首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To achieve correct spatial location of blood vessels, first order gradient moment nulling applied to the phase encoding axes can be used. However, gradient moment nulling prolongs echo time (TE), which may degrade the flow image in regions of complex flow. The fact that abbreviated moment compensated phase-encoding (AMCPE) can be used to apply partial flow compensation to the phase-encoding axes to prevent spatial misregistration of vessels without requiring the use of long echo times or using arbitrary chosen TE is demonstrated. AMCPE defines two cutoff lines in k-space. The flow-induced phase is completely compensated for values between the cutoff lines and partially compensated beyond the cutoff lines. The AMCPE technique has been tested on both a flow phantom and a human volunteer. The AMCPE images from both the in vivo and the in vitro study demonstrate correctly imaged flow. Computer simulations have been performed to analyze the penalty caused by the incomplete flow compensation. The result shows that the ripple artifacts due to the incomplete flow compensation are unobservable when 60%–70% of k-space is completely flow compensated.  相似文献   

2.
In the past, flow artifacts and inconsistent depiction of vascular anatomy have represented significant problems in clinical MRI. These difficulties are now generally well addressed by the techniques of gradient moment nulling and spatial presaturation. Gradient moment nulling (GMN) is an effective method for eliminating flow artifacts in gradient echo images, while presaturation is more applicable to the same task in spin echo acquisitions. The GMN technique also has useful applications in spin echo imaging such as combating the effects of tissue and CSF motion in long TE sequences. In contrast to presaturation, however, GMN is not suitable for suppressing artifacts due to pulsatile blood flow in spin echo images.  相似文献   

3.
The fast spin echo sequence combines data from many echo signals in a Carr-Purcell-Meiboom-Gill echo train to form a single image. Much of the signal in the second and later echoes results from the coherent addition of stimulated echo signal components back to the spin echo signal. Because stimulated echoes experience no dephasing effects during the time that they are stored as M, magnetization, they experience a different gradient first moment than does the spin echo. This leads to flow-related phase differences between different echo components and results in flow voids and ghosting, even when the first moment is nulled for the spin echo signal. A method of gradient moment nulling that correctly compensates both spin echo and stimulated echo components has been developed. The simplest solution involves nulling the first gradient moment at least at the RF pulses and preferably at both the RF pulses and the echoes. Phantom and volunteer studies demonstrate good suppression of flowrelated artifacts.  相似文献   

4.
P R Moran 《Radiology》1991,180(1):115-119
Two theories of motion-sensitive phase shifts in magnetic resonance (MR) imaging result in different mathematical predictions of the observed effects of gradient modulation-induced motion artifacts. The consequences are critical for gradient waveform designed to minimize motion artifact contaminations from time-dependent motion sensitivity. To resolve this discrepancy with a test case (the monopolar waveform of a commonly used, discretely pulsed encoding phase gradient), computer integration of the fundamental Bloch equations for MR imaging with motion was performed. Simulation images for constant and erratic motion showed almost complete agreement with the predictions of the transport integral solutions for motion phase sensitivity; the artifact was solely time-of-flight oblique flow misregistration. Conventional method-of-moments gradient moment nulling compensations produced greater motion artifacts in experiments than did use of no waveform compensation at all. Transport equation solutions implied second-integral zeroing instead; these modifications eliminated the artifacts.  相似文献   

5.
Spatial misregistration of signal recovered from flowing spins within vascular structures is a common phenomenon seen in MR imaging of the CNS. The condition is displayed as a bright line or dot offset from the true anatomic location of the lumen of the imaged vessel. Its origin is the time delay between application of the phase- and frequency-encoding gradients used to locate spins within the plane of section. The principal condition necessary for the production of spatial misregistration is flow oblique to the axis of the phase-encoding gradient. Flow-related enhancement (entry slice phenomenon), even-echo rephasing, and gradient-moment nulling contribute to the production of the bright signal of spatial misregistration. Familiarity with the typical appearance of flow-dependent spatial misregistration permits confirmation of a vessel's patency; identification of the direction of flow; estimation of the velocity of flow; and differentiation of this flow artifact from atheromas, dissection, intraluminal clot, and artifacts such as chemical shift.  相似文献   

6.
Spatial misregistration of signal recovered from flowing spins within vascular structures is a common phenomenon seen in MR imaging of the CNS. The condition is displayed as a bright line or dot offset from the true anatomic location of the lumen of the imaged vessel. Its origin is the time delay between application of the phase- and frequency-encoding gradients used to locate spins within the plane of section. The principal condition necessary for the production of spatial misregistration is flow oblique to the axis of the phase-encoding gradient. Flow-related enhancement (entry slice phenomenon), even-echo rephasing, and gradient-moment nulling contribute to the production of the bright signal of spatial misregistration. Familiarity with the typical appearance of flow-dependent spatial misregistration permits confirmation of a vessel's patency; identification of the direction of flow; estimation of the velocity of flow; and differentiation of this flow artifact from atheromas, dissection, intraluminal clot, and artifacts such as chemical shift.  相似文献   

7.
This work identifies an additional source of phase error across ky in multi-shot echo-planar imaging resulting from flow or motion along the phase-encoding direction. A velocity-independent flow compensation technique, gradient moment smoothing, is presented that corrects this error by forcing the phase to have smooth quadratic behavior. The correction is implemented, without compromising scan time, by changing the first moment of a bipolar prephaser pulse on a shot-by-shot basis. In phantom and in vivo experiments, gradient moment smoothing effectively eliminates ghosting and signal loss due to phase-encoding flow. When used in conjunction with a “flyback” echo-planar readout, which compensates for flow in the frequency-encoding direction, gradient moment smoothing renders multi-shot echo-planar imaging relatively insensitive to in-plane flow. This can make multi-shot echo-planar imaging a viable technique for accurately imaging in-plane flow and may desensitize it to the otherwise serious problem of in-plane motion.  相似文献   

8.
Segmented interleaved echo planar imaging offers a fast and efficient approach to magnetic resonance angiography. Unfortunately, this technique is particularly sensitive to oblique flow in the imaging plane. In this work, a mathematical analysis of oblique flow effects for several types of k-space coverage is presented. The conventional linear acquisition scheme, an alternating centric and a nonalternating centric encoding scheme are compared with respect to their flow properties. It is shown both by simulations and imaging experiments that artifacts from oblique in-plane flow are effectively reduced by both centric reordered phase-encoding schemes. The nonalternating centric acquisition scheme is preferred to the alternating centric scheme due to the smoother phase error transition in k-space in the presence of obliquely-angled flow. Magn Reson Med 45:623-629, 2001.  相似文献   

9.
Band artifacts due to bulk motion were investigated in images acquired with fast gradient echo sequences. A simple analytical calculation shows that the width of the artifacts has a square-root dependence on the velocity of the imaged object, the time taken to acquire each line of k-space and the field of view in the phase-encoding direction. The theory furthermore predicts that the artifact width can be reduced using parallel imaging by a factor equal to the square root of the acceleration parameter. The analysis and results are presented for motion in the phase- and frequency-encoding directions and comparisons are made between sequential and centric ordering. The theory is validated in phantom experiments, in which bulk motion is simulated in a controlled and reproducible manner by rocking the scan table back and forth along the bore axis. Preliminary cardiac studies in healthy human volunteers show that dark bands may be observed in the endocardium in images acquired with nonsegmented fast gradient echo sequences. The fact that the position of the bands changes with the phase-encoding direction suggests that they may be artifacts due to motion of the heart walls during the image acquisition period.  相似文献   

10.
A new method for ordering the phase-encoding gradient is proposed, and an application for short effective TE gradient-and spin-echo (GRASE) imaging is demonstrated. The proposed method calculates the phase-encoding order from the signal decay of a template scan (hence “template interactive phase-encoding” or TIPE). Computer simulations are used to compare the point spread functions of different phase-encoding orders giving short effective echo times (kb centric GRASE, centric GRASE, centric TIPE). The conventional centric phase-encoding order is also considered for GRASE. The conventional centric method is sensitive to both amplitude and phase modulation of the signal in K-space. The centric TIPE method gives the least amplitude modulation artifacts but is vulnerable to phase artifacts. The TIPE experiment was implemented on a 3 Tesla system. To the best of our knowledge, we present the first in vivo GRASE images at this field strength.  相似文献   

11.
Flow-related artifacts remain a significant concern for magnetic resonance (MR) angiography because their appearance in angiograms adversely impacts accuracy in evaluation of arterial stenoses. In this paper, a half-pulse excitation scheme for improved two-dimensional time-of-flight (2D TOF) angiography is described. The proposed method eliminates the need for gradient moment nulling (of all orders), providing significant reductions in spin dephasing and consequent artifactual signal loss. Furthermore, because the post-excitation refocusing and flow compensation gradients are obviated, the achievable echo time is dramatically shortened. The half-pulse excitation is employed in conjunction with a fast radial-line acquisition, allowing ultra-short echo times on the order of 250-300 microsec. Radial-line acquisition methods also provide additional benefits for flow imaging: effective mitigation of pulsatile flow artifacts, full k-space coverage, and decreased scan times. The half-pulse excitation/radial-line sequence demonstrated improved performance in initial clinical evaluations of the carotid bifurcation when compared with a conventional 2D TOF sequence.  相似文献   

12.
A magnitude‐based MR angiography method of standard time‐of‐flight (TOF) employing a three‐dimensional gradient‐echo sequence with flow rephasing is widely used. A recently proposed flow‐sensitive black‐blood (FSBB) method combining three‐dimensional gradient‐echo sequence with a flow‐dephasing gradient and a hybrid technique, called hybrid of opposite‐contrast, allow depiction of smaller blood vessels than does standard TOF. To further enhance imaging of smaller vessels, a new enhancement technique combining phase with magnitude is proposed. Both TOF and FSBB pulse sequences were used with only 0th‐order gradient moment nulling, and suitable dephasing gradients were added to increase the phase shift introduced mainly by flow. Magnitude‐based vessel‐to‐background contrast‐to‐noise ratios in TOF and FSBB were further enhanced to increase the dynamic range between positive and negative signals through the use of cosine‐function‐based filters for white‐ and black‐blood imaging. The proposed phase‐enhancement processing both improved visualization of slow‐flow vessels in the brains of volunteer subjects with shorter echo time in TOF, FSBB, and hybrid of opposite‐contrast and reduced wraparound artifacts with smaller b values without sacrificing vessel‐to‐background contrast in FSBB. This method of enhancement processing has excellent potential to become clinically useful. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
Echo-planar imaging (EPI) is sensitive to motion despite its rapid data acquisition rate. Compared with traditional imaging techniques, it is more sensitive to motion or flow in the phase-encode direction, which can cause image artifacts such as ghosting, misregistration, and loss of spatial resolution. Consequently, EPI of dynamic structures (eg, the cardiovascular system) could benefit from methods that eliminate these artifacts. In this paper, two methods of artifact reduction for motion in the phase-encode direction are evaluated. First, the k-space trajectory is evaluated by comparing centric with top-down ordered sequences. Next, velocity gradient moment nulling (GMN) of the phase-encode direction is evaluated for each trajectory. Computer simulations and experiments in flow phantoms and rabbits in vivo show that uncompensated centric ordering produces the highest image quality. This is probably due to a shorter readout duration, which reduces T2* relaxation losses and off-resonance effects, and to the linear geometry of phantoms and vessels, which can obscure centric blurring artifacts.  相似文献   

14.
Numerous techniques exist for suppressing ghosting artifacts due to respiratory motion on MR images. Although such methods can remove coherent ghosting artifacts, motion during gradient pulses also leads to poor image quality. This is due to phase variations at the echo caused by changes in velocity from one phase-encoding view to the next. The effect becomes severe for long sampling times and long TE values and can lead to low estimates of T2. We discuss general, robust modifications of the standard gradient or spin-echo sequences by using rephasing gradients that force the phase of constant-velocity moving spins to be zero at the echo. These sequences lead to a significant reduction in motion artifacts and hence improvement in image quality. They can be applied to multislice, multiecho, water/fat, and gating schemes as well. Since motion problems are universal, it would appear that these modified sequences should come into common usage for MR imaging.  相似文献   

15.
The pulsatile nature of blood flow makes zipper-like artifacts along the coding direction in the two-dimensional Fourier transform NMR image. So far, spatial presaturation, one of the correction methods, is known to be effective in eliminating flow artifacts when the Fourier spin echo acquisition is employed. However, this method requires an additional RF pulse and a spoiling gradient for presaturation. Described in this paper is a new flow suppression technique, based on spin dephasing, using a set of tailored RF pulses. The proposed method does not require additional saturation RF pulses or spoiling gradient pulses, making it advantageous over other methods. In addition, the method is relatively robust to flow velocity. The proposed technique is equivalent to the existing flow saturation technique except that the elimination of the flow component is achieved by a pair of tailored 90–180° RF pulses in the spin echo sequence. The principle of the proposed method is the creation of a linear phase gradient within the slice along the slice selection direction for the moving material by use of two opposing quadratic phase RF pulses, i.e., 90° and 180° RF pulses with opposing quadratic phase distributions. That is to say, all the spins of the moving materials along the slice selection direction become dephased. Therefore, no observable signal is generated. Computer simulations and experimental results obtained using a 2.0-T whole-body imaging system on both a phantom and a human volunteer are also presented.  相似文献   

16.
RARE imaging: a fast imaging method for clinical MR   总被引:40,自引:0,他引:40  
Based on the principles of echo imaging, we present a method to acquire sufficient data for a 256 X 256 image in from 2 to 40 s. The image contrast is dominated by the transverse relaxation time T2. Sampling all projections for 2D FT image reconstruction in one (or a few) echo trains leads to image artifacts due to the different T2 weighting of the echo. These artifacts cannot be described by a simple smearing out of the image in the phase direction. Proper distribution of the phase-encoding steps on the echoes can be used to minimize artifacts and even lead to resolution enhancement. In spite of the short data acquisition times, the signal amplitudes of structures with long T2 are nearly the same as those in a conventional 2D FT experiment. Our method, therefore, is an ideal screening technique for lesions with long T2.  相似文献   

17.
Ghost artifacts are a serious issue in single and multi‐shot echo planar imaging. Because of these coherent artifacts, it is essential to consistently suppress the ghosts. In this article, we present a phase correction algorithm that achieves excellent ghost suppression for single and multi‐shot echo planar imaging. The phase correction is performed along both the x (read) direction and y (phase) direction. To this end, we apply a double field of view prescan and compute the phase required for ghost suppression. This phase is fitted to a 2D polynomial. The fitted phase is used to correct the echo planar imaging images. The correction algorithm can be used with any readout gradient polarities and any number of shots. A flow chart of the correction method is provided to better clarify the full process. Finally, phantom and volunteer images demonstrate the improvement of artifact suppression obtained with this algorithm over conventional phase correction methods. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
Linear magnetic field gradients spatially encode the image information in MRI. Concomitant gradients are undesired magnetic fields that accompany the desired gradients and occur as an unavoidable consequence of Maxwell's equations. These concomitant gradients result in undesired phase accumulation during MRI scans. Balanced steady-state free precession (bSSFP) is a rapid imaging method that is known to suffer from signal dropout from off-resonance phase accrual. In this work it is shown that concomitant gradient phase accrual can induce signal dropout in bSSFP. The spatial variation of the concomitant phase is explored and shown to be a function of gradient strength, slice orientation, phase-encoding (PE) direction, distance from isocenter, and main field strength. The effect on the imaging signal level was simulated and then verified in phantom and in vivo experiments. The nearest signal-loss artifacts occurred in scans that were offset from isocenter along the z direction with a transverse readout. Methods for eliminating these artifacts, such as applying compensatory frequency or shim offsets, are demonstrated. Concomitant gradient artifacts can occur at 1.5T, particularly in high-resolution scans or with additional main field inhomogeneity. These artifacts will occur closer to isocenter at field strengths below 1.5T because concomitant gradients are inversely proportional to the main field strength.  相似文献   

19.
The phase-encoding strategy plays a critical role in determining the quality of gradient- and spin-echo (GRASE) images. Phase-encoding methods developed for two-dimensional GRASE imaging strive to achieve a balance between artifacts from T2-dependent signal amplitude modulations and off-resonance-dependent signal phase shifts, although no current method provides smooth and nonperiodic evolutions for both of these signal changes. In three-dimensional GRASE imaging, the use of two phase-encoding directions presents the opportunity for improved phase-encoding strategies. In this report a phase-encoding strategy for three-dimensional GRASE, termed SORT, is described; this strategy separates off-resonance and T2 effects, mapping one along each of the two phase-encoding directions. Thus, off-resonance-induced artifacts can be minimized while eliminating T2-dependent periodic signal modulations and allowing complete flexibility in the selection of echo time. The performance of the SORT phase-encoding method for T2-weighted GRASE imaging was compared with that of existing methods based on calculated point spread functions and simulated images. The predicted performance of SORT phase encoding was verified experimentally using T2-weighted three-dimensional GRASE imaging of the brain. Generally artifact-free images were obtained even in the presence of fat, susceptibility interfaces, and a wide range of T2 values.  相似文献   

20.
Magnetic resonance (MR) imaging can be performed on or below the time scale of most anatomic motion via echo-planar imaging (EPI) techniques and their derivatives. The goal is to image rapidly and reduce artifacts that typically result from view-to-view changes in the spatial distribution of spins due to motion. However, the required time-dependent magnetic field gradient waveforms remain sensitive to the dephasing effects of motion. Sources of motion artifact are simulated for spins moving along the imaging axes and are shown to be an important source of reduced image quality in EPI. A novel method of EPI is proposed that (a) refocuses single or multiple derivatives of motion at all echoes and (b) prevents accumulation of velocity (or higher derivative)--induced dephasing along the phase-encoding axis by moment nulling all phase-encoding-step waveforms about a single instant of time. Theoretical EPI sequences with considerable reductions in ghosts, blurring, and signal loss due to motion sensitivity are produced and compared with other EPI methods. Their time efficiency is presented as a function of available (relative) gradient strength for a variety of sequence waveforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号