首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Epithelial stem cells and their niche: there's no place like home   总被引:4,自引:0,他引:4  
Stem cells hold the promise of novel therapy for treating diseases. Unfortunately, the use and study of embryonic stem cells are currently clouded by ethical controversy. Adult stem cells offer a unique alternative in that they may be isolated, studied, or manipulated without harming the donor. Currently, several obstacles for use of adult stem cells as therapy exist. First, the ability to identify most adult stem cells is impeded by lack of stem cell markers. Second, in vitro systems for manipulating adult stem cell populations are often not well defined. Finally, our understanding of how adult stem cells are regulated within their niche is in its infancy. Next to the hematopoietic stem cell, epithelial stem cells are one of the most widely studied stem cell populations. Even so, the diversity between epithelial functions in different organs makes it difficult to determine whether common themes exist in regulating these related stem cells. Although each epithelial stem cell niche possesses unique features to facilitate its specialized functionality, they likely share many common aspects of regulation. The purpose of this review is to compare how the cell signaling influences the stem cell and its niche in rapidly self-renewing epithelia.  相似文献   

2.
The adult mammalian hemopoietic system maintains an extraordinarily large, yet well regulated supply of mature blood cells within the circulation throughout life. The system is capable of rapid recovery and compensation following injury, environmental stress or as a result of genetic disease such as the hemoglobinopathies. Despite the vast amount of research conducted there is still an incomplete understanding of hemopoietic regulation. Nevertheless, it is evident from transplantation studies that ongoing blood cell production is absolutely dependent upon hemopoietic stem cells (HSCs). These rare and potent cells have the capacity for extensive proliferation and the ability to differentiate into all blood cell types. An understanding of HSC regulation is fundamental to understanding hemopoiesis. There is now considerable evidence to demonstrate that in vivo, HSCs are located within defined anatomical sites or niches within the bone marrow. Regulation of HSC fate is mediated by both cell-autonomous mechanisms and extrinsic cues resulting from interactions between cells and extracellular components within the niche. This review focuses on the role of hyaluronic acid, a component of the HSC niche and moreover a HSC-associated glycosaminoglycan, in hemopoiesis and specifically HSC regulation. It is now evident that hyaluronic acid not only provides a physical scaffold or support within the marrow to facilitate localization and retention of HSCs to the stem cell niche but moreover, through ligation with its counter-receptors is able to directly affect the cellular functions of HSCs.  相似文献   

3.
Corneal epithelial stem cells are known to be localized to the basal layer of the limbal epithelium, providing a model system for epithelial stem cell biology; however, the mechanisms regarding the maintenance of these stem cells in their specialized niche remain poorly understood. N-cadherin is a member of the classic cadherin family and has previously been demonstrated to be expressed by hematopoietic stem cells. In the present study, we demonstrate that N-cadherin is expressed by putative stem/progenitor cells, as well as melanocytes, in the human limbal epithelial stem cell niche. In addition, we demonstrate that upon in vitro culture using 3T3 feeder layers, loss of N-cadherin expression occurs with cell proliferation. These results indicate that N-cadherin may be a critical cell-to-cell adhesion molecule between corneal epithelial stem/progenitor cells and their corresponding niche cells in the limbal epithelium.  相似文献   

4.
The activity of adult stem cells is essential to replenish mature cells constantly lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. Here, we provide genetic evidence for an unexpected function of the c-Myc protein in the homeostasis of hematopoietic stem cells (HSCs). Conditional elimination of c-Myc activity in the bone marrow (BM) results in severe cytopenia and accumulation of HSCs in situ. Mutant HSCs self-renew and accumulate due to their failure to initiate normal stem cell differentiation. Impaired differentiation of c-Myc-deficient HSCs is linked to their localization in the differentiation preventative BM niche environment, and correlates with up-regulation of N-cadherin and a number of adhesion receptors, suggesting that release of HSCs from the stem cell niche requires c-Myc activity. Accordingly, enforced c-Myc expression in HSCs represses N-cadherin and integrins leading to loss of self-renewal activity at the expense of differentiation. Endogenous c-Myc is differentially expressed and induced upon differentiation of long-term HSCs. Collectively, our data indicate that c-Myc controls the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSCs and their niche.  相似文献   

5.
Trans-differentiation is a mechanism proposed to explain how tissue-specific stem cells could generate cells of other organs, thus supporting the emerging concept of enhanced adult stem cell plasticity. Although spontaneous cell fusion rather than trans-differentiation may explain some unexpected cell fate changes in vivo, such a mechanism does not explain potential trans-differentiation events in vitro, including the generation of neural cell types from cultured bone marrow-derived stem cells. Here we present evidence that shows that cultured bone marrow-derived stem cells express neural proteins and form structures resembling neurons under defined growth conditions. We demonstrate that these changes in cell structure and neural protein expression are not consistent with typical neural development. Furthermore, the ability of bone marrow-derived stem cells to adopt a neural phenotype in vitro may occur as a result of cellular stress in response to removing cells from their niche and their growth in alternative environmental conditions. These findings suggest a potential explanation for the growth behavior of cultured bone marrow-derived stem cells and highlight the need to carefully validate the plasticity of stem cell differentiation.  相似文献   

6.
This review addresses current understanding of the germline stem cell niche unit in mammalian testes. Spermatogenesis is a classic model of tissue-specific stem cell function relying on self-renewal and differentiation of spermatogonial stem cells (SSCs). These fate decisions are influenced by a niche microenvironment composed of a growth factor milieu that is provided by several testis somatic support cell populations. Investigations over the last two decades have identified key determinants of the SSC niche including cytokines that regulate SSC functions and support cells providing these factors, adhesion molecules that influence SSC homing, and developmental heterogeneity of the niche during postnatal aging. Emerging evidence suggests that Sertoli cells are a key support cell population influencing the formation and function of niches by secreting soluble factors and possibly orchestrating contributions of other support cells. Investigations with mice have shown that niche influence on SSC proliferation differs during early postnatal development and adulthood. Moreover, there is mounting evidence of an age-related decline in niche function, which is likely influenced by systemic factors. Defining the attributes of stem cell niches is key to developing methods to utilize these cells for regenerative medicine. The SSC population and associated niche comprise a valuable model system for study that provides fundamental knowledge about the biology of tissue-specific stem cells and their capacity to sustain homeostasis of regenerating tissue lineages. While the stem cell is essential for maintenance of all self-renewing tissues and has received considerable attention, the role of niche cells is at least as important and may prove to be more receptive to modification in regenerative medicine.  相似文献   

7.
Fetal hematopoietic development occurs through the successive expansion and differentiation of hematopoietic stem cells in distinct anatomic sites. The temporal pattern of fetal hematopoietic ontogeny suggests a coordinated developmental sequence whereby the preceding organ sustains the basic, immediate hematopoietic needs of the embryo allowing time for the development of niches within the subsequent organ with more complex supportive functions. We examine the hypothesis that there is a period of stromal genesis and circulating mesenchymal precursor cells, which gives rise to specialized niches within each of the definitive fetal hematopoietic organs, and these niches regulate hematopoietic stem cells fate determination. This article reviews fetal hematopoietic and stromal development and the current understanding of the development, composition, and regulation of the fetal stem cell niche.  相似文献   

8.
Hematopoiesis is a dynamic and strictly regulated process orchestrated by self-renewing hematopoietic stem cells (HSCs) and the supporting microenvironment. However, the exact mechanisms by which individual human HSCs sustain hematopoietic homeostasis remain to be clarified. To understand how the long-term repopulating cell (LTRC) activity of individual human HSCs and the hematopoietic hierarchy are maintained in the bone marrow (BM) microenvironment, we traced the repopulating dynamics of individual human HSC clones using viral integration site analysis. Our study presents several lines of evidence regarding the in vivo dynamics of human hematopoiesis. First, human LTRCs existed in a rare population of CD34(+)CD38(-) cells that localized to the stem cell niches and maintained their stem cell activities while being in a quiescent state. Second, clonally distinct LTRCs controlled hematopoietic homeostasis and created a stem cell pool hierarchy by asymmetric self-renewal division that produced lineage-restricted short-term repopulating cells and long-lasting LTRCs. Third, we demonstrated that quiescent LTRC clones expanded remarkably to reconstitute the hematopoiesis of the secondary recipient. Finally, we further demonstrated that human mesenchymal stem cells differentiated into key components of the niche and maintained LTRC activity by closely interacting with quiescent human LTRCs, resulting in more LTRCs. Taken together, this study provides a novel insight into repopulation dynamics, turnover, hierarchical structure, and the cell cycle status of human HSCs in the recipient BM microenvironment.  相似文献   

9.
Crosstalk between hematopoietic stem cells (HSCs) and the cells comprising the niche is critical for maintaining stem cell activities. Yet little evidence supports the concept that HSCs regulate development of the niche. Here, the ability of HSCs to directly regulate endosteal development was examined. Marrow was isolated 48 hours after "stressing" mice with a single acute bleed or from control nonstressed animals. "Stressed" and "nonstressed" HSCs were cocultured with bone marrow stromal cells to map mesenchymal fate. The data suggest that HSCs are able to guide mesenchymal differentiation toward the osteoblastic lineage under basal conditions. HSCs isolated from animals subjected to an acute stress were significantly better at inducing osteoblastic differentiation in vitro and in vivo than those from control animals. Importantly, HSC-derived bone morphogenic protein 2 (BMP-2) and BMP-6 were responsible for these activities. Furthermore, significant differences in the ability of HSCs to generate a BMP response following stress were noted in aged and in osteoporotic animals. Together these data suggest a coupling between HSC functions and bone turnover as in aging and in osteoporosis. For the first time, these results demonstrate that HSCs do not rest passively in their niche. Instead, they directly participate in bone formation and niche activities. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

10.
In vivo the stem cell niche is an essential component in controlling and maintaining the stem cells' ability to survive and respond to injury. Human embryonic stem cells (hESCs) appear to be an exception to this rule as they can be removed from their blastocytic microenvironment and maintained indefinitely in vitro. However, recent observations reveal the existence of an autonomously derived in vitro hESC niche. This provides a previously unappreciated mechanism to control hESC expansion and differentiation. Recognizing this, it may now be possible to take aspects of in vivo stem cell niches, namely extracellular matrices, paracrine signals and accessory cell types, and exploit them in order to gain fidelity in directed hESC differentiation. In doing so, routine customization of hESC lines and their application in regenerative therapies may be further enhanced using unique hESC niche-based approaches.  相似文献   

11.
Development of the hematopoietic system is a stage-specific process where the bone marrow eventually becomes the principal source of hematopoiesis in the adult mammalian organism. Sustained hematopoiesis in the bone marrow, however, depends on the self-renewal of the resident hematopoietic stem cells (HSCs). The region where these HSCs are hypothesized to self renew is called the stem cell 'niche.' Recent studies have identified components of the HSC niche in the bone marrow, including cells of the osteoblastic lineage, extracellular matrix molecules and molecular signaling interactions between the stem cells and niche cells. Specific pharmacological targeting of these niche components has led to beneficial HSC effects, demonstrating a new therapeutic approach where stem cell function is altered through targeting of the niche.  相似文献   

12.
Hematopoietic stem cell (HSC) transplant is a well established curative therapy for some hematological malignancies. However, achieving adequate supply of HSC from some donor tissues can limit both its application and ultimate efficacy. The theory that this limitation could be overcome by expanding the HSC population before transplantation has motivated numerous laboratories to develop ex vivo expansion processes. Pioneering work in this field utilized stromal cells as support cells in cocultures with HSC to mimic the HSC niche. We hypothesized that through translation of this classic coculture system to a three-dimensional (3D) structure we could better replicate the niche environment and in turn enhance HSC expansion. Herein we describe a novel high-throughput 3D coculture system where murine-derived HSC can be cocultured with mesenchymal stem/stromal cells (MSC) in 3D microaggregates--which we term "micromarrows." Micromarrows were formed using surface modified microwells and their ability to support HSC expansion was compared to classic two-dimensional (2D) cocultures. While both 2D and 3D systems provide only a modest total cell expansion in the minimally supplemented medium, the micromarrow system supported the expansion of approximately twice as many HSC candidates as the 2D controls. Histology revealed that at day 7, the majority of bound hematopoietic cells reside in the outer layers of the aggregate. Quantitative polymerase chain reaction demonstrates that MSC maintained in 3D aggregates express significantly higher levels of key hematopoietic niche factors relative to their 2D equivalents. Thus, we propose that the micromarrow platform represents a promising first step toward a high-throughput HSC 3D coculture system that may enable in vitro HSC niche recapitulation and subsequent extensive in vitro HSC self-renewal.  相似文献   

13.
Cell circuits and niches controlling B cell development   总被引:1,自引:0,他引:1  
Studies over the last decade uncovered overlapping niches for hematopoietic stem cells (HSCs), multipotent progenitor cells, common lymphoid progenitors, and early B cell progenitors. HSC and lymphoid niches are predominantly composed by mesenchymal progenitor cells (MPCs) and by a small subset of endothelial cells. Niche cells create specialized microenvironments through the concomitant production of short‐range acting cell‐fate determining cytokines such as interleukin (IL)‐7 and stem cell factor and the potent chemoattractant C‐X‐C motif chemokine ligand 12. This type of cellular organization allows for the cross‐talk between hematopoietic stem and progenitor cells with niche cells, such that niche cell activity can be regulated by the quality and quantity of hematopoietic progenitors being produced. For example, preleukemic B cell progenitors and preB acute lymphoblastic leukemias interact directly with MPCs, and downregulate IL‐7 expression and the production of non‐leukemic lymphoid cells. In this review, we discuss a novel model of B cell development that is centered on cellular circuits formed between B cell progenitors and lymphopoietic niches.  相似文献   

14.
15.
HSC mobilization is an essential homeostatic process during inflammation and for the maintenance of hematopoietic progenitors. It has been exploited for the therapeutic application of HSC transplantation. Recent evidence suggests that leukemic cells share surface molecules in common with stem cells and may be mobilized under similar conditions. This effect could be used for therapeutic interventions. In this review, we will provide evidence showing that leukemia cells and stem cells traffic similarly and may share a common niche. Studies are discussed comparing and contrasting the mechanism of normal stem cells and leukemic cell mobilization through the CXCR4/CXCL12 axis and other key intermediaries.  相似文献   

16.
Hematopoietic differentiation of embryonic stem cells (ESCs) in vitro has been used as a model to study early hematopoietic development, and it is well documented that hematopoietic differentiation can be enhanced by overexpression of HOXB4. HOXB4 is expressed in hematopoietic progenitor cells (HPCs) where it promotes self-renewal, but it is also expressed in the primitive streak of the gastrulating embryo. This led us to hypothesize that HOXB4 might modulate gene expression in prehematopoietic mesoderm and that this property might contribute to its prohematopoietic effect in differentiating ESCs. To test our hypothesis, we developed a conditionally activated HOXB4 expression system using the mutant estrogen receptor (ER(T2)) and showed that a pulse of HOXB4 prior to HPC emergence in differentiating ESCs led to an increase in hematopoietic differentiation. Expression profiling revealed an increase in the expression of genes associated with paraxial mesoderm that gives rise to the hematopoietic niche. Therefore, we considered that HOXB4 might modulate the formation of the hematopoietic niche as well as the production of hematopoietic cells per se. Cell mixing experiments supported this hypothesis demonstrating that HOXB4 activation can generate a paracrine as well as a cell autonomous effect on hematopoietic differentiation. We provide evidence to demonstrate that this activity is partly mediated by the secreted protein FRZB.  相似文献   

17.
One of the major challenges in regenerative medicine is the ability to recreate the stem cell niche, which is defined by its signaling molecules, the creation of cytokine gradients, and the modulation of matrix stiffness. A wide range of scaffolds has been developed in order to recapitulate the stem cell niche, among them hydrogels. This paper reports the development of a new silk–alginate based hydrogel with a focus on stem cell culture. This biocomposite allows to fine tune its elasticity during cell culture, addressing the importance of mechanotransduction during stem cell differentiation. The silk–alginate scaffold promotes adherence of mouse embryonic stem cells and cell survival upon transplantation. In addition, it has tunable stiffness as function of the silk–alginate ratio and the concentration of crosslinker – a characteristic that is very hard to accomplish in current hydrogels.  相似文献   

18.
A subpopulation of men that appear cured of prostate cancer (PCa) develop bone metastases many years after prostatectomy. This observation indicates that PCa cells were present outside of the prostate at the time of prostatectomy and remained dormant. Several lines of evidence indicate that there are disseminated tumor cells (DTCs) in the bone marrow at the time of prostatectomy. DTCs parasitize the bone microenvironment, where they derive support and impact the microenvironment itself. These DTCs appear to be a heterogeneous population of PCa cells; however, some of them appear to have some aspects of a cancer stem cell (CSC) phenotype as they can develop into clinically detectable metastases. The concept of CSC is controversial; however, several markers of CSC have been identified for PCa, which may represent cells of either basal or luminal origin. These DTCs have now been shown to compete for the hematopoietic stem cell niche in bone, where they may be placed in a dormant state. Interaction with a variety of host factors, including cytokine and cells, may impact the metastatic development and progression, including the dormant state. For example, myeloid cells have been shown to impact both the premetastatic niche and established tumors. Understanding the concepts of how PCa successfully parasitizes the bone microenvironment is paramount toward identifying therapeutic candidates to prevent or diminish PCa bone metastases.  相似文献   

19.
造血干细胞(hematopoietic stem cell,HSC)位于骨髓的造血微环境即龛(niche)中,它们与龛内特定的细胞相互作用以调节其自我更新和定向分化。研究发现,骨髓中的成骨细胞和内皮细胞与造血干细胞关系密切,分别构成了HSC龛中的成骨龛和血管龛,其中成骨龛维持静态的HSC微环境,而血管龛调控HSC的增殖、分化和动员等行为。对骨髓HSC龛的研究为将来临床治疗血液系统相关疾病提供了新的思路。  相似文献   

20.
Specific tissue microenvironments, or niches, are critical for homing and maintenance of both stem cells and tumor cells in vivo. Little is known, however, about the molecular interactions between individual cells within these microenvironments. Recent studies that describe a newly identified hematopoietic stem and tumor cell vascular niche in the bone marrow (BM) suggest a critical role for vascular endothelial cell signaling and raise the possibility that bidirectional interactions of these cells with the vasculature regulate the niche dynamically. The mechanisms that govern hematopoietic stem cell (HSC)/tumor cell cross-talk with endothelial cells provide a promising new direction for future studies. Here we review recent advances that open new avenues of study in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号