首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Calcium accumulation by synaptosomes decreases during ageing and this is partly due to an impaired calcium uptake by mitochondria (Brain Research, 378 (1986) 36-48). In the present work we have sought to define that effect of age on the pathways of K+-stimulated calcium influx. The plasma membrane potential of synaptosomes incubated at different K+ concentrations in choline-based or sodium-based media monitored with TPP+ did not change significantly with age. 45Ca uptake was reduced by around 20% in 24-vs 3-month-old rats at high K+ concentrations in both choline- and sodium-based media. However, the internal free calcium concentration in K+-depolarized synaptosomes estimated by the quin-2 method was found to be higher in 24- than in 3-month-old rats. When the apparent calcium permeabilities (P'Ca) in choline-based media were calculated from the corresponding calcium uptake values, membrane potentials and internal calcium concentration, it was found that the P'Ca values from old rats were only slightly lower than those of adults over the whole range of membrane potentials. The contribution of the Na/Ca exchanger to 45Ca uptake was estimated at different voltages by subtracting the normalized calcium uptake values obtained in choline media from those in Na media. The 'estimated' Na/Ca exchange was found to decrease markedly with age. Our results suggest that under our experimental conditions the apparent calcium permeability of synaptosomes is only modestly decreased during ageing. However, the operation of 45Ca/Na exchange is markedly reduced maybe as a result of alterations of the exchanger itself or due to changes in the concentration of internal Na or other ions.  相似文献   

2.
Fiber tract lesions in the central nervous system (CNS) often induce delayed retrograde neuronal degeneration, a phenomenon that represents an important therapeutic challenge in clinical neurotraumatology. In the present study, we report an in vivo trauma model of graded axonal lesion of CNS neurons. Controlled by a newtonmeter device, we induced retrograde degeneration of adult rat retinal ganglion cells (RGCs) by graded crush of the optic nerve. The extent of secondary RGC death increased linearly with the applied crush force. Moreover, visually evoked potentials were used to characterize the consequences of controlled optic nerve lesion on the functional integrity of the visual projection. The presented model of fiber tract lesion closely resembles the clinical conditions of traumatic brain injury and could prove useful to screen for neuroprotective drugs based on both a morphological and functional read-out.  相似文献   

3.
We recently reported that some retinal ganglion cell axons in mice deficient for the myelin-associated glycoprotein are concentrically surrounded by more than one myelin sheath. In the present study, we demonstrate that myelin sheaths displaced from the axon reveal a normal ultrastructure of compact myelin, with the only exception that multiple myelination of axons frequently correlates with the presence of unfused regions of major dense lines. Supernumerary sheaths terminated on other sheaths or on astrocyte cell surfaces in a pattern closely resembling the morphology of a true paranode. The thickness of compact myelin of multiply myelinated axons was significantly increased when compared with axons of similar caliber surrounded by a single myelin sheath. Our observations demonstrate that maintenance of compact myelin and paranodal regions is not dependent on direct axonal contact and that the presence of more than one concentric myelin sheath around an axon results in dysregulation of the axon-to-fiber ratio. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Cadherins are a family of molecules mediating Ca2+-dependent cell-cell adhesion in various tissues. N - and R-cadherin are expressed in the chick embryonic CNS and differ in their expression pattern during development. Here we focus on the differential expression of N - and R-cadherin in the early optic nerve. N-cadherin is expressed by the retinal neurites growing through the optic nerve. R-cadherin is expressed by the early optic nerve glia, which derives from the optic stalk neuroepithelium and corresponds to an immature form of the type-1 astrocyte described in rat optic nerve. The close contact between the plasma membranes of the retinal neurites and the optic nerve glia is believed to be important in guiding retinal axons through the optic nerve. Using neuroblastoma cell lines transfected with R-cadherin, we demonstrate that the N-cadherin-positive retinal axons can use R-cadherin as a substrate for axon elongation. These results suggest that the R-cadherin expressed by the early optic nerve glia might provide a molecular substrate for the growth of N-cadherin-positive retinal axons through the optic nerve. © 1993 Wiley-Liss, Inc.  相似文献   

5.
目的探讨依托咪酯对成年大鼠视神经损伤后再生的影响。方法选取25只成年SD大鼠,按随机数字表法随机分为依托咪酯治疗组(腹腔注射依托咪酯脂肪乳注射液,15只)、治疗对照组f腹腔注射脂肪乳,5只)和空白对照组(5只);治疗组又分为低(2mg/kg)、中(4mg/kg)和高(6mg/kg)剂量3个亚组,每亚组5只。采用自体坐骨神经移植模型和荧光金逆行标记再生视网膜神经节细胞(RGCs)。自体坐骨神经移植术后4周,采用视网膜平铺技术计数再生RGCs。结果空白对照组每张视网膜中再生RGCs数量平均为(1032±147)个,治疗对照组为(1114±179)个,两者之间无明显差异fP〉0.05)。低、中和高剂量依托咪酯治疗组每张视网膜中再生RGCs数量分别为(2054±349)个、(2853±498)个和(4118±615)个,与空白对照组和治疗对照组相比均显著增高(P〈0.01),而且不同剂量之间均差异显著(P〈0.01)。结论依托咪酯能显著促进大鼠视神经损伤后轴突再生,且具有剂量依赖性。  相似文献   

6.
《Neurological research》2013,35(7):638-649
Abstract

Objectives:

To calibrate and standardise an animal model of graded optic nerve injury (ONI) in rats to facilitate future inter-laboratory data comparisons, focussing on quantification of injury intensity, injury severity, and the correlation between them.

Methods:

A pair of cross-action forceps or a pair of artery clips was used to induce optic nerve (ON) crush injuries. A lever principle and a simplified method were used to measure the crushing force. The simplified method directly measured weights as an external force exerted on the tip of the forceps or clips, which was just sufficient to maintain a gap and was equivalent to the closing (crush) force. The impulse and averaged impulse were explored as physical quantities to compare injury intensities. Graded ONIs were made by crushing the ON for 3, 6, 12, 30 or 60 seconds by the cross-action forceps, or 5, 10 or 15 seconds by the artery clips. The injury severity was evaluated by counting surviving retinal ganglion cell (RGC) through applied FluoroGold to the superior colliculus and lateral geniculate body before ON crush, intact RGC counting by applied FluoroGold after ON crush, and ON axon counting.

Results:

Similar results were obtained by the lever principle method and the simplified method. The crushing force of the cross-action forceps and the artery clips was 148.0 gram force (gf) and 32.4?gf, respectively. The graded ONI animal models were successfully created in rats without retinal ischaemia post-trauma. The averaged impulse produced by the artery clips for 15 seconds was equal to that produced by a 3-second crush of the cross-action forceps. The correlation between injury intensity and injury severity was fitted for a power function.

Discussion:

Our results provide a simplified and effective means to quantify and analyse data from ON crush studies compared with previously reported animal models.  相似文献   

7.
We determined the effect of nilvadipine, a dihydropyridine-type calcium channel blocker, in preventing glutamate neurotoxicity in purified retinal ganglion cells (RGCs). RGCs were purified from dissociated rat retinal cells (postnatal days 6-8), using a modified two-step panning method, and cultured in serum-free medium containing neurotrophic factors and forskolin. RGC survival after exposure to glutamate (25 microM) with nilvadipine or other calcium channel blockers was measured by calcein-acetoxymethyl ester staining after 3 days in culture. Changes in the level of intracellular Ca(2+) ([Ca(2+)](i)) were measured with fura-2 fluorescence. Induction of apoptosis was evaluated using the TDT-dUTP terminal nick-end labeling technique. The neurotoxic effects of low doses of glutamate were blocked by a specific alpha-amino-3-dihydro-5-methylisoxazole-4-propionate-kainate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (20 microM). Simultaneous application of nilvadipine (1-100 nM) with glutamate protected against glutamate neurotoxicity in a dose-dependent manner. Calcium-imaging experiments showed that the glutamate-evoked [Ca(2+)](i) increase was significantly blocked by nilvadipine (P<0.001), but not nifedipine and diltiazem, in about 50% of RGCs. In addition, the application of nilvadipine significantly reduced glutamate-induced apoptosis (P<0.001). These findings suggest that nilvadipine may partly inhibit glutamate-induced apoptotic cell death by blocking calcium influx via voltage-dependent calcium channels in purified RGCs.  相似文献   

8.
We have studied whether Ca(2+)-induced Ca(2+) release (CICR) is involved in the mechanism of long-term potentiation (LTP) at nicotinic synapses of bullfrog sympathetic ganglia. Fast excitatory postsynaptic potentials (fast EPSPs) were recorded in a low-Ca(2+), high-Mg(2+) solution and quantal analysis was applied. The conditioning stimulation of the B-type preganglionic nerve at 20 Hz for 4 min consistently enhanced the amplitude and quantal content of fast EPSP for > 2 h, but only sometimes enhanced the quantal size. The LTP of quantal content produced by the conditioning tetanus was blocked by thapsigargin, a blocker of Ca(2+) pumps at Ca(2+) stores, applied before or after the conditioning tetanus, and by Xestospongin C, a blocker of inositoltrisphosphate (IP(3)) receptors, applied before the tetanus. It was not, however, blocked by ryanodine, a blocker and/or activator of ryanodine receptors, or by propranolol, a blocker of beta-adrenergic receptors. Thus the long-lasting activity of the preganglionic nerve at a high frequency causes the LTP of impulse-evoked transmitter release by the activation of CICR from thapsigargin-sensitive Ca(2+) stores in the nerve terminals. It is likely that a large Ca(2+) entry into the nerve terminals during tetanic activity primes ryanodine-insensitive Ca(2+) release channels for activation.  相似文献   

9.
The mRNA expression of the neuronal nicotinic acetylcholine receptor subunits was determined in adult rat vestibular end-organs and in Scarpa's ganglion (SCG) by in situ hybridization with [35S]riboprobes. Neurons in the SCG expressed the α4–7 and β2–3 mRNAs, but not α3 or β4 mRNAs. Not all SCG neurons expressed every mRNA found in SCG. The α6 and β2–3 riboprobes labeled all neurons, but α4, α5, and α7 mRNAs were selectively expressed in one or more subpopulations of SCG neurons. Vestibular sensory hair cells, in contrast, expressed only a9 mRNA.  相似文献   

10.
We have shown earlier that nicotinic agonists induce the release of noradrenaline from chick sympathetic neurons in culture in two ways: (a) by activating the postsynaptic nicotinic receptors on nerve cell bodies, giving rise to spreading electrical activity and opening of voltage operated calcium channels in neuronal processes; (b) by activating the presynaptic nicotinic receptors on neuronal processes. In the present work, we investigated the contribution of various pathways to the observed Ca2+ influx and subsequent noradrenaline release. Sympathetic neurons in culture were stimulated either by the nicotinic agonist dimethylphenylpiperazinium or electrically, in the presence or absence of tetrodotoxin and of specific blockers of calcium or nicotinic channels, and the effects on [Ca2+]i in the area of neuronal processes and on noradrenaline release were measured. Under control conditions, the N-type channel blocker ω-conotoxin (0.1 μmol/1) diminished the release of noradrenaline and the increase of intraterminal Ca2+ by 48% and 55%, respectively, whereas the L-type channel blocker (+)Bay k 8644 (1 μmol/1) diminished the release of noradrenaline by 25% and the increase of [Ca2+]i by 39%. The P-type channel blocker ω-agatoxin (0.3 μmol/1) had no effect. The effects of the L-type channel ligands were complex and could only be explained on the assumption that, at high concentrations, these drugs also act as nicotinic antagonists. Tetrodotoxin blocked the Ca2+ response evoked by electrical stimulation whereas DMPP applied in the presence of tetrodotoxin still evoked an increase of [Ca2+]i and the release of noradrenaline (27% and 30% of control without tetrodotoxin, respectively). These residual responses were not blocked by any of the calcium channel blockers used or by their combination. Apparently, a substantial part of the influx of Ca2+ induced by the activation of presynaptic nicotinic receptors is not carried by the N-, L- or P-type channels and probably occurs directly via the open channels of nicotinic receptors.  相似文献   

11.
12.
The optic nerve is a CNS pathway containing molecules capable of inhibiting axon elongation. The growth program in embryonic retinal ganglion cell (RGC) neurons enables axons to regenerate in the optic nerve through at least two mechanisms. Namely, high cyclic AMP (cAMP) levels abrogate the ability of CNS molecules to inhibit elongation, and the pattern of gene expression enables axons to undergo rapid, sustained, and lengthy elongation. In adult mammals, recovery of visual function after optic nerve injury is limited by both the death of most RGC neurons and the inability of surviving axons to regenerate. We now report that a single intraocular injection of the membrane-permeable cAMP analogue dibutyryl cAMP (db cAMP) promotes the regeneration of RGC axons in the optic nerves of adult rats, but does not prevent the death of RGC neurons. This regeneration in optic nerves crushed within the orbit (2 mm from the eye) was equally effective either 1 day before or 1 day after db cAMP injection. The number of regenerating axons, which was maximal 14 days after crush, declined with increasing time after injury (i.e., 28, 56, and 112 days) and distance beyond the crush site (i.e., 0.25, 0.5, and 1.0 mm). Thus, db cAMP promotes optic nerve regeneration without increasing the survival of axotomized RGC neurons. Furthermore, since db cAMP does not enable axons to undergo rapid, sustained, and lengthy elongation, strategies that increase survival and promote these changes in elongation may critically complement the ability of db cAMP to promote regeneration.  相似文献   

13.
We have studied the rise and fall in the number of axons in the optic nerve of fetal and neonatal cats in relation to changes in the ultrastructure of fibers, and in particular, to the characteristics and spatiotemporal distribution of growth cones and necrotic axons. Axons of retinal ganglion cells start to grow through the optic nerve on the 19th day of embryonic development (E-19). As early as E-23 there are 8,000 fibers in the nerve close to the eye. Fibers are added to the nerve at a rate of approximately 50,000 per day from E-28 until E-39--the age at which the peak population of 600,000-700,000 axons is reached. Thereafter, the number decreases rapidly: About 400,000 axons are lost between E-39 and E-53. In contrast, from E-56 until the second week after birth the number of axons decreases at a slow rate. Even as late as postnatal day 12 (P-12) the nerve contains an excess of up to 100,000 fibers. The final number of fibers--140,000-165,000--is reached by the sixth week after birth. Growth cones of retinal ganglion cells are present in the optic nerve from E-19 until E-39. At E-19 and E-23 they have comparatively simple shapes but in older fetuses they are larger and their shapes are more elaborate. As early as E-28 many growth cones have lamellipodia that extend outward from the core region as far as 10 microns. These sheetlike processes are insinuated between bundles of axons and commonly contact 10 to 20 neighboring fibers in single transverse sections. At E-28 growth cones make up 2.0% of the fiber population; at E-33 they make up about 1.0%; from E-36 to E-39 they make up only 0.3% of the population. Virtually none are present in the midorbital part of the nerve on or after E-44. At all ages growth cones are more common at the periphery of the nerve than at its center. This central-to-peripheral gradient increases with age: at E-28 the density of growth cones is two times greater at the edge than at the center but by E-39 the density is four to five times greater. Necrotic fibers are observed as early as E-28 in all parts of the nerve. Their axoplasm is dark and mottled and often contains dense vesiculated structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Zhang J  Wu SM  Gross RL 《Brain research》2003,959(1):111-119
Betaxolol, a selective beta(1)-adrenoceptor antagonist, is an antiglaucoma drug commonly used to lower the intraocular pressure (IOP) in treatment of glaucoma. Recent evidence has also shown that it attenuates ligand- and voltage-gated currents in retinal ganglion cells, which may lead to reduction of intracellular calcium and prevention of glutamate-induced ganglion cell damage in glaucoma. In the present study, we examined the effectiveness of betaxolol and other beta-adrenergic blockers on glutamate-induced calcium signals. Dissociated adult mouse retinal ganglion cells were immuno-labeled with antibody CD90.2 and loaded with Fura-2AM. Calcium signals were recorded with optical recording techniques. Low doses of glutamate cause an increase in intracellular calcium that may result in pathological changes in ganglion cells. The action of glutamate could be reversibly suppressed by beta-adrenergic blockers and the order of inhibitory potency is (s)(-)-propranolol>betaxolol>timolol, with average IC(50) of 78.05, 235.7 and 2167.05, microM, respectively. Betaxolol compressed the dose-response curve of glutamate. The EC(50) of glutamate was shifted from 6.19 to 23.53 microM, indicating that betaxolol acts as a non-competitive inhibitor of glutamate response in retinal ganglion cells. Our data are consistent with previous reports that betaxolol and other beta-adrenergic blockers may exert its neuroprotective action by suppression of glutamate-induced intracellular calcium increase in retinal ganglion cells.  相似文献   

15.
Tezel G  Yang X  Yang J  Wax MB 《Brain research》2004,996(2):202-212
To assess the specific role of tumor necrosis factor (TNF) death receptor signaling in the induction of retinal ganglion cell (RGC) death, optic nerves of mice deficient for TNF receptor-1 (TNF-R1-/-) and control mice (C57BL/6J) were unilaterally subjected to crush injury. Counts of RGCs and their axons 6 weeks after the injury demonstrated that their loss was significantly less in TNF-R1-/- mice compared to controls. The most prominent decrease in neuronal loss detected in TNF-R1-/- mice was beyond the initial 2-week period after the injury. This time period was correlated with the period of glial activation and increased glial immunolabeling for TNF-alpha in these eyes. No further protection against neuronal loss was detectable in TNF-R1-/- mice treated with D-JNKI1, a specific inhibitor of c-Jun N-terminal protein kinase (JNK). However, anti-JNK treatment of control animals provided a significant protection against neuronal loss during the same secondary degeneration period. Phospho-JNK immunolabeling of RGCs in control mice subjected to optic nerve crush significantly decreased following their treatment with D-JNKI1, and anti-JNK treatment protected RGCs from degeneration in these animals, similar to the lack of TNF-R1. These findings provide evidence that TNF death receptor signaling is involved in the secondary degeneration of RGCs following optic nerve injury, and is associated with JNK signaling. Since secondarily degenerating neurons are viable targets for neuroprotection, inhibition of TNF death receptor signaling may be an effective strategy to protect RGCs in several neurodegenerative injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号