首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The special antishivering action of meperidine may be mediated by its kappa or anticholinergic actions. We therefore tested the hypotheses that nalbuphine or atropine decreases the shivering threshold more than the vasoconstriction threshold. Eight volunteers were each evaluated on four separate study days: 1) control (no drug), 2) small-dose nalbuphine (0.2 microg/mL), 3) large-dose nalbuphine (0.4 microg/mL), and 4) atropine (1-mg bolus and 0.5 mg/h). Body temperature was increased until the patient sweated and then decreased until the patient shivered. Nalbuphine produced concentration-dependent decreases (mean +/- SD) in the sweating (-2.5 +/- 1.7 degrees C. microg(-1). mL; r(2) = 0.75 +/- 0.25), vasoconstriction (-2.6 +/- 1.7 degrees C. microg(-1). mL; r(2) = 0.75 +/- 0.25), and shivering (-2.8 +/- 1.7 degrees C. microg(-1). mL; r(2) = 0.79 +/- 0.23) thresholds. Atropine significantly increased the thresholds for sweating (1.0 degrees C +/- 0.4 degrees C), vasoconstriction (0.9 degrees C +/- 0.3 degrees C), and shivering (0.7 degrees C +/- 0.3 degrees C). Nalbuphine reduced the vasoconstriction and shivering thresholds comparably. This differs markedly from meperidine, which impairs shivering twice as much as vasoconstriction. Atropine increased all thresholds and would thus be expected to facilitate shivering. Our results thus fail to support the theory that activation of kappa-opioid or central anticholinergic receptors contribute to meperidine's special antishivering action.  相似文献   

2.
BACKGROUND: The analgesic nefopam does not compromise ventilation, is minimally sedating, and is effective as a treatment for postoperative shivering. The authors evaluated the effects of nefopam on the major thermoregulatory responses in humans: sweating, vasoconstriction, and shivering. METHODS: Nine volunteers were studied on three randomly assigned days: (1) control (saline), (2) nefopam at a target plasma concentration of 35 ng/ml (low dose), and (3) nefopam at a target concentration of 70 ng/ml (high dose, approximately 20 mg total). Each day, skin and core temperatures were increased to provoke sweating and then reduced to elicit peripheral vasoconstriction and shivering. The authors determined the thresholds (triggering core temperature at a designated skin temperature of 34 degrees C) by mathematically compensating for changes in skin temperature using the established linear cutaneous contributions to control of each response. RESULTS: Nefopam did not significantly modify the slopes for sweating (0.0 +/- 4.9 degrees C. microg-1. ml; r2 = 0.73 +/- 0.32) or vasoconstriction (-3.6 +/- 5.0 degrees C. microg-1. ml; r2 = -0.47 +/- 0.41). In contrast, nefopam significantly reduced the slope of shivering (-16.8 +/- 9.3 degrees C. microg-1. ml; r2 = 0.92 +/- 0.06). Therefore, high-dose nefopam reduced the shivering threshold by 0.9 +/- 0.4 degrees C (P < 0.001) without any discernible effect on the sweating or vasoconstriction thresholds. CONCLUSIONS: Most drugs with thermoregulatory actions-including anesthetics, sedatives, and opioids-synchronously reduce the vasoconstriction and shivering thresholds. However, nefopam reduced only the shivering threshold. This pattern has not previously been reported for a centrally acting drug. That pharmacologic modulations of vasoconstriction and shivering can be separated is of clinical and physiologic interest.  相似文献   

3.
Background: The analgesic nefopam does not compromise ventilation, is minimally sedating, and is effective as a treatment for postoperative shivering. The authors evaluated the effects of nefopam on the major thermoregulatory responses in humans: sweating, vasoconstriction, and shivering.

Methods: Nine volunteers were studied on three randomly assigned days: (1) control (saline), (2) nefopam at a target plasma concentration of 35 ng/ml (low dose), and (3) nefopam at a target concentration of 70 ng/ml (high dose, approximately 20 mg total). Each day, skin and core temperatures were increased to provoke sweating and then reduced to elicit peripheral vasoconstriction and shivering. The authors determined the thresholds (triggering core temperature at a designated skin temperature of 34[degrees]C) by mathematically compensating for changes in skin temperature using the established linear cutaneous contributions to control of each response.

Results: Nefopam did not significantly modify the slopes for sweating (0.0 +/- 4.9[degrees]C [middle dot] [mu]g-1 [middle dot] ml; r2 = 0.73 +/- 0.32) or vasoconstriction (-3.6 +/- 5.0[degrees]C [middle dot] [mu]g-1 [middle dot] ml; r2 = -0.47 +/- 0.41). In contrast, nefopam significantly reduced the slope of shivering (-16.8 +/- 9.3[degrees]C [middle dot] [mu]g-1 [middle dot] ml; r2 = 0.92 +/- 0.06). Therefore, high-dose nefopam reduced the shivering threshold by 0.9 +/- 0.4[degrees]C (P < 0.001) without any discernible effect on the sweating or vasoconstriction thresholds.  相似文献   


4.
Background: Meperidine administration is a more effective treatment for shivering than equianalgesic doses of other opioids. However, it remains unknown whether meperidine also profoundly impairs other thermoregulatory responses, such as sweating or vasoconstriction. Proportional inhibition of vasoconstriction and shivering suggests that the drug acts much like alfentanil and anesthetics but possesses greater thermoregulatory than analgesic potency. In contrast, disproportionate inhibition would imply a special antishivering mechanism. Accordingly, the authors tested the hypothesis that meperidine administration produces a far greater concentration-dependent reduction in the shivering than vasoconstriction threshold.

Methods: Nine volunteers were each studied on three days: 1) control (no opioid); 2) a target total plasma meperidine concentration of 0.6 micro gram/ml (40 mg/h); and 3) a target concentration of 1.8 micro gram/ml (120 mg/h). Each day, skin and core temperatures were increased to provoke sweating and then subsequently reduced to elicit vasoconstriction and shivering. Core-temperature thresholds (at a designated skin temperature of 34 degrees Celsius) were computed using established linear cutaneous contributions to control sweating (10%) and vasoconstriction and shivering (20%). The dose-dependent effects of unbound meperidine on thermoregulatory response thresholds was then determined using linear regression. Results are presented as means +/- SDs.

Results: The unbound meperidine fraction was [nearly equal] 35%. Meperidine administration slightly increased the sweating threshold (0.5 +/- 0.8 degrees Celsius [center dot] micro gram sup -1 [center dot] ml; r2 = 0.51 +/- 0.37) and markedly decreased the vasoconstriction threshold (-3.3 +/- 1.5 degrees Celsius [center dot] micro gram sup -1 [center dot] ml; r sup 2 = 0.92 +/- 0.08). However, meperidine reduced the shivering threshold nearly twice as much as the vasoconstriction threshold (-6.1 +/- 3.0 degrees Celsius [center dot] micro gram sup -1 [center dot] ml; r2 = 0.97 +/- 0.05; P = 0.001).  相似文献   


5.
Dantrolene is used for treatment of life-threatening hyperthermia, yet its thermoregulatory effects are unknown. We tested the hypothesis that dantrolene reduces the threshold (triggering core temperature) and gain (incremental increase) of shivering. Healthy volunteers were evaluated on 2 random days: control and dantrolene (approximately 2.5 mg/kg plus a continuous infusion). In Study 1, 9 men were warmed until sweating was provoked and then cooled until arteriovenous shunt constriction and shivering occurred. Sweating was quantified on the chest using a ventilated capsule. Absolute right middle fingertip blood flow was quantified using venous-occlusion volume plethysmography. A sustained increase in oxygen consumption identified the shivering threshold. In Study 2, 9 men were given cold lactated Ringer's solution i.v. to reduce core temperature approximately 2 degrees C/h. Cooling was stopped when shivering intensity no longer increased with further core cooling. The gain of shivering was the slope of oxygen consumption versus core temperature regression. In Study 1, sweating and vasoconstriction thresholds were similar on both days. In contrast, shivering threshold decreased 0.3 +/- 0.3 degrees C, P = 0.004, on the dantrolene day. In Study 2, dantrolene decreased the shivering threshold from 36.7 +/- 0.2 to 36.3 +/- 0.3 degrees C, P = 0.01 and systemic gain from 353 +/- 144 to 211 +/- 93 mL.min(-1).degrees C(-1), P = 0.02. Thus, dantrolene substantially decreased the gain of shivering, but produced little central thermoregulatory inhibition. IMPLICATIONS: Dantrolene substantially decreases the gain of shivering but produces relatively little central thermoregulatory inhibition. It thus seems unlikely to prove more effective than conventional muscle relaxants for treatment of life-threatening hyperthermia.  相似文献   

6.
Background: Skin temperature is best kept constant when determining response thresholds because both skin and core temperatures contribute to thermoregulatory control. In practice, however, it is difficult to evaluate both warm and cold thresholds while maintaining constant cutaneous temperature. A recent study shows that vasoconstriction and shivering thresholds are a linear function of skin and core temperatures, with skin contributing 20 plus/minus 6% and 19 plus/minus 8%, respectively. (Skin temperature has long been known to contribute [nearly equal] 10% to the control of sweating.) Using these relations, we were able to experimentally manipulate both skin and core temperatures, subsequently compensate for the changes in skin temperature, and finally report the results in terms of calculated core- temperature thresholds at a single designated skin temperature.

Methods: Five volunteers were each studied on 4 days: (1) control; (2) a target blood propofol concentration of 2 micro gram/ml; (3) a target concentration of 4 micro gram/ml; and (4) a target concentration of 8 micro gram/ml. On each day, we increased skin and core temperatures sufficiently to provoke sweating. Skin and core temperatures were subsequently reduced to elicit peripheral vasoconstriction and shivering. We mathematically compensated for changes in skin temperature by using the established linear cutaneous contributions to the control of sweating (10%) and to vasoconstriction and shivering (20%). From these calculated core-temperature thresholds (at a designated skin temperature of 35.7 degrees Celsius), the propofol concentration- response curves for the sweating, vasoconstriction, and shivering thresholds were analyzed using linear regression. We validated this new method by comparing the concentration-dependent effects of propofol with those obtained previously with an established model.

Results: The concentration-response slopes for sweating and vasoconstriction were virtually identical to those reported previously. Propofol significantly decreased the core temperature triggering vasoconstriction (slope = 0.6 plus/minus 0.1 degree Celsius *symbol* micro gram sup -1 *symbol* ml sup -1; r2 = 0.98 plus/minus 0.02) and shivering (slope = 0.7 plus/minus 0.1 degree Celsius *symbol* micro gram sup -1 *symbol* ml sup -1; r2 = 0.95 plus/minus 0.05). In contrast, increasing the blood propofol concentration increased the sweating threshold only slightly (slope = 0.1 plus/minus 0.1 degree Celsius *symbol* micro gram sup -1 *symbol* ml sup -1; r2 = 0.46 plus/minus 0.39).  相似文献   


7.
Background: Clonidine decreases the vasoconstriction and shivering thresholds. It thus seems likely that the alpha2 agonist dexmedetomidine will also impair control of body temperature. Accordingly, the authors evaluated the dose-dependent effects of dexmedetomidine on the sweating, vasoconstriction, and shivering thresholds. They also measured the effects of dexmedetomidine on heart rate, blood pressures, and plasma catecholamine concentrations.

Methods: Nine male volunteers participated in this randomized, double-blind, cross-over protocol. The study drug was administered by computer-controlled infusion, targeting plasma dexmedetomidine concentrations of 0.0, 0.3, and 0.6 ng/ml. Each day, skin and core temperatures were increased to provoke sweating and then subsequently reduced to elicit vasoconstriction and shivering. Core-temperature thresholds were computed using established linear cutaneous contributions to control of sweating, vasoconstriction, and shivering. The dose-dependent effects of dexmedetomidine on thermoregulatory response thresholds were then determined using linear regression. Heart rate, arterial blood pressures, and plasma catecholamine concentrations were determined at baseline and at each threshold.

Results: Neither dexmedetomidine concentration increased the sweating threshold from control values. In contrast, dexmedetomidine administration reduced the vasoconstriction threshold by 1.61 +/- 0.80 [degree sign] Celsius [center dot] ng sup -1 [center dot] ml (mean +/- SD) and the shivering threshold by 2.40 +/- 0.90 [degree sign] Celsius [center dot] ng sup -1 [center dot] ml. Hemodynamic responses and catecholamine concentrations were reduced from baseline values, but they did not differ at the two tested dexmedetomidine doses.  相似文献   


8.
Dopamine is a thermoregulatory neurotransmitter that provokes hypothermia when injected in or near the hypothalamus. Doxapram stimulates release of dopamine from carotid bodies, but is known to have central effects that are probably, at least in part, similarly mediated. We thus tested the hypothesis that doxapram produces a substantial, dose-dependent reduction in the shivering threshold in rabbits. Twenty-four rabbits, anesthetized with isoflurane, were randomly assigned to 1) saline (control), 2) 0.25 mg x kg(-1) x h(-1) doxapram, or 3) 0.50 mg x kg(-1) x h(-1) doxapram. These doses are within the recommended range for humans. Body temperature was reduced at a rate of 2 degrees to 3 degrees C/h by perfusing water at 10 degrees C through a U-shaped thermode positioned in the colon. Core temperatures were recorded from the distal esophagus. A blinded observer evaluated shivering. Core temperature at the onset of shivering defined the threshold. Data were analyzed with a one-way analysis of variance; P < 0.05 was considered statistically significant. Hemodynamic and respiratory responses were comparable in the groups. The control rabbits shivered at 36.3 degrees +/- 0.3 degrees C, those given 0.25 mg x kg(-1) x h(-1) doxapram shivered at 34.8 degrees +/- 0.5 degrees C, and those given 0.50 mg x kg(-1) x h(-1) shivered at 33.7 degrees +/- 0.6 degrees C. All the shivering thresholds significantly (P < 0.001) differed from one another. The magnitude of this inhibition, if similar in humans, would be clinically important.  相似文献   

9.
Background: Desflurane decreases the vasoconstriction and shivering thresholds disproportionately at high anesthetic concentrations. This result contrasts with the authors' previous report that isoflurane decreases the vasoconstriction threshold linearly. It is surprising that the basic shape of the concentration-response curve should differ with these two otherwise similar anesthetics. Therefore, the hypothesis that isoflurane produces a nonlinear reduction in the vasoconstriction threshold was tested. Because the effect of isoflurane on shivering remains unknown, the extent to which isoflurane reduces the shivering threshold also was determined.

Methods: Eight men volunteered to be studied on four randomly ordered days: (1) a target end-tidal isoflurane concentration of 0.55%, (2) a target concentration of 0.7%, (3) control (no anesthesia) and a target end-tidal concentration of 0.85%, and (4) a target end-tidal concentration of 1.0%. Volunteers were surface-cooled until peripheral vasoconstriction and shivering were observed. We arithmetically compensated for changes in skin temperature using the established linear cutaneous contributions to control for each response. From the calculated thresholds (core temperatures triggering responses at a designated skin temperature of 34 degrees C), the concentration-response relation was determined.

Results: Isoflurane administration produced a dose-dependent reduction in the vasoconstriction and shivering thresholds, decreasing each [nearly equal] 4.6 degrees C at an end-tidal concentration of 1%. Residual analysis indicated that the vasoconstriction and shivering thresholds were decreased in a nonlinear fashion during isoflurane administration. The vasoconstriction-to-shivering range was 1.5+/- 0.8 degree C without isoflurane, and did not change significantly during isoflurane administration.  相似文献   


10.
Fritz HG  Hoff H  Hartmann M  Karzai W  Schwarzkopf KR 《Anesthesia and analgesia》2002,94(3):626-30; table of contents
In a previous study we have shown that the antihypertensive drug, urapidil, stops postanesthetic shivering. One possible mechanism in the inhibition of postanesthetic shivering by urapidil may be alterations in thermoregulatory thresholds. We therefore studied the effects of urapidil on vasoconstriction and shivering thresholds during cold-induced shivering in volunteers. Seven healthy male volunteers were cooled by an infusion of saline at 4 degrees C on two study days separated by 48 h. Thermoregulatory vasoconstriction was estimated using forearm minus fingertip skin-temperature gradients, and values exceeding 0 degrees C were considered to represent significant vasoconstriction. The rectal core temperatures at the beginning of shivering and at vasoconstriction were considered the thermoregulatory thresholds. Before cooling, either 25 mg of urapidil or placebo was administered randomly and blindly to each volunteer. When shivering occurred continuously for 10 min, another 25 mg of urapidil was administered IV to completely stop shivering. Urapidil led to a decrease in core temperature at vasoconstriction and shivering threshold by 0.4 degrees C plus/minus 0.2 degrees C (P < 0.001) and 0.5 degrees C plus/minus 0.3 degrees C (P < 0.01), respectively. Oxygen consumption increased during shivering by 70% plus/minus 30% (P < 0.01) in comparison with baseline and decreased levels after shivering stopped, despite the continued low core temperature. Our investigation shows that urapidil stops postanesthetic shivering by decreasing important thermoregulatory thresholds. This means that shivering, not hypothermia, is treated, and hypothermia will need more attention in the postanesthesia care unit. IMPLICATIONS: In this study we show that the antihypertensive drug urapidil stops cold-induced shivering and decreases normal thermoregulatory responses, i.e., the thresholds for vasoconstriction and shivering, in awake volunteers.  相似文献   

11.
Sweating threshold during isoflurane anesthesia in humans   总被引:2,自引:0,他引:2  
Isoflurane anesthesia in humans markedly decreases the threshold temperature triggering peripheral thermoregulatory vasoconstriction (i.e., central temperature triggering vasoconstriction). However, it is not known whether the sweating threshold remains unchanged (e.g., near 37 degrees C), decreases along with the vasoconstriction threshold, or increases during anesthetic administration. Accordingly, the hypothesis that isoflurane anesthesia increases the thermoregulatory threshold for sweating was tested. Forehead sweating was evaluated in five healthy patients given isoflurane anesthesia. The sweating threshold was prospectively defined as the distal esophageal temperature at which significant sweating was first observed. Sweating was observed in each patient at a mean central temperature of 38.3 +/- 0.3 degrees C and an end-tidal isoflurane concentration of 1.1% +/- 0.2%. The interthreshold range (difference between vasoconstriction and sweating thresholds) without anesthesia is approximately 0.5 degrees C; isoflurane anesthesia increases this range to approximately 4 degrees C.  相似文献   

12.
Kudoh A  Takase H  Takazawa T 《Anesthesia and analgesia》2004,98(1):111-5, table of contents
Antipsychotics can induce hypothermia, but intraoperative temperature regulation in schizophrenic patients taking antipsychotics remains unclear. We investigated intraoperative temperature regulation and postoperative shivering in chronic schizophrenic patients receiving antipsychotics. We studied 30 schizophrenic patients and 30 control patients who underwent orthopedic surgery. Tympanic membrane temperatures (35.7 degrees C +/- 0.5 degrees C, 35.6 degrees C +/- 0.5 degrees C, 35.6 degrees C +/- 0.4 degrees C, 35.5 degrees C +/- 0.4 degrees C, 35.4 degrees C +/- 0.5 degrees C, and 35.4 degrees C +/- 0.3 degrees C) 15, 30, 45, 60, 75, and 90 min, respectively, after induction in schizophrenic patients were significantly (P < 0.001) lower than those (36.5 degrees C +/- 0.5 degrees C, 36.4 degrees C +/- 0.5 degrees C, 36.3 degrees C +/- 0.4 degrees C, 36.2 degrees C +/- 0.5 degrees C, 36.2 degrees C +/- 0.4 degrees C, and 36.1 degrees C +/- 0.4 degrees C) in control patients. Mean skin temperatures (31.1 degrees C +/- 0.4 degrees C [P = 0.008], 31.1 degrees C +/- 0.3 degrees C [P = 0.007], and 31.1 degrees C +/- 0.2 degrees C [P = 0.006]) 60, 75, and 90 min, respectively, after induction in schizophrenic patients were significantly lower than those (31.5 degrees C +/- 0.3 degrees C, 31.5 degrees C +/- 0.3 degrees C, and 31.5 degrees C +/- 0.3 degrees C) in control patients. Four of 30 schizophrenic patients and 7 of 30 control patients developed postanesthesia shivering. There were no significant differences within 1 h after tracheal extubation in tympanic membrane temperatures between patients who shivered and those who did not shiver. In conclusion, chronic schizophrenic patients were more hypothermic during anesthesia. The incidence of postanesthesia shivering was not significantly increased. IMPLICATIONS: Antipsychotics inhibit autonomic thermoregulation. This is caused by decreased heat production, increased heat loss, and impaired central action at the hypothalamus. Thus, schizophrenic patients receiving antipsychotics may have impaired intraoperative temperature regulation.  相似文献   

13.
Background. Ondansetron, a serotonin-3 receptor antagonist,reduces postoperative shivering. Drugs that reduce shiveringusually impair central thermoregulatory control, and may thusbe useful for preventing shivering during induction of therapeutichypothermia. We determined, therefore, whether ondansetron reducesthe major autonomic thermoregulatory response thresholds (triggeringcore temperatures) in humans. Methods. Control (placebo) and ondansetron infusions at thetarget plasma concentration of 250 ng ml–1 were studiedin healthy volunteers on two different days. Each day, skinand core temperatures were increased to provoke sweating; thenreduced to elicit peripheral vasoconstriction and shivering.We determined the core-temperature sweating, vasoconstrictionand shivering thresholds after compensating for changes in mean-skintemperature. Data were analysed using t-tests and presentedas means (SDs); P<0.05 was taken as significant. Results. Ondensetron plasma concentrations were 278 (57), 234(55) and 243 (58) ng ml–1 at the sweating, vasoconstrictionand shivering thresholds, respectively; these corresponded to50 mg of ondansetron which is approximately 10 times the doseused for postoperative nausea and vomiting. Ondansetron didnot change the sweating (control 37.4 (0.4)°C, ondansetron37.6 (0.3)°C, P=0.16), vasoconstriction (37.0 (0.5)°Cvs 37.1 (0.3)°C; P=0.70), or shivering threshold (36.3 (0.5)°Cvs 36.3 (0.6)°C; P=0.76). No sedation was observed on eitherstudy day. Conclusions. Ondansetron appears to have little potential forfacilitating induction of therapeutic hypothermia.  相似文献   

14.
Generalized autonomic stimulation enhances hemodynamic responses and may, in a similar fashion, facilitate thermoregulatory responses. We thus tested the hypothesis that painful stimulation increases the central temperature threshold for vasoconstriction during general anesthesia. Healthy volunteers were anesthetized with 1.3% end-tidal enflurane on 2 separate days. On 1 day (randomly assigned), painful stimulation was produced by tetanic electrical stimulation. On the other day, electrical stimulation was not given. Significant thermoregulatory vasoconstriction was defined as a forearm-fingertip skin-surface temperature gradient exceeding 4 degrees C. The distal esophageal temperature triggering significant vasoconstriction was considered the thermoregulatory threshold. The threshold was 35.5 +/- 0.8 degrees C during electrical stimulation and 35.1 +/- 0.6 degrees C without stimulation (P = 0.050, 95% confidence interval for the difference = 0-0.7 degree C). These data suggest that thresholds determined in nonsurgical volunteers will be slightly (but not clinically significantly) less than those in operative patients. Similarly, intraoperative vasoconstriction thresholds likely will be slightly less when surgical pain is prevented by simultaneous regional or local analgesia.  相似文献   

15.
BACKGROUND: Thermoregulatory control is based on both skin and core temperatures. Skin temperature contributes approximately 20% to control of vasoconstriction and shivering in unanesthetized humans. However, this value has been used to arithmetically compensate for the cutaneous contribution to thermoregulatory control during anesthesia--although there was little basis for assuming that the relation was unchanged by anesthesia. It even remains unknown whether the relation between skin and core temperatures remains linear during anesthesia. We therefore tested the hypothesis that mean skin temperature contributes approximately 20% to control of vasoconstriction and shivering, and that the contribution is linear during general anesthesia. METHODS: Eight healthy male volunteers each participated on 3 separate days. On each day, they were anesthetized with 0.6 minimum alveolar concentrations of isoflurane. They then were assigned in random order to a mean skin temperature of 29, 31.5, or 34 degrees C. Their cores were subsequently cooled by central-venous administration of fluid at approximately 3 degrees C until vasoconstriction and shivering were detected. The relation between skin and core temperatures at the threshold for each response in each volunteer was determined by linear regression. The proportionality constant was then determined from the slope of this regression. These values were compared with those reported previously in similar but unanesthetized subjects. RESULTS: There was a linear relation between mean skin and core temperatures at the vasoconstriction and shivering thresholds in each volunteer: r2 = 0.98+/-0.02 for vasoconstriction, and 0.96+/-0.04 for shivering. The cutaneous contribution to thermoregulatory control, however, differed among the volunteers and was not necessarily the same for vasoconstriction and shivering in individual subjects. Overall, skin temperature contributed 21+/-8% to vasoconstriction, and 18+/-10% to shivering. These values did not differ significantly from those identified previously in unanesthetized volunteers: 20+/-6% and 19+/-8%, respectively. CONCLUSIONS: The results in anesthetized volunteers were virtually identical to those reported previously in unanesthetized subjects. In both cases, the cutaneous contribution to control of vasoconstriction and shivering was linear and near 20%. These data indicate that a proportionality constant of approximately 20% can be used to compensate for experimentally induced skin-temperature manipulations in anesthetized as well as unanesthetized subjects.  相似文献   

16.
BACKGROUND AND OBJECTIVES: Epidural anesthesia decreases the core temperatures triggering vasoconstriction and shivering, presumably by increasing apparent (as opposed to actual) lower-body temperature. We therefore tested the hypothesis that epidural anesthesia also increases the overall perception of warmth. METHODS: We studied 8 volunteers in a randomized, cross-over protocol separated by at least 48 hours. On one day, epidural anesthesia was induced to a T11 sensory level; the other day was a control without anesthesia. Core temperature and upper-body skin temperatures (33 degrees C) were kept constant throughout. Lower-body skin temperature was set in a random order to 31 degrees C, 32 degrees C, 33 degrees C, 34 degrees C, 35 degrees C, and 36 degrees C and maintained by circulating water and forced air. At each temperature, the volunteers rated their thermal sensation with a visual analog scale (0 = cold, 100 = hot). Core temperature was 36.8 +/- 0.1 degrees C on the control day and 36.7 +/- 0.1 degrees C on the epidural day. RESULTS: Scores for thermal sensation on the epidural day were near 47 mm at each lower-body skin temperature. On the control day, visual analog scores at a lower-body skin temperature of 31 degrees C were 16 +/- 10 mm and increased linearly to 61 +/- 6 mm at 36 degrees C. Control thermal sensation scores thus equaled those during epidural anesthesia when lower-body skin temperature was near 34 degrees C. CONCLUSIONS: Thermal sensation with and without epidural anesthesia was comparable at a lower-body temperature near 34 degrees C, which is a normal leg skin temperature. This suggests that autonomic and behavioral thermoregulatory consequences of epidural anesthesia differ-or that the current explanation for reduced vasoconstriction and shivering thresholds during epidural anesthesia is incorrect.  相似文献   

17.
BACKGROUND: Nitrous oxide limits intraoperative hypothermia because the vasoconstriction threshold with nitrous oxide is higher than with equi-minimum alveolar concentrations of sevoflurane or isoflurane, presumably because of its stimulating actions on the sympathetic nervous system. Xenon, in contrast, does not cause sympathetic activation. Therefore, the authors tested the hypothesis that the vasoconstriction threshold during xenon-isoflurane anesthesia is less than during nitrous oxide-isoflurane anesthesia or isoflurane alone. METHODS: Fifteen patients each were randomly assigned to one of three 1-minimum alveolar concentration anesthetic regimens: (1) xenon, 43% (0.6 minimum alveolar concentration) and isoflurane, 0.5% (0.4 minimum alveolar concentration); (2) nitrous oxide, 63% (0.6 minimum alveolar concentration) and isoflurane 0.5%; or (3) isoflurane, 1.2%. Ambient temperature was maintained near 23 degrees C and the patients were not actively warmed. Thermoregulatory vasoconstriction was evaluated using forearm-minus-fingertip skin temperature gradients. A gradient exceeding 0 degrees C indicated significant vasoconstriction. The core-temperature threshold that would have been observed if skin had been maintained at 33 degrees C was calculated from mean skin and distal esophageal temperatures at the time of vasoconstriction. RESULTS: The patients' demographic variables, preinduction core temperatures, ambient operating room temperatures, and fluid balance were comparable among the three groups. Heart rates were significantly less during xenon anesthesia than with nitrous oxide. The calculated vasoconstriction threshold was lowest with xenon (34.6+/-0.8 degrees C, mean +/- SD), intermediate with isoflurane alone (35.1+/-0.6 degrees C), and highest with nitrous oxide (35.7+/-0.6 degrees C). Each of the thresholds differed significantly. CONCLUSIONS: Xenon inhibits thermoregulatory control more than isoflurane, whereas nitrous oxide is the least effective in this respect.  相似文献   

18.
Background: Thermoregulatory control is based on both skin and core temperatures. Skin temperature contributes [approximate] 20% to control of vasoconstriction and shivering in unanesthetized humans. However, this value has been used to arithmetically compensate for the cutaneous contribution to thermoregulatory control during anesthesia-although there was little basis for assuming that the relation was unchanged by anesthesia. It even remains unknown whether the relation between skin and core temperatures remains linear during anesthesia. We therefore tested the hypothesis that mean skin temperature contributes [approximate] 20% to control of vasoconstriction and shivering, and that the contribution is linear during general anesthesia.

Methods: Eight healthy male volunteers each participated on 3 separate days. On each day, they were anesthetized with 0.6 minimum alveolar concentrations of isoflurane. They then were assigned in random order to a mean skin temperature of 29, 31.5, or 34 [degree sign]C. Their cores were subsequently cooled by central-venous administration of fluid at [almost equal to] 3 [degree sign]C until vasoconstriction and shivering were detected. The relation between skin and core temperatures at the threshold for each response in each volunteer was determined by linear regression. The proportionality constant was then determined from the slope of this regression. These values were compared with those reported previously in similar but unanesthetized subjects.

Results: There was a linear relation between mean skin and core temperatures at the vasoconstriction and shivering thresholds in each volunteer: r2 = 0.98 +/- 0.02 for vasoconstriction, and 0.96 +/- 0.04 for shivering. The cutaneous contribution to thermoregulatory control, however, differed among the volunteers and was not necessarily the same for vasoconstriction and shivering in individual subjects. Overall, skin temperature contributed 21 +/- 8% to vasoconstriction, and 18 +/- 10% to shivering. These values did not differ significantly from those identified previously in unanesthetized volunteers: 20 +/- 6% and 19 +/- 8%, respectively.  相似文献   


19.
Background: Nitrous oxide limits intraoperative hypothermia because the vasoconstriction threshold with nitrous oxide is higher than with equi-minimum alveolar concentrations of sevoflurane or isoflurane, presumably because of its stimulating actions on the sympathetic nervous system. Xenon, in contrast, does not cause sympathetic activation. Therefore, the authors tested the hypothesis that the vasoconstriction threshold during xenon-isoflurane anesthesia is less than during nitrous oxide-isoflurane anesthesia or isoflurane alone.

Methods: Fifteen patients each were randomly assigned to one of three 1-minimum alveolar concentration anesthetic regimens: (1) xenon, 43% (0.6 minimum alveolar concentration) and isoflurane, 0.5% (0.4 minimum alveolar concentration); (2) nitrous oxide, 63% (0.6 minimum alveolar concentration) and isoflurane 0.5%; or (3) isoflurane, 1.2%. Ambient temperature was maintained near 23[degrees]C and the patients were not actively warmed. Thermoregulatory vasoconstriction was evaluated using forearm-minus-fingertip skin temperature gradients. A gradient exceeding 0[degrees]C indicated significant vasoconstriction. The core-temperature threshold that would have been observed if skin had been maintained at 33[degrees]C was calculated from mean skin and distal esophageal temperatures at the time of vasoconstriction.

Results: The patients' demographic variables, preinduction core temperatures, ambient operating room temperatures, and fluid balance were comparable among the three groups. Heart rates were significantly less during xenon anesthesia than with nitrous oxide. The calculated vasoconstriction threshold was lowest with xenon (34.6 +/- 0.8[degrees]C, mean +/- SD), intermediate with isoflurane alone (35.1 +/- 0.6[degrees]C), and highest with nitrous oxide (35.7 +/- 0.6[degrees]C). Each of the thresholds differed significantly.  相似文献   


20.
Background: The contribution of mean skin temperature to the thresholds for sweating and active precapillary vasodilation has been evaluated in numerous human studies. In contrast, the contribution of skin temperature to the control of cold responses such as arteriovenous shunt vasoconstriction and shivering is less well established. Accordingly, the authors tested the hypothesis that mean skin and core temperatures are linearly related at the vasoconstriction and shivering thresholds in men. Because the relation between skin and core temperatures might vary by gender, the cutaneous contribution to thermoregulatory control also was determined in women.

Methods: In the first portion of the study, six men participated on 5 randomly ordered days, during which mean skin temperatures were maintained near 31, 34, 35, 36, and 37 degrees Celsius. Core hypothermia was induced by central venous infusion of cold lactated Ringer's solution sufficient to induce peripheral vasoconstriction and shivering. The core-temperature thresholds were then plotted against skin temperature and a linear regression fit to the values. The relative skin and core contributions to the control of each response were calculated from the slopes of the regression equations. In the second portion of the study, six women participated on three randomly ordered days, during which mean skin temperatures were maintained near 31, 35, and 37 degrees Celsius. At each designated skin temperature, core hypothermia sufficient to induce peripheral vasoconstriction and/or shivering was again induced by central venous infusion of cold lactated Ringer's solution. The cutaneous contributions to control of each response were then calculated from the skin- and core-temperature pairs at the vasoconstriction and shivering thresholds.

Results: There was a linear relation between mean skin and core temperatures at the response thresholds in the men: r = 0.90 plus/minus 0.06 for vasoconstriction and r = 0.94 plus/minus 0.07 for shivering. Skin temperature contributed 20 plus/minus 6% to vasoconstriction and 19 plus/minus 8% to shivering. Skin temperature in the women contributed to 18 plus/minus 4% to vasoconstriction and 18 plus/minus 7% to shivering, values not differing significantly from those in men. There was no apparent correlation between the cutaneous contributions to vasoconstriction and shivering in individual volunteers.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号