首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wood KB  Wentorf FA  Ogilvie JW  Kim KT 《Spine》2000,25(15):1893-1898
STUDY DESIGN: A biomechanical study of the rigidity of various scoliosis constructs instrumented with and without caudal pedicle screw anchors and with none, one, or two cross-link devices. OBJECTIVES: To determine whether the increased torsional rigidity provided by distal pedicle screw fixation might make cross-linking unnecessary. SUMMARY OF BACKGROUND DATA: Pedicle screws and cross-linking devices have been shown to increase the structural rigidity of spinal constructs. Their relative contributions to scoliosis construct rigidity has not been determined. METHODS: "Short" (T2-T11) and "long" (T2-L3) scoliosis constructs were mounted on an industrially fabricated spine model and tested in a hydraulic testing machine. Four different short and four different long constructs were tested: hooks only, hooks with concave side thoracic sublaminar wires, hooks with distal pedicle screw anchors, and hooks, distal pedicle screw anchors, and concave thoracic sublaminar wires. There were four iterations for each construct tested: no cross-links, one superior cross-link at T4-T5, one inferior cross-link at T9-T10, and two cross-links. Torsional rigidity was tested by applying a rotational torque at T2. Vertebral body motion was recorded with a three-dimensional video analysis system. RESULTS: Constructs with distal pedicle screws were statistically more rigid in torsion than those with hooks as distal anchors. The additional torsional rigidity from one or more cross-links was negligible compared with that provided by pedicle screws. CONCLUSIONS: With pedicle screws as distal anchors in scoliosis constructs, cross-linking with one or two devices adds very little additional rotational stiffness and may be unnecessary in many cases.  相似文献   

2.
Summary Pedicle hooks which are used as an anchorage for posterior spinal instrumentation may be subjected to considerable three-dimensional forces. In order to achieve stronger attachment to the implantation site, hooks using screws for additional fixation have been developed. The failure loads and mechanisms of three such devices have been experimentally determined on human thoracic vertebrae: the Universal Spine System (USS) pedicle hook with one screw, a prototype pedicle hook with two screws and the Cotrel-Dubousset (CD) pedicle hook with screw. The USS hooks use 3.2-mm self-tapping fixation screws which pass into the pedicle, whereas the CD hook is stabilised with a 3-mm set screw pressing against the superior part of the facet joint. A clinically established 5-mm pedicle screw was tested for comparison. A matched pair experimental design was implemented to evauluate these implants in constrained (series I) and rotationally unconstrained (series II) posterior pull-out tests. In the constrained tests the pedicle screw was the strongest implant, with an average pull-out force of 1650 N (SD 623 N). The prototype hook was comparable, with an average failure load of 1530 N (SD 414 N). The average pull-out force of the USS hook with one screw was 910 N (SD 243 N), not significantly different to the CD hook's average failure load of 740 N (SD 189 N). The result of the unconstrained tests were similar, with the prototype hook being the strongest device (average 1617 N, SD 652 N). However, in this series the difference in failure load between the USS hook with one screw and the CD hook was significant. Average failure loads of 792 N (SD 184 N) for the USS hook and 464 N (SD 279 N) for the CD hook were measured. A pedicular fracture in the plane of the fixation screw was the most common failure mode for USS hooks. The hooks usually did not move from their site of implantation, suggesting that they may be well-suited for the socalled segmental spinal correction technique as used in scoliosis surgery. In contrast, the CD hook disengaged by translating caudally from its site of implantation in all cases, suggesting a mechanical instability. The differences in observed hook failure modes may be a function of the type and number of additional fixation screws used. These results suggest that additional screw fixation allows stable attachment of pedicle hooks to their implantation site. Hooks using additional fixation screws passing obliquely into the pedicle apparently provide the most rigid attachment. The second fixation screw of the prototype hook almost doubles the fixation strength. Thus, the prototype hook might be considered as an alternative to the pepdicle screw, especially in the upper thoracic region.  相似文献   

3.
Oda I  Abumi K  Sell LC  Haggerty CJ  Cunningham BW  McAfee PC 《Spine》1999,24(22):2377-2382
STUDY DESIGN: The stabilizing effects of five different occipitocervical fixations were compared. OBJECTIVES: To evaluate the construct stability provided by five different occipito-atlanto-axial fixation techniques. SUMMARY OF BACKGROUND DATA: Few studies have addressed occipitocervical reconstruction stability and no studies to data have investigated anterior-posterior translational stiffness. METHODS: A total of 21 human cadaveric spines were used. After testing intact spines (CO-C2), a type II dens fracture was created and five different reconstructions were performed: 1) occipital and sublaminar wiring/rectangular rod, 2) occipital screws and C2 lamina claw hooks/rod, 3) occipital screws, foramen magnum screws, and C1-C2 transarticular screws/rod, 4) occipital screws and C1-C2 transarticular screws/Y-plate, and 5) occipital screws and C2 pedicle screws/rod. Biomechanical testing parameters included axial rotation, flexion/extension, lateral bending, and anterior-posterior translation. RESULTS: Pedicle screw fixation demonstrated the highest stiffness among the five reconstructions (P < 0.05). The two types of transarticular screw methods provided greater stability than hook or wiring reconstructions (P < 0.05). The C2 claw hook technique resulted in greater stability than sublaminar wiring fixation in anterior-posterior translation (P < 0.05). However, the wiring procedure did not significantly increase the stiffness levels beyond the intact condition under anterior-posterior translation and lateral bending (P > 0.05). DISCUSSION: C2 transpedicular and C1-C2 transarticular screws significantly increased the stabilizing effect compared to sublaminar wiring and lamina hooks. The improved stability afforded by C2 pedicular and C1-C2 transarticular screws offer many potential advantages including a high rate of bony union, early ambulation, and easy nursing care. CONCLUSION: Occipitocervical reconstruction techniques using C1-C2 transarticular screws or C2 pedicle screws offer biomechanical advantages compared to sublaminar wiring or lamina hooks. Pedicle screw fixation exhibited the highest construct stiffness among the five reconstructions.  相似文献   

4.
The pull-out force of thoracic spinal pedicle hooks secured by long fixation screws engaging the posterior portion of the vertebral endplate was measured. The perfomance of these hooks was compared with that of hooks using a shorter screw and different screw orientation such that the vertebral endplates were not perforated. The longer and differently angulated screws, engaging the endplate, significantly enhanced the fixation potential of the hooks.  相似文献   

5.
While the biomechanical properties of pedicle screws have proven to be superior in the lumbar spine, little is known concerning pullout strength of pedicle screws in comparison to hooks in the thoracic spine. In vitro biomechanical pullout testing was performed to evaluate the axial pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine with regard to surgical correction techniques in scoliosis. Nine human cadaveric thoracic spines were harvested and disarticulated. To simulate a typical posterior segmental scoliosis instrumentation, standard pedicle hooks were used between T4 and T8 and supralaminar hooks between T9 and T12 and tested against pedicle screws. The pedicle screws were loaded strictly longitudinal to their axis; the hooks were loaded perpendicular to the intended rod direction. In total, 90 pullout tests were performed. Average pullout strength of the pedicle screws was significantly higher than in the hook group (T4-T8: 531 N versus 321 N, T9-T12: 807 N versus 600 N, p < 0.05). Both screw diameter and the bone mineral density (BMD) had significant influence on the pullout strength in the screw group. For scoliosis correction, pedicle screws might be beneficial, especially for rigid thoracic curves, since they are significantly more resistant to axial pullout than both pedicle and laminar hooks.  相似文献   

6.
Biomechanical studies have shown hooks to be superior to pedicle screws in pull-out, especially in osteoporosis. This study evaluates the possible increase in stiffness of pedicle screws provided by laminar hooks while applying non-destructive forces to a vertebrectomy model assembled with Compact Cotrel Dubousset (CCD) instrumentation. Synthetic vertebrae were employed in a three-level vertebrectomy model. CCD screw-based three-level constructs with and without sublaminar hooks in the caudal element were tested in flexion, extension, compression, lateral bending, and torsion. There was no statistically significant advantage in adding inferior laminar hooks to a caudal end vertebra that had bilateral pedicle screws in any of the testing modes. Torsional stability, however, was augmented, but not significantly. Torsional instability and osteoporotic bone may be the clinical justifications for adding laminar hooks below screws in the caudal end vertebra.  相似文献   

7.
Regular hooks lack initial fixation to the spine during spinal deformity surgery. This runs the risk of posterior hook dislodgement during manipulation and correction of the spinal deformity, that may lead to loss of correction, hook migration, and post-operative junctional kyphosis. To prevent hook dislodgement during surgery, a self-retaining pedicle hook device (SPHD) is available that is made up of two counter-positioned hooks forming a monoblock posterior claw device. The initial segmental posterior fixation strength of a SPHD, however, is unknown. A biomechanical pull-out study of posterior segmental spinal fixation in a cadaver vertebral model was designed to investigate the axial pull-out strength for a SPHD, and compared to the pull-out strength of a pedicle screw. Ten porcine lumbar vertebral bodies were instrumented in pairs with two different instrumentation constructs after measuring the bone mineral density of each individual vertebra. The instrumentation constructs were extracted employing a material testing system using axial forces. The maximum pull-out forces were recorded at the time of the construct failure. Failure of the SPHD appeared in rotation and lateral displacement, without fracturing of the posterior structures. The average pull-out strength of the SPHD was 236 N versus 1,047 N in the pedicle screws (P < 0.001). The pull-out strength of the pedicle screws showed greater correlation with the BMC compared to the SPHD (P < 0.005). The SPHD showed to provide a significant inferior segmental fixation to the posterior spine in comparison to pedicle screw fixation. Despite the beneficial characteristics of the monoblock claw construct in a SPHD, that decreases the risk of posterior hook dislodgement during surgery compared to regular hooks, the SPHD does not improve the pull-out strength in such a way that it may provide a biomechanically solid alternative to pedicle screw fixation in the posterior spine.  相似文献   

8.
Variable screw placement (VSP) plates and pedicle screw fixation were used to stabilize eleven lumbar neoplasms. Blood loss and complications were comparable to other methods of posterior segmental fixation, although operative times were longer. Fewer levels were fused than for systems using sublaminar hooks or wires, with 8/11 patients treated with two level fixation. Four preoperatively irradiated patients experienced 43% of all complications and had 70% of the major complications. Wound infections occurred in 18%, vascular injuries in 18%, and transient neurologic deficits in 36% of our patients. Clinical pseudoarthroses developed in two patients, and tumor progression produced late instability in two patients with renal carcinoma. Thecal compression and late collapse led to therapeutic failure in four patients in 12-18 months. Fixation failure occurred in four patients, resulting from loosening of the plate on the screws in three patients, and breakage of a screw in one. Failure to adequately address anterior column disease was the primary cause of treatment failure in these patients. Proper seating of the plate on the pedicle screws is, likewise, crucial to construct stability and longevity. VSP instrumentation provides rigid fixation and allows more extensive tumor resection than traditional systems, while sparing vertebral motion segments. However, failure to address key technical and biomechanical principles may lead to serious complications.  相似文献   

9.

Purpose  

Among posterior surgical techniques for treating adolescent idiopathic scoliosis (AIS), hybrid constructs with pedicle-screw fixation in the lumbar spine and other anchors in the thoracic spine have been reported to provide to be of more physiological value in postoperative thoracic kyphosis than all-screw constructs. The Universial Clamp (UC) equipped with a soft sublaminar band is a relatively new thoracic anchor that can be used in hybrid constructs. A dedicated reduction tool that applies traction to the sublaminar band permits gentle translation of the thoracic curve to the precontoured fusion rods, which have been previously anchored distally by pedicle screws and proximally by hooks in a claw configuration. The aim of this study was to evaluate radiographic results of AIS treatment using UC hybrid constructs.  相似文献   

10.
BACKGROUND CONTEXT: Locking posterior instrumentation in the cervical spine can be attached using 1) pedicle screws, 2) lateral mass screws, or 3) laminar hooks. This order of options is in order of decreasing technical difficulty and decreasing depth of fixation, and is thought to be in order of decreasing stability. PURPOSE: We sought to determine whether substantially different biomechanical stability can be achieved in a two-level construct using pedicle screws, lateral mass screws, or laminar hooks. Secondarily, we sought to quantify the differential and additional stability provided by an anterior plate. STUDY DESIGN: In vitro biomechanical flexibility experiment comparing three different posterior constructs for stabilizing the cervical spine after three-column injury. METHODS: Twenty-one human cadaveric cervical spines were divided into three groups. Group 1 received lateral mass screws at C5 and C6 and pedicle screws at C7; Group 2 received lateral mass screws at C5 and C6 and laminar hooks at C7; Group 3 received pedicle screws at C5, C6, and C7. Specimens were nondestructively tested intact, after a three-column two-level injury, after posterior C5-C7 rod fixation, after two-level discectomy and anterior plating, and after removing posterior fixation. Angular motion was recorded during flexion, extension, lateral bending, and axial rotation. Posterior hardware was subsequently failed by dorsal loading. RESULTS: Laminar hooks performed well in resisting flexion and extension but were less effective in resisting lateral bending and axial rotation, allowing greater range of motion (ROM) than screw constructs and allowing a significantly greater percentage of the two-level ROM to occur across the hook level than the screw level (p<.03). Adding an anterior plate significantly improved stability in all three groups. With combined hardware, Group 3 resisted axial rotation significantly worse than the other groups. Posterior instrumentation resisted lateral bending significantly better than anterior plating in all groups (p<.04) and resisted flexion and axial rotation significantly better than anterior plating in most cases. Standard deviation of the ROM was greater with anterior than with posterior fixation. There was no significant difference among groups in resistance to failure (p=.74). CONCLUSIONS: Individual pedicle screws are known to outperform lateral mass screws in terms of pullout resistance, but they offered no apparent advantage in terms of construct stability or failure of whole constructs. Larger standard deviations in anterior fixation imply more variability in the quality of fixation. In most loading modes, laminar hooks provided similar stability to lateral mass screws or pedicle screws; caudal laminar hooks are therefore an acceptable alternative posteriorly. Posterior two-level fixation is less variable and slightly more stable than anterior fixation. Combined instrumentation is significantly more stable than either anterior or posterior alone.  相似文献   

11.
With the global rise in the population of elderly along with other risk factors, spine surgeons have to encounter osteoporotic spine more often. Osteoporotic spine, however, causes problems in management, particularly where instrumentation is involved, resulting in screw loosening, pull out, pseudoarthroses or adjacent segment kyphosis. Osteoporosis alters the bio mechanics at the bone implant interface resulting in various degrees of fixation failure. Various advancements have been made in this field to deal with such issues in addition to modification of basic surgical techniques such as increasing the diameter and length of the screw, smaller pilot hole, under tapping, longer constructs, supplemental anterior fixation, sublaminar wires or laminar hooks, use of transverse connectors and triangulation techniques, among others. They include novel surgical techniques such as cortical bone trajectory, superior cortical trajectory, double screw technique, cross trajectory technique, bicortical screw technique or prophylactic vertebroplasty. Advances in the screw design include expandable screws, fenestrated screws, conical screws and coated screws. In addition to PMMA cement augmentation, other biodegradable cements have been introduced to mitigate the side effects of PMMA such as calcium phosphate, calcium apatite and hydroxyapatite. Pharmacotherapy with teriparatide can aid fusion and lower the rate of pedicle screw loosening. Many of these strategies have only bio mechanical evidence and require well designed clinical trials to establish their clinical efficacy. Though no single technique is fool proof, little modifications in the existing techniques or utilizing a combination of techniques without adding to the cost of the surgery may help to achieve a near-ideal result. Surgeons have to equip their armamentarium with all the recent advances, and should be open to novel thoughts and techniques.  相似文献   

12.
A new spinal implant has been designed and biomechanical testing completed, intended for application to "short-segment" spinal defects such as disc degeneration, fracture, spondylolisthesis, or tumor. Major improvements over currently available devices include: only 2-3 vertebrae are spanned, not 5-7 as with Harrington rods; true three-dimensional fixation is achieved, preventing such problems as hook or rod dislocation; three-dimensional adjustment is easily accomplished, allowing fracture or spondylolisthesis reduction to be readily performed; attachment to vertebrae is by means of transpedicular screws eliminating deliberate encroachment into the spinal canal, such as Luque wires or Harrington hooks; no special alignment between screws is needed (such as with holes or slots in a plate), allowing screw placement to fully conform to anatomic structures; and laminectomy sites and lumbosacral junction are readily instrumented. Background investigations presented here for design of this device include: CT-defined pedicle morphometry showing that screws may be larger than those currently used; effect of pitch, minor diameter, and tooth profile on screw pull-out strength; mechanical testing of a compact, three-dimensionally adjustable, strong, nonloosening articulating clamp; and establishing of the relationship between depth of penetration and strength of fixation of transpeduncular screws.  相似文献   

13.
Posterior cervical internal fixation has long been accomplished using wires, hooks, and rods. More recently, the cervical lateral mass screw and plate or rod systems have been used effectively in unstable lower cervical spine disorders. Each form of fixation has its advantages and disadvantages. Interspinous wiring and lateral mass screw placement obviate canal penetration in the cervical region but are associated with a potential neurologic risk as a result of canal encroachment. Minor canal intrusion by laminar hooks in the thoracic spine pose a lesser neurologic risk than in the cervical region. To exploit the benefits and safety features of spinal instrumentation, a combination plate rod construct (PRC) has been developed that obviates canal penetration in the cervical region by way of lateral mass and cervical pedicle screw fixation and hooks or wires in the thoracic spine. A biomechanical analysis of the PRC device was performed and compared with the in vivo maximal load data of the cervical spine and established maximal load data of the Roy-Camille posterior cervical fixation system. The PRC has greater strength and resistance to failure than is necessary to sustain maximal in vivo cervical spine loads, and it has also compared favorably with the parameters of the Roy-Camille system. The PRC device, or variations on it, is an excellent option for spinal fixation across the cervicothoracic junction because of its superior biomechanical qualities and versatility in stabilizing a complex anatomic junction of the spine.  相似文献   

14.
J D Coe  K E Warden  M A Herzig  P C McAfee 《Spine》1990,15(9):902-907
Posteriorly directed load to failure testing of four different types of spinal implants was performed in individual T5 to S1 vertebra harvested from seven fresh-frozen human cadaveric spines. The implants tested were: 1) Drummond spinous process wires, 2) Harrington laminar hooks, 3) Cotrel-Dubousset transpedicular screws, and 4) Steffee VSP transpedicular screws. The ultimate failure of each implant was compared with the bone mineral density of each vertebra to determine which implants, if any, were particularly advantageous in osteoporotic vertebrae. Before biomechanical testing, the spines were analyzed in vitro by dual photon absorptiometry to determine the bone mineral densities (gm/cm2) of each vertebra. The mean tensile loads to failure for each of the implants tested were as follows: Cotrel-Dubousset transpedicular screws: 345 Newtons; spinous process wire/button: 382 Newtons; Steffee transpedicular screws: 430 Newtons; and laminar hooks: 646 Newtons. The difference between the loads to failure for laminar hooks and the other implants was significant (P less than 0.05) using one-way analysis of variance. The overall correlation coefficient for bone mineral density with ultimate load to failure was 0.30 (P less than 0.001). The correlation coefficients were 0.47 (P less than 0.001) for spinous process wires alone; 0.096 (not significant) for laminar hooks alone; 0.37 (P less than 0.001) for Cotrel-Dubousset pedicle screws; and 0.48 (P less than 0.001) for Steffee pedicle screws. Of the four different implants tested, laminar hooks were most resistant to failure from posteriorly directed forces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
This retrospective study was undertaken to determine the effectiveness and cost of thoracic pedicle screws versus laminar and pedicle hooks in patients undergoing surgical correction of adolescent idiopathic scoliosis (AIS). Immediate preoperative and 6-week postoperative radiographs were examined in 25 consecutive cases of children with AIS who were divided into two groups, those with thoracic pedicle screw constructs and those with thoracic hook constructs. Endpoints collected included radiographic measures, complications, surgical time, implant cost, and quality-of-life measures. Ten children underwent spinal fusion using thoracic pedicle screw fixation and 15 underwent thoracic constructs composed of hooks. Similar sex and age distribution were noted in both groups, and among the 20 girls and 5 boys the average age was 14.5. The mean preoperative Cobb angle was 53.5 degrees for the screw group and 52.5 degrees for the hook group. Correction averaged 70.2% for the screw group and 68.1% for the hook group. There were no significant differences between the two patient groups in terms of percentage of or absolute curve change after surgery. The apical vertebral translation, end vertebral tilt angle, and coronal balance did not differ significantly between the two patient groups. Comparison of operative time and quality of life revealed no significant differences. Screw constructs were significantly more expensive than hook constructs. The correction obtained from thoracic pedicle screw fixation is comparable to traditional hook constructs in AIS. Surgery using either construct effectively corrects AIS.  相似文献   

16.
寰枢椎后路固定技术研究进展   总被引:1,自引:0,他引:1  
唐向盛  谭明生 《中国骨伤》2007,20(8):578-580
寰枢椎不稳是由炎症、创伤、先天性疾病、肿瘤或退变引起的脊柱生物力学异常改变,常常需要手术固定。最初的后路钢丝固定技术操作安全,但术后需要较长时间外固定制动,并且不融合率高。螺钉固定技术(经关节螺钉、寰枢椎侧块和椎弓根钉技术)融合率高、不需要坚强的术后制动,但是其技术要求高。枢椎椎板螺钉能坚强固定寰枢椎复合体,可作为枢椎椎弓根螺钉的补充固定技术。文中将复习寰枢椎复合体后路固定的发展史和各种技术,同时讨论各自的成功率及其并发症。  相似文献   

17.

Background  

Symptomatic atlantoaxial instability needs stabilization of the atlantoaxial joint. Among the various techniques described in literature for the fixation of atlantoaxial joint, Magerl's technique of transarticular screw fixation remains the gold standard. Traditionally this technique combines placement of transarticular screws and posterior wiring construct. The aim of this study is to evaluate clinical and radiological outcomes in subjects of atlantoaxial instability who were operated using transarticular screws and iliac crest bone graft, without the use of sublaminar wiring (a modification of Magerl's technique).  相似文献   

18.
Background contextBiomechanical studies have demonstrated increased motion in motion segments adjacent to instrumentation or arthrodesis. The effects of different configurations of hook and pedicle screw instrumentation on the biomechanical behaviors of adjacent segments have not been well documented.PurposeTo compare the effect of three different fusion constructs on adjacent segment motion proximal to lumbar arthrodesis.MethodsSeven human cadaver lumbar spines were tested in the following conditions: 1) intact; 2) L4–L5-simulated circumferential fusion (CF); 3) L4–L5-simulated fusion extended to L3 with pedicle screws; and 4) L4–L5-simulated fusion extended to L3 with sublaminar hooks. Rotation data at L2–L3, L3–L4, and L4–L5 were analyzed using both load limit control (±7.5 N·m) and displacement limit control (truncated to the greatest common angular motion of the segments for each specimen).ResultsBoth the L3–L4 and L2–L3 motion segments above the L4–L5-simulated CF had significantly increased motion in all loading planes compared with the intact spine, but no significant differences were found between L3–L4 and L2–L3 motion. When the L3–L4 segment was stabilized with pedicle screws, its motion was significantly smaller in flexion, lateral bending, and axial rotation than when stabilized with sublaminar hooks. At the same time, L2–L3 motion was significantly larger in flexion, lateral bending, and axial rotation in the pedicle screw model compared with the sublaminar hook construct.ConclusionsThe use of sublaminar hooks to stabilize the motion segment above a circumferential lumbar fusion reduced motion at the next cephalad segment compared with a similar construct using pedicle screws. The semiconstrained hook enhancement may be considered if a patient is at a risk of adjacent segment disorders.  相似文献   

19.
Heller JG  Shuster JK  Hutton WC 《Spine》1999,24(7):654-658
STUDY DESIGN: An In vitro biomechanical load-to-failure test. OBJECTIVES: To determine the comparative axial pullout strengths of pedicle screw versus transverse process screws in the upper thoracic spine (T1-T4), and to compare their failure loads with bone density as seen on computed tomography. SUMMARY OF THE BACKGROUND DATA: The morphology of the upper thoracic spine presents technical challenges for rigid segmental fixation. Though data are available for failure characteristics of cervical-lateral mass screws, analogous data are wanting in regard to screw fixation of the upper thoracic spine. METHODS: Ten fresh-frozen human spines (T1-T4) were quantitatively scanned using computed tomography to determine trabecular bone density at each level. The vertebrae were drilled and tapped for the insertion of a 3.5-mill meter-diameter cortical bone screw in either the pedicle or the transverse process position. A uniaxial load to failure was applied. RESULTS: The mean ultimate load to failure for the pedicle screws (658 N) was statistically greater than that of the transverse process screws (361 N; P < 0.001). The T1 pedicle screw sustained the highest load to failure (775 N). No significant difference was found between load to failure for the pedicle and transverse process screws at T1. A trend toward decreasing load to failure was seen for both screw positions with descending thoracic level. Neither pedicle dimensions nor screw working length correlated with load to failure. CONCLUSIONS: Upper thoracic pedicle screws have superior axial loading characteristics compared with bicortical transverse process screws, except at T1. Load behavior of either of these screws was not predictable based on anatomic parameters.  相似文献   

20.

Introduction  

The aim of this study was to evaluate the accuracy of pedicle screw placement after computed tomography (CT)-assisted positioning of guide wires and subsequent insertion of transpedicular screws in particularly narrow pedicles in the thoracic spine. Transpedicular pedicle screw placement has been commonly used for a number of decades. However, a significant number of malpositioned screws still occur, especially in the thoracic spine, potentially correlating with relevant complications, e.g., neurological deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号