallel fibers onto stellate/basket interneurons (pf*St/Bk). Plasticity at pf*St/Bk synapses can be insulated from ongoing fluctuations in climbing fiber activity by assuming that changes in pf*St/Bk synapses occur only after changes in pf*Pkj synapses have built up to a threshold level. Although climbing fiber-dependent plasticity at pf*Pkj synapses allows for the exploration of novel motor strategies in response to changing environmental conditions, plasticity at pf*St/Bk synapses transfers successful strategies to stable long-term storage. To quantify this hypothesis, both sites of plasticity are incorporated into a dynamical model of the cerebellar cortex and its interactions with the inferior olive. When used to simulate idealized motor conditioning trials, the model predicts that plasticity develops first at pf*Pkj synapses, but with additional training is transferred to pf*St/Bk synapses for long-term storage. 相似文献
5.
Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala 下载免费PDF全文
Gina L. Quirarte Benno Roozendaal James L. McGaugh 《Proceedings of the National Academy of Sciences of the United States of America》1997,94(25):14048-14053
Evidence indicates that the modulatory effects of the adrenergic stress hormone epinephrine as well as several other neuromodulatory systems on memory storage are mediated by activation of β-adrenergic mechanisms in the amygdala. In view of our recent findings indicating that the amygdala is involved in mediating the effects of glucocorticoids on memory storage, the present study examined whether the glucocorticoid-induced effects on memory storage depend on β-adrenergic activation within the amygdala. Microinfusions (0.5 μg in 0.2 μl) of either propranolol (a nonspecific β-adrenergic antagonist), atenolol (a β1-adrenergic antagonist), or zinterol (a β2-adrenergic antagonist) administered bilaterally into the basolateral nucleus of the amygdala (BLA) of male Sprague–Dawley rats 10 min before training blocked the enhancing effect of posttraining systemic injections of dexamethasone (0.3 mg/kg) on 48-h memory for inhibitory avoidance training. Infusions of these β-adrenergic antagonists into the central nucleus of the amygdala did not block the dexamethasone-induced memory enhancement. Furthermore, atenolol (0.5 μg) blocked the memory-enhancing effects of the specific glucocorticoid receptor (GR or type II) agonist RU 28362 infused concurrently into the BLA immediately posttraining. These results strongly suggest that β-adrenergic activation is an essential step in mediating glucocorticoid effects on memory storage and that the BLA is a locus of interaction for these two systems. 相似文献
6.
Y. Zhang S. Dhandayuthapani V. Deretic 《Proceedings of the National Academy of Sciences of the United States of America》1996,93(23):13212-13216
The exceptional sensitivity of Mycobacterium tuberculosis to isonicotinic acid hydrazide (INH) lacks satisfactory definition. M. tuberculosis is a natural mutant in oxyR, a central regulator of peroxide stress response. The ahpC gene, which encodes a critical subunit of alkyl hydroperoxide reductase, is one of the targets usually controlled by oxyR in bacteria. Unlike in mycobacterial species less susceptible to INH, the expression of ahpC was below detection limits at the protein level in INH-sensitive M. tuberculosis and Mycobacterium bovis strains. In contrast, AhpC was detected in several series of isogenic INH-resistant (INHr) derivatives. In a demonstration of the critical role of ahpC in sensitivity to INH, insertional inactivation of ahpC on the chromosome of Mycobacterium smegmatis, a species naturally insensitive to INH, dramatically increased its susceptibility to this compound. These findings suggest that AhpC counteracts the action of INH and that the levels of its expression may govern the intrinsic susceptibility of mycobacteria to this front-line antituberculosis drug. 相似文献
7.
Leslie G. Ungerleider Susan M. Courtney James V. Haxby 《Proceedings of the National Academy of Sciences of the United States of America》1998,95(3):883-890
Working memory is the process of actively maintaining a representation of information for a brief period of time so that it is available for use. In monkeys, visual working memory involves the concerted activity of a distributed neural system, including posterior areas in visual cortex and anterior areas in prefrontal cortex. Within visual cortex, ventral stream areas are selectively involved in object vision, whereas dorsal stream areas are selectively involved in spatial vision. This domain specificity appears to extend forward into prefrontal cortex, with ventrolateral areas involved mainly in working memory for objects and dorsolateral areas involved mainly in working memory for spatial locations. The organization of this distributed neural system for working memory in monkeys appears to be conserved in humans, though some differences between the two species exist. In humans, as compared with monkeys, areas specialized for object vision in the ventral stream have a more inferior location in temporal cortex, whereas areas specialized for spatial vision in the dorsal stream have a more superior location in parietal cortex. Displacement of both sets of visual areas away from the posterior perisylvian cortex may be related to the emergence of language over the course of brain evolution. Whereas areas specialized for object working memory in humans and monkeys are similarly located in ventrolateral prefrontal cortex, those specialized for spatial working memory occupy a more superior and posterior location within dorsal prefrontal cortex in humans than in monkeys. As in posterior cortex, this displacement in frontal cortex also may be related to the emergence of new areas to serve distinctively human cognitive abilities. 相似文献
8.
JamesL. McGaugh Larry Cahill Benno Roozendaal 《Proceedings of the National Academy of Sciences of the United States of America》1996,93(24):13508-13514
There is extensive evidence that the amygdala is involved in affectively influenced memory. The central hypothesis guiding the research reviewed in this paper is that emotional arousal activates the amygdala and that such activation results in the modulation of memory storage occurring in other brain regions. Several lines of evidence support this view. First, the effects of stress-related hormones (epinephrine and glucocorticoids) are mediated by influences involving the amygdala. In rats, lesions of the amygdala and the stria terminalis block the effects of posttraining administration of epinephrine and glucocorticoids on memory. Furthermore, memory is enhanced by posttraining intra-amygdala infusions of drugs that activate β-adrenergic and glucocorticoid receptors. Additionally, infusion of β-adrenergic blockers into the amygdala blocks the memory-modulating effects of epinephrine and glucocorticoids, as well as those of drugs affecting opiate and GABAergic systems. Second, an intact amygdala is not required for expression of retention. Inactivation of the amygdala prior to retention testing (by posttraining lesions or drug infusions) does not block retention performance. Third, findings of studies using human subjects are consistent with those of animal experiments. β-Blockers and amygdala lesions attenuate the effects of emotional arousal on memory. Additionally, 3-week recall of emotional material is highly correlated with positron-emission tomography activation (cerebral glucose metabolism) of the right amygdala during encoding. These findings provide strong evidence supporting the hypothesis that the amygdala is involved in modulating long-term memory storage. 相似文献
9.
Snezana Djordjevic Paul N. Goudreau Qingping Xu Ann M. Stock Ann H. West 《Proceedings of the National Academy of Sciences of the United States of America》1998,95(4):1381-1386
We report the x-ray crystal structure of the methylesterase CheB, a phosphorylation-activated response regulator involved in reversible modification of bacterial chemotaxis receptors. Methylesterase CheB and methyltransferase CheR modulate signaling output of the chemotaxis receptors by controlling the level of receptor methylation. The structure of CheB, which consists of an N-terminal regulatory domain and a C-terminal catalytic domain joined by a linker, was solved by molecular replacement methods using independent search models for the two domains. In unphosphorylated CheB, the N-terminal domain packs against the active site of the C-terminal domain and thus inhibits methylesterase activity by directly restricting access to the active site. We propose that phosphorylation of CheB induces a conformational change in the regulatory domain that disrupts the domain interface, resulting in a repositioning of the domains and allowing access to the active site. Structural similarity between the two companion receptor modification enzymes, CheB and CheR, suggests an evolutionary and/or functional relationship. Specifically, the phosphorylated N-terminal domain of CheB may facilitate interaction with the receptors, similar to the postulated role of the N-terminal domain of CheR. Examination of surfaces in the N-terminal regulatory domain of CheB suggests that despite a common fold throughout the response regulator family, surfaces used for protein–protein interactions differ significantly. Comparison between CheB and other response regulators indicates that analogous surfaces are used for different functions and conversely, similar functions are mediated by different molecular surfaces. 相似文献
10.
Mary A. Turner Alan Simpson Roderick R. McInnes P. Lynne Howell 《Proceedings of the National Academy of Sciences of the United States of America》1997,94(17):9063-9068
Intragenic complementation has been observed at the argininosuccinate lyase (ASL) locus. Intragenic complementation is a phenomenon that occurs when a multimeric protein is formed from subunits produced by different mutant alleles of a gene. The resulting hybrid protein exhibits enzymatic activity that is greater than that found in the oligomeric proteins produced by each mutant allele alone. The mutations involved in the most successful complementation event observed in ASL deficiency were found to be an aspartate to glycine mutation at codon 87 of one allele (D87G) coupled with a glutamine to arginine mutation at codon 286 of the other (Q286R). To understand the structural basis of the Q286R:D87G intragenic complementation event at the ASL locus, we have determined the x-ray crystal structure of recombinant human ASL at 4.0 Å resolution. The structure has been refined to an R factor of 18.8%. Two monomers related by a noncrystallographic 2-fold axis comprise the asymmetric unit, and a crystallographic 2-fold axis of space group P3121 completes the tetramer. Each of the four active sites is composed of residues from three monomers. Structural mapping of the Q286R and D87G mutations indicate that both are near the active site and each is contributed by a different monomer. Thus when mutant monomers combine randomly such that one active site contains both mutations, it is required by molecular symmetry that another active site exists with no mutations. These “native” active sites give rise to the observed partial recovery of enzymatic activity. 相似文献
11.
Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein 下载免费PDF全文
Katjua Brejc Titia K. Sixma Paul A. Kitts Steven R. Kain Roger Y. Tsien Mats Orm S. James Remington 《Proceedings of the National Academy of Sciences of the United States of America》1997,94(6):2306-2311
The 2.1-Å resolution crystal structure of wild-type green fluorescent protein and comparison of it with the recently determined structure of the Ser-65 → Thr (S65T) mutant explains the dual wavelength absorption and photoisomerization properties of the wild-type protein. The two absorption maxima are caused by a change in the ionization state of the chromophore. The equilibrium between these states appears to be governed by a hydrogen bond network that permits proton transfer between the chromophore and neighboring side chains. The predominant neutral form of the fluorophore maximally absorbs at 395 nm. It is maintained by the carboxylate of Glu-222 through electrostatic repulsion and hydrogen bonding via a bound water molecule and Ser-205. The ionized form of the fluorophore, absorbing at 475 nm, is present in a minor fraction of the native protein. Glu-222 donates its charge to the fluorophore by proton abstraction through a hydrogen bond network, involving Ser-205 and bound water. Further stabilization of the ionized state of the fluorophore occurs through a rearrangement of the side chains of Thr-203 and His-148. UV irradiation shifts the ratio of the two absorption maxima by pumping a proton relay from the neutral chromophore’s excited state to Glu-222. Loss of the Ser-205–Glu-222 hydrogen bond and isomerization of neutral Glu-222 explains the slow return to the equilibrium dark-adapted state of the chromophore. In the S65T structure, steric hindrance by the extra methyl group stabilizes a hydrogen bonding network, which prevents ionization of Glu-222. Therefore the fluorophore is permanently ionized, causing only a 489-nm excitation peak. This new understanding of proton redistribution in green fluorescent protein should enable engineering of environmentally sensitive fluorescent indicators and UV-triggered fluorescent markers of protein diffusion and trafficking in living cells. 相似文献
12.
Progressive entorhinal cortex lesions accelerate hippocampal
sprouting and spare spatial memory in rats 下载免费PDF全文
JulioJ. Ramirez Meredith McQuilkin Timothy Carrigan Katherine MacDonald MelindaS. Kelley 《Proceedings of the National Academy of Sciences of the United States of America》1996,93(26):15512-15517
Accelerating hippocampal sprouting by making unilateral progressive lesions of the entorhinal cortex spared the spatial memory of rats tested for retention of a learned alternation task. Subsequent transection of the sprouted crossed temporodentate pathway (CTD), as well as a simultaneous CTD transection and progressive entorhinal lesion, produced a persistent deficit on the memory task. These results suggest that CTD sprouting, which is homologous to the original perforant path input to the dentate gyrus of the hippocampus, is behaviorally significant and can ameliorate at least some of the memory deficits associated with hippocampal deafferentation. 相似文献
13.
Jonathan B. Demb Geoffrey M. Boynton David J. Heeger 《Proceedings of the National Academy of Sciences of the United States of America》1997,94(24):13363-13366
The relationship between brain activity and reading performance was examined to test the hypothesis that dyslexia involves a deficit in a specific visual pathway known as the magnocellular (M) pathway. Functional magnetic resonance imaging was used to measure brain activity in dyslexic and control subjects in conditions designed to preferentially stimulate the M pathway. Dyslexics showed reduced activity compared with controls both in the primary visual cortex and in a secondary cortical visual area (MT+) that is believed to receive a strong M pathway input. Most importantly, significant correlations were found between individual differences in reading rate and brain activity. These results support the hypothesis for an M pathway abnormality in dyslexia and imply a strong relationship between the integrity of the M pathway and reading ability. 相似文献
14.
Alan Baddeley 《Proceedings of the National Academy of Sciences of the United States of America》1996,93(24):13468-13472
In performing many complex tasks, it is necessary to hold information in temporary storage to complete the task. The system used for this is referred to as working memory. Evidence for the need to postulate separable memory systems is summarized, and one particular model of working memory is described, together with its fractionation into three principal subsystems. The model has proved durable and useful and, with the development of electrophysiological and positive emission tomography scanning measures, is proving to map readily onto recent neuroanatomical developments. 相似文献
15.
C. Anthony Blau Kenneth R. Peterson Jonathan G. Drachman David M. Spencer 《Proceedings of the National Academy of Sciences of the United States of America》1997,94(7):3076-3081
Receptor dimerization is the key signaling event for many cytokines, including erythropoietin. A system has been recently developed that permits intracellular protein dimerization to be reversibly activated in response to a lipid-soluble dimeric form of the drug FK506, called FK1012. FK1012 is used as a pharmacological mediator of dimerization to bring together FK506 binding domains, taken from the endogenous protein FKBP12. In experiments reported herein, FK1012-induced dimerization of a fusion protein containing the intracellular portion of the erythropoietin receptor allowed cells normally dependent on interleukin 3 to proliferate in its absence. FK506 competitively reversed the proliferative effect of FK1012 but had no influence on the proliferative effect of interleukin 3. Signaling pathways activated by FK1012 mimicked those activated by erythropoietin, because both JAK2 and STAT5 were phosphorylated in response to FK1012. This approach may provide a means to specifically and reversibly stimulate the proliferation of genetically modified cell populations in vitro or in vivo. 相似文献
16.
Jeffery A. Dusek Howard Eichenbaum 《Proceedings of the National Academy of Sciences of the United States of America》1997,94(13):7109-7114
Human declarative memory involves a systematic organization of information that supports generalizations and inferences from acquired knowledge. This kind of memory depends on the hippocampal region in humans, but the extent to which animals also have declarative memory, and whether inferential expression of memory depends on the hippocampus in animals, remains a major challenge in cognitive neuroscience. To examine these issues, we used a test of transitive inference pioneered by Piaget to assess capacities for systematic organization of knowledge and logical inference in children. In our adaptation of the test, rats were trained on a set of four overlapping odor discrimination problems that could be encoded either separately or as a single representation of orderly relations among the odor stimuli. Normal rats learned the problems and demonstrated the relational memory organization through appropriate transitive inferences about items not presented together during training. By contrast, after disconnection of the hippocampus from either its cortical or subcortical pathway, rats succeeded in acquiring the separate discrimination problems but did not demonstrate transitive inference, indicating that they had failed to develop or could not inferentially express the orderly organization of the stimulus elements. These findings strongly support the view that the hippocampus mediates a general declarative memory capacity in animals, as it does in humans. 相似文献
17.
Context-sensitive synaptic plasticity and temporal-to-spatial transformations in hippocampal slices 下载免费PDF全文
Dean V. Buonomano Peter W. Hickmott Michael M. Merzenich 《Proceedings of the National Academy of Sciences of the United States of America》1997,94(19):10403-10408
Hippocampal slices are used to show that, as a temporal input pattern of activity flows through a neuronal layer, a temporal-to-spatial transformation takes place. That is, neurons can respond selectively to the first or second of a pair of input pulses, thus transforming different temporal patterns of activity into the activity of different neurons. This is demonstrated using associative long-term potentiation of polysynaptic CA1 responses as an activity-dependent marker: by depolarizing a postsynaptic CA1 neuron exclusively with the first or second of a pair of pulses from the dentate gyrus, it is possible to “tag” different subpopulations of CA3 neurons. This technique allows sampling of a population of neurons without recording simultaneously from multiple neurons. Furthermore, it reflects a biologically plausible mechanism by which single neurons may develop selective responses to time-varying stimuli and permits the induction of context-sensitive synaptic plasticity. These experimental results support the view that networks of neurons are intrinsically able to process temporal information and that it is not necessary to invoke the existence of internal clocks or delay lines for temporal processing on the time scale of tens to hundreds of milliseconds. 相似文献
18.
Psyche H. Lee Matthew C. Helms George J. Augustine William C. Hall 《Proceedings of the National Academy of Sciences of the United States of America》1997,94(24):13299-13304
The superficial gray layer of the superior colliculus contains a map that represents the visual field, whereas the underlying intermediate gray layer contains a vector map of the saccades that shift the direction of gaze. These two maps are aligned so that a particular region of the visual field is represented directly above the neurons that orient the highest acuity area of the retina toward that region. Although it has been proposed that the transmission of information from the visuosensory to the motor map plays an important role in the generation of visually guided saccades, experiments have failed to demonstrate any functional linkage between the two layers. We examined synaptic transmission between these layers in vitro by stimulating the superficial layer while using whole-cell patch-clamp methods to measure the responses of intermediate layer neurons. Stimulation of superficial layer neurons evoked excitatory postsynaptic currents in premotor cells. This synaptic input was columnar in organization, indicating that the connections between the layers link corresponding regions of the visuosensory and motor maps. Excitatory postsynaptic currents were large enough to evoke action potentials and often occurred in clusters similar in duration to the bursts of action potentials that premotor cells use to command saccades. Our results indicate the presence of functional connections between the superficial and intermediate layers and show that such connections could play a significant role in the generation of visually guided saccades. 相似文献
19.
20.
Yael Adini Dov Sagi Misha Tsodyks 《Proceedings of the National Academy of Sciences of the United States of America》1997,94(19):10426-10431
At early stages in visual processing cells respond to local stimuli with specific features such as orientation and spatial frequency. Although the receptive fields of these cells have been thought to be local and independent, recent physiological and psychophysical evidence has accumulated, indicating that the cells participate in a rich network of local connections. Thus, these local processing units can integrate information over much larger parts of the visual field; the pattern of their response to a stimulus apparently depends on the context presented. To explore the pattern of lateral interactions in human visual cortex under different context conditions we used a novel chain lateral masking detection paradigm, in which human observers performed a detection task in the presence of different length chains of high-contrast-flanked Gabor signals. The results indicated a nonmonotonic relation of the detection threshold with the number of flankers. Remote flankers had a stronger effect on target detection when the space between them was filled with other flankers, indicating that the detection threshold is caused by dynamics of large neuronal populations in the neocortex, with a major interplay between excitation and inhibition. We considered a model of the primary visual cortex as a network consisting of excitatory and inhibitory cell populations, with both short- and long-range interactions. The model exhibited a behavior similar to the experimental results throughout a range of parameters. Experimental and modeling results indicated that long-range connections play an important role in visual perception, possibly mediating the effects of context. 相似文献