首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Di-n-butyltin dichloride (DBTCl), which is commonly used as heat and light stabilizer for polyvinyl chloride (PVC) plastics, is a teratogen in vivo. In the present study, the toxic effects were investigated of DBTCl on cultured rat embryos during three different stages of organogenesis. Rat embryos explanted on gestational day (GD) 8.5, GD 9.5, and GD 11.5 were cultured for 68, 46, and 48?h and were exposed to a range of DBTCl concentrations for the first 24, 46, and the last 46?h of culture, respectively. Significant decreases in the placental diameter at ?10?ng/ml and in the number of somite pairs and the morphological score at 30?ng/ml were noted in embryos cultured from GD 8.5. Significant decreases in the yolk sac diameter and the crown-rump length at 100?ng/ml, in the number of somite pairs at ?50?ng/ml, and in the morphological score at ?30?ng/ml were found in embryos cultured from GD 9.5. No adverse effects on these parameters were detected in embryos cultured from GD 11.5 even at 300?ng/ml. Dysmorphogenesis in embryos cultured from GD 8.5, GD 9.5, and GD 11.5 was observed at ?10, ?50, and 300?ng/ml, respectively. Incomplete turning and craniofacial defects in embryos cultured from GD 8.5 and GD 9.5 and defects of the forelimb buds and tail in embryos cultured from GD 11.5 were frequently observed. These results show that in vitro exposure to DBTCl interferes with normal development of embryos during three different stages of organogenesis and that susceptibility to the embryo-toxicity, including the dysmorphogenic potential of DBTCl, varies with developmental stage.  相似文献   

2.
3.
In vitro culture of intact rat and mouse embryos has been described extensively, but information on the culture of other species is sparse. The present study examined some culture requirements of early somite stage hamster embryos and assessed the embryotoxic effects of sodium salicylate (SS), a direct acting chemical and cyclophosphamide (CP), a proteratogen, on these embryos. Hamster embryos explanted on gestation days (GD) 8 and 9 were cultured in Waymouth's embryo-hepatocyte co-cultivation medium (WEHC), 70% McCoy's 5A medium-30% male rat serum (MMRS) or 100% male rat serum (MRS) for 24 hours under various oxygen concentrations. Embryos cultured GD 8 to 9 in the various media grew and differentiated much as they did in vivo, while embryos cultured GD 9 to 10 grew best in MMRS as compared to embryos at the same stage in vivo. Embryos exposed to SS in MMRS at concentrations of 250, 300, or 400 micrograms/ml showed dose related embryotoxicity which included CNS defects, absence of hind limb bud formation, and lack of axial rotation. Hamster embryos co-cultivated with pregnant hamster hepatocytes and treated with 2.5, 6.25 and 12.5 micrograms/ml of CP, showed dose-dependent toxicity when compared to co-cultivated controls. Hamster embryos develop extensively in culture over a 24 hour period. This system may therefore provide a valuable tool for evaluating the species differences of a variety of potential teratogens and embryotoxins and allow the comparison of these embryotoxic effects between rat, mouse and hamster during similar stages of organogenesis.  相似文献   

4.
5.
Acivicin (also known as AT-125) and IgG isolated from goat anti-gamma-glutamyltransferase antiserum were used to inhibit the activity of gamma-glutamyltransferase (GGT, EC 2.3.2.2) in rat conceptuses cultured from Days 10 to 11 of gestation. Inhibition of GGT by either Acivicin or anti-GGT IgG produced embryotoxicity and malformations, although each compound produced a unique spectrum of effects. Acivicin, at an initial concentration in the culture medium of 5 microM, produced a marked decrease in yolk sac vasculature and was associated with embryonic malformations such as neural tube necrosis, microophthalmia, and cephalic edema after 24 hr exposure. These malformations were accompanied by significant decreases in both embryonic and yolk sac protein, yolk sac GGT activity, as well as embryonic glutathione (GSH) levels. In contrast, anti-GGT IgG produced no apparent effects on yolk sac vasculature or protein after exposure of conceptuses to an initial concentration of 50 micrograms IgG/ml culture medium, even though equal inhibition of yolk sac GGT (30%) was achieved by each inhibitor. Exposure to IgG (50 micrograms/ml) for 24 hr was associated with decreased embryonic protein; decreased levels of GSH in the embryo were observed after both 3 and 24 hr. The dichotomy of effects on the yolk sac by the two compounds indicates that Acivicin produced these effects by mechanisms other than by GGT inhibition alone. These results demonstrate that inhibition of GGT in rat embryos undergoing organogenesis can elicit embryotoxic effects and produce alterations in GSH levels. The capacity of the anti-GGT antibody to inhibit the GGT activity in the yolk sac (while having no apparent effect on yolk sac morphology), and yet influence the embryo by decreasing protein and GSH levels, underscores the important role of the yolk sac during the highly sensitive stages of organogenesis.  相似文献   

6.
The embryotoxic effects of butyl benzyl phthalate (BBP) and its two main metabolites mono-n-butyl (MBP) and mono-benzyl (MBzP) phthalate were evaluated in OF1 mice and Sprague-Dawley rats, in vivo and in whole embryo culture. In vivo, pregnant mice and rats received a single oral dose (0.9-5.4 mmol/kg) of either of these compounds on GD 8 and 10, respectively, and their fetuses were examined externally on GD 18 and 21, respectively. In mice, BBP, MBP and MBzP caused concentration-related embryolethality and malformations. In rats, MBP and MBzP did not show developmental toxicity. Some teratogenicity and a slight increase in post-implantation loss were observed after BBP administration, but mice were more susceptible to its toxic effects than were rats. In vitro, GD 8 mouse embryos and GD 10 rat embryos were cultured for 46 h in the presence of the test compounds (0.5 to 3-5mM). The cultured mouse embryos did not appear intrinsically more sensitive to MBP and MBzP, than the rat embryos. Altogether, these results suggest that the species sensitivity observed in vivo after an oral administration of BBP, MBP or MBzP during early organogenesis, might be due to maternal factors, i.e. toxicity and/or kinetics.  相似文献   

7.
8.
9.
It is proposed that protection of the developing embryo from chemical and environmental insults that produces oxidative stress requires a proper glutathione (GSH) and pyridine nucleotide status in both the embryo and extra-embryonic membranes. Modulation of pyridine nucleotide flux [NAD(H) and NAD(P)H] in the visceral yolk sac (VYS) by the thiol oxidants diamide and tert-butyl hydroperoxide (tBH) was studied in real time using microfiberoptic sensors in GD 10 rat conceptuses. Consecutive 5-min exposures to 125- and 250-microM diamide resulted in a fluorescence decrease of 14 and 32 Arbitrary Fluorescence Units (AFU). An additional consecutive exposure to 500-microM diamide caused an attenuated decrease followed by a rebound increase of 22 AFU. Consecutive 5-min exposures to tBH at 250 and 500 microM produced fluorescence decreases similar to that of 500 microM diamide, but the decreases were attenuated at 1000 microM. However, there was variability in the rebound increase. A 5-min exposure to tBH (500 microM) alone caused a fluorescence decrease of 14 AFU followed by a rebound increase of 8 AFU. The rate of fluorescence decrease was attenuated by 50% with pretreatment with the glutathione reductase (GSSG-Rd) inhibitor, BCNU (1,3, bis(2 chloroethyl)-1-nitrosourea), indicating that the decrease in surface fluorescence was probably attributable to a decrease in NADPH. Decreases in fluorescence, observed from the surface of the VYS, correlated with decreases in GSH/GSSG ratios in the embryos and the VYS. After exposure to tBH, GSH levels in conceptuses decreased at the end of 5 and 15 min, with a corresponding increase in oxidized glutathione (GSSG) at the end of 3, 5, and 15 min. Our results demonstrate that the increased production of GSSG on exposure to thiol oxidants correlates with a decrease in the reduced pyridine nucleotide, implying the presence of an active GSSG-Rd pathway in the conceptus during organogenesis, and implicating an important role of the pyridine nucleotides in the restoration of GSH homeostasis in the developing rat conceptus during organogenesis.  相似文献   

10.
Recent work from humans and chick embryos has suggested that homocysteine may play a role in producing neural tube defects (NTDs). In an effort to determine if homocysteine is able to produce NTDs in mammalian embryos, mouse embryos were explanted on GD 8 and cultured for 44 h. When either homocysteine or homocysteine thiolactone was added to the culture medium, treated embryos developed as well as controls and had closed neural tubes. Homocysteine thiolactone was also microinjected into the amniotic sac of mouse embryos. Again, development proceeded normally with no significant increase in the number of embryos with open neural tubes at the end of the culture period. HPLC analysis of embryonic thiols 24 h after microinjection revealed a significant increase in embryonic cystathionine levels. These data suggest that homocysteine does not produce NTDs in mouse embryos cultured in vitro and that early organogenesis-stage embryos are able to metabolize homocysteine.  相似文献   

11.
 L-691,121 is a class III antiarrhythmic agent which blocks potassium currents, leading to prolongation of cardiac potential and prevention of cardiac arrhythmia. In a developmental toxicity study in rats, there was a dose-dependent decrease in embryonic/fetal survival, and death of the entire litter was seen at an oral dose of 0.8 mg/kg per day. The critical period for embryolethality was determined as gestational days (GD) 10–13. In a study where females received 1 mg/kg on a critical day (GD 10 or 12) and were killed at 24-h intervals, a high embryonic mortality was seen at 72 h (GD 10 treatment) or 48 h (GD 12 treatment) after dosing. The surviving embryos had morphological abnormalities such as enlarged cardiac tube and pericardium, generalized edema, and hematoma. In order to investigate a possible mechanism for the embryolethality, GD 11 embryos were dissected from females at 4 h after dosing of 1 mg/kg and incubated for 5 h in vitro. The embryonic heart rates were decreased for the first 2 h after incubation but tended to recover to control levels thereafter. When GD 11 embryos were incubated for 4 h with the drug, there were decreases in the heart rates during the entire observation period. In a wash-out study where the embryos were transferred to drug-free medium after 1-h exposure, decreased heart rates recovered to control levels. In GD 11 embryos cultured for 24 h with the drug, there were gross abnormalities that consisted of altered yolk sac and embryonic circulation, and enlargement of cardiac tube and pericardium similar to those seen in the preceding in vivo study. These results suggest that decreased heart rates, reduced yolk sac circulation and the associated morphological abnormalities induced by L-691,121 are related to the embryolethality in rats. Received: 14 December 1993 / Accepted: 16 March 1994  相似文献   

12.
Paraquat can cause oxidative stress through redox cycling, and preimplantation embryos are sensitive to oxidative stress in vitro. In this study, the effects of paraquat on preimplantation embryo development were examined. Exposure of preimplantation embryos (collected on the day after ovulation) to paraquat in vitro for 24 h at concentrations as low as 8 microM caused a significant decrease in the percentage of 8-cell embryos and an increase in the percentage of compacted morulae, but the content of reduced glutathione (GSH) in embryos was not changed. Altered embryo development was most likely due to premature compaction because a 42% decrease in cell number per compacted morulae was observed in embryos exposed to paraquat at 1 mM. Exposure of preimplantation embryos to paraquat in vitro for 4 days at 200 microM or higher eliminated development beyond the blastocyst stage. Exposure of bred female mice to paraquat at 30 mg/kg on day 2 after ovulation led to a small but significant decrease in the percentage of 8-cell embryos on day 3 without a detectable increase in the percentage of compacted morulae. No detectable change in preimplantation embryo development was found following paraquat exposure on the day of ovulation (day 0), although a significant decrease in embryo GSH was found on day 1. These data indicate that paraquat can adversely impact the development of preimplantation embryos in vitro and in vivo without consistent modulation of GSH level.  相似文献   

13.
Alcohol drinking during pregnancy results in abnormal fetal development, including fetal alcohol syndrome (FAS) in humans and experimental animals. FAS is characterized by two major effects, including central nervous system (CNS) dysfunction and multiple anomalies recognizable mainly as a typical face. However, the mechanisms of alcohol-induced embryotoxicity have not been clearly demonstrated. The aim of the present study was to investigate the possible mechanisms underlying ethanol-induced FAS in the developing embryo. First, ethanol-induced developmental abnormalities were investigated in vitro. Postimplantation embryos at gestation day (GD) 9.5 were cultured for 48 h and observed for morphological changes. Ethanol-mediated changes in proteins regulated apoptosis (p53 and bcl-2), antioxidant (vitamin E and catalase) activities, generation of reactive oxygen species (ROS), and oxidative DNA damage shown as 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured in embryonic midbrain cells. Alcohol or acetaldehyde significantly induced cytotoxicity in cultured rat embryonic midbrain cells. The levels of p53, bcl-2, and 8-OHdG were concomitantly changed by alcohol and acetaldehyde treatment in midbrain cells. Injured cells induced by ROS were increased by alcohol or acetaldehyde treatment in midbrain cells. Cotreatment with alcohol or acetaldehyde and catalase decreased cytotoxicity in midbrain cells. In postimplantation embryo culture, alcohol or acetaldehyde-treated embryos showed retardation of embryonic growth and development in a concentration-dependent manner. These results indicate that alcohol and its metabolite acetaldehyde induce fetal developmental abnormalities by disrupting cellular differentiation and growth. Data demonstrate that some antioxidants can partially protect against the alcohol-induced embryonic developmental toxicity.  相似文献   

14.
Experiments on teratogenic effects of stable isotopes from our own and other laboratories are evaluated. In the first series of investigations, the enrichment of the stable isotope 13C derived from U-13C-glucose was studied in mouse embryos at various stages of development, including limb buds in organ culture. Preimplantation mouse embryos incubated in vitro in 13C-enriched medium for 48 hours showed normal development during subsequent differentiation in vitro and also in vivo after embryo transfer to faster mothers. These embryos were 15% to 20% enriched in 13C. Administration of U-13-C-glucose to pregnant mice during organogenesis led to an increase of the absolute 13C content of the embryo for several days after the end of isotope administration, whereas the enrichment in maternal tissue decreased. No alterations of embryonic development were detected due to stable isotope enrichment. Development of cultured mouse limb buds was unaffected by incubation with 82 mol% U-13C-glucose as judged from morphologic and biochemical criteria. The second part of the article describes the value of deuterium-labeled drugs as probes into the mechanism of activation of teratogenic metabolites. A comparison of the pharmacokinetics as well as the teratogenicity between cyclophosphamide and some specific deuterium-labeled analogues showed that the isotope effect observed can be related to a particular metabolic pathway crucial for teratogenic activation by this drug.  相似文献   

15.
1. Some chemical compounds selected by experts for the validation of in vitro teratogenicity testing were investigated in whole rat embryos cultured during the early stages of organogenesis. All sixteen known in vivo teratogens tested also induced specific malformations in embryos grown in culture. 2. Of the nine compounds which were negative in in vivo rat teratogenicity studies, none provoked dysmorphogenic effects in cultured embryos. Abnormal development of the embryos was only observed with these compounds at concentrations also high enough to affect significantly overall growth and/or differentiation. 3. The results showed a high predictability of this system for the compounds tested and suggest that the post-implantation embryo culture system may also be useful in the prospective testing of new drugs and environmental chemicals.  相似文献   

16.
1. Some chemical compounds selected by experts for the validation of in vitro teratogenicity testing were investigated in whole rat embryos cultured during the early stages of organogenesis. All sixteen known in vivo teratogens tested also induced specific malformations in embryos grown in culture.

2. Of the nine compounds which were negative in in vivo rat teratogenicity studies, none provoked dysmorphogenic effects in cultured embryos. Abnormal development of the embryos was only observed with these compounds at concentrations also high enough to affect significantly overall growth and/or differentiation.

3. The results showed a high predictability of this system for the compounds tested and suggest that the post-implantation embryo culture system may also be useful in the prospective testing of new drugs and environmental chemicals.  相似文献   

17.
The insecticide lindane (gamma-hexachlorocyclohexane) inhibits gap junction intercellular communication in rat myometrial cells by a mechanism involving oxidative stress. We hypothesized that oxidation of reduced glutathione (GSH) to glutathione disulfide (GSSG) and subsequent S-glutathionylation provide a mechanistic link between lindane-induced oxidative stress and lindane's inhibition of myometrial gap junction communication. Gap junction communication between cultured rat myometrial myocytes was assessed by Lucifer yellow dye transfer after microinjection. A biphasic pattern was confirmed, with dye transfer nearly abolished after 1 h of exposure to 100 microM lindane followed initially by recovery after lindane removal, and then the development 4 h after termination of lindane exposure of a delayed-onset, sustained inhibition that continued for 96 h. As measured by HPLC, cellular GSH varied over a 24-h period in a biphasic fashion that paralleled lindane-induced inhibition of dye transfer, whereas GSSG levels increased in a manner inversely related to GSH. In accordance, GSH/GSSG ratios were depressed at times when GSH and dye transfer were low. Lindane substantially increased S-glutathionylation in a concentration-dependent manner, measured biochemically by GSSG reductase-stimulated release of GSH from precipitated proteins. Furthermore, treatments that promoted accumulation of GSSG (50 microM diamide and 25 microM 1,3-bis(2-chloroethyl)-1-nitrosourea [BCNU]) inhibited Lucifer yellow dye transfer between myometrial cells. Findings that lindane induced GSH oxidation to GSSG with increased S-glutathionylation, together with the diamide and BCNU results, suggest that oxidation of GSH to GSSG is a component of the mechanism by which lindane inhibits myometrial gap junctions.  相似文献   

18.
Cell culture is an important tool for studying injury to cells exposed to oxidative stress. The human hepatoblastoma derived Hep G2 cells retain their morphology and most of their function in culture and are therefore widely used as an in vitro model of human hepatocytes. Conventional cell culture media are deficient in selenium, which is essential for activation of glutathione peroxidase (GPx), a key enzyme in the defense against oxidative stress. Supplementation of the culture media with 1 microM sodium selenite increased the activities of total GPx by threefold and the selenium-dependent GPx by fourfold as compared to cells cultured in control media. The non-selenium-dependent GPx activity was unchanged. The activities of the other glutathione (GSH)-related enzymes were practically unchanged despite a tendency toward elevation. The activities of oxidized glutathione (GSSG) reductase and catalase increased by 22.4 and 27.4%, respectively. These relatively small increases did not carry statistical significance. Supplementation of tissue culture media with selenium may prove important, particularly for cell protection against oxidative stress.  相似文献   

19.
Mitomycin C (MMC) is among the most commonly used drugs worldwide and is known to cause congenital malformations and fetal death in animals. In this study, the effect of MMC on major organogenesis period and the role of apoptosis in mediating congenital malformations have been carried out. In the present study, post-implantation rat embryos of day 11 were cultured for 24?h with various concentrations of MMC, i.e. 1, 10, and 100 µg/ml cultures. The growth and developmental of each embryo was evaluated and compared with control ones for the presence of any malformations. The MMC decreased all growth and developmental parameters in a concentration-dependent manner, when compared with control. However, exposure to MMC at 1 µg/ml culture did not show any significant effect on embryonic growth and development. Parallel to this, flow cytometric analysis (cell cycle and annexin V binding) and DNA fragmentation assay were carried out followed by quantitation by 3′-OH labeling of cultured rat embryos to evaluate the role of apoptosis in bringing about MMC-induced teratogenesis. All results were found to be dose-dependent and an increase in apoptosis in embryonic tissues may be related to the increased risk of congenital malformations. The data suggested that apoptosis might be involved in mediating teratogenesis of MMC in vitro.  相似文献   

20.
The effects of glutathione (GSH) depletion on the embryotoxicity of acrylonitrile were assessed in vitro using the rat whole-embryo culture system. Day 10 rat embryos were cultured in rat serum medium for 6 h in the presence of 250 Ml-buthionine-S,R-sulfoximine (BSO), a specific inhibitor of GSH synthesis, to deplete GSH in both embryo and visceral yolk sac. Following pretreatment, conceptuses were cultured for an additional 21 h in the presence of 152, 228, or 304 M acrylonitrile. At the end of the culture period, conceptuses were assessed for survival, growth and development, malformations, and the protein and glutathione content of embryos and yolk sacs were assayed. Acrylonitrile alone produced concentrationrelated and statistically significant decreases in yolk sac diameter, crown-rump length, head length and number of somite pairs, as well as in embryonic and yolk sac proteins. The chemical also caused dysmorphogenesis of the brain and of the caudal extremity, and a concentration-related and statistically significant increase in GSH content in the yolk sac. Pretreatment with BSO significantly enhanced the embryotoxic effects of acrylonitrile. The conceptuses displayed further decreases in functional yolk sac circulation, yolk sac diameter, crown-rump and head length, when compared to either acrylonitrile or BSO alone. The incidence of caudal malformations and the severity of brain malformations produced by acrylonitrile were also increased. Marked decreases in embryonic and yolk sac GSH contents were observed after exposure to BSO alone or in combination with acrylonitrile. Thus, depletion in embryonic and yolk sac GSH by BSO enhanced teratogenic and growth retarding effects of acrylonitrile in vitro, suggesting that GSH plays a critical role in modulating acrylonitrileelicited embryotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号