首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS; EC 3.1.6.4). The deficiency of N-acetylgalactosamine-6-sulfate sulfatase leads to lysosomal accumulation of undegraded glycosaminoglycans, keratan sulfate and chondroitin-6-sulfate. Mutation screening of the GALNS gene was performed by SSCP and direct sequence analyses using genomic DNA samples from 10 Morquio A patients. By nonradioactive SSCP screening, 6 different gene mutations and 2 polymorphisms were identified in 10 severely affected MPS IVA patients. Five of the mutations and one of the polymorphisms are novel. The vast majority of the gene alterations were found to be single nucleotide deletions (389delG, 929delG, and 763delT) or insertions (1232-1233insT). The other two mutations were one previously identified missense mutation (Q473X) and one novel nonsense (P179S) mutation. Together they account for 95% of the disease alleles of the patients investigated. Beside mutations, one previously identified E477 polymorphism and one novel W520 polymorphism were found among Turkish MPS IVA patients.  相似文献   

2.
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Mutation screening of the GALNS gene was performed by RT-PCR with one amplicon and direct sequence analyses using cDNA samples from 15 Italian MPS IVA patients. Each mutation was confirmed at the genomic level. In this study, 13 different gene mutations with four common mutations (over 10% of mutant alleles) were identified in 12 severe and three milder (attenuated) MPS IVA patients. The gene alterations in 12 out of 13 were found to be point mutations and only one mutation was deletion. Ten of 13 mutations were novel. The c.1070C>T (p.Pro357Leu) mutation coexisted with c.1156C>T (p.Arg386Cys) mutation on the same allele. Together they accounted for 100% of the 30 disease alleles of the patients investigated. Four common mutations accounted for 70% of mutant alleles investigated. Urine keratan sulfate (KS) concentrations were elevated in all patients investigated. These data provide further evidence for extensive allelic heterogeneity and importance of relation among genotype, phenotype, and urine KS excretion as a biomarker in MPS IVA.  相似文献   

3.
4.
Mucopolysaccharidosis IVA (MPS IVA; OMIM#253000), a lysosomal storage disorder caused by a deficiency of N -acetylgalactosamine-6-sulfate sulfatase (GALNS), has variable clinical phenotypes. To date we have identified 65 missense mutations in the GALNS gene from MPS IVA patients, but the correlation between genotype and phenotype has remained unclear. We studied 17 missense mutations using biochemical approaches and 32 missense mutations, using structural analyses. Fifteen missense mutations and two newly engineered active site mutations (C79S, C79T) were characterized by transient expression analysis. Mutant proteins, except for C79S and C79T, were destabilized and detected as insoluble precursor forms while the C79S and C79T mutants were of a soluble mature size. Mutants found in the severe phenotype had no activity. Mutants found in the mild phenotype had a considerable residual activity (1.3-13.3% of wild-type GALNS activity). Sulfatases, including GALNS, are members of a highly conserved gene family sharing an extensive sequence homology. Thus, a tertiary structural model of human GALNS was constructed from the X-ray crystal structure of N -acetylgalacto-samine-4-sulfatase and arylsulfatase A, using homology modeling, and 32 missense mutations were investigated. Consequently, we propose that there are at least three different reasons for the severe phenotype: (i) destruction of the hydrophobic core or modification of the packing; (ii) removal of a salt bridge to destabilize the entire conformation; (iii) modification of the active site. In contrast, mild mutations were mostly located on the surface of the GALNS protein. These studies shed further light on the genotype-phenotype correlation of MPS IVA and structure-function relationship in the sulfatase family.  相似文献   

5.
Mucopolysaccharidosis IVA (MPS IVA; Morquio A disease) is an autosomal recessive lysosomal storage disorder caused by a genetic deficiency of the N-acetylgalactosamine-6-sulfate sulfatase (GALNS; E.C.3.1.6.4). GALNS is required to degrade keratan sulfate (KS) and chondroitine-6-sulfate (C6S). The accumulation of undegraded substrates in lysosomes of the affected tissues leads to a systemic bone dysplasia. Total urine glycosaminoglycans (GAG) in patients with MPS IVA are close to the normal range so it is difficult to distinguish this disease based on urine GAG excretion. Another potential disease marker could be KS levels in urine and plasma. Although the enzymatic diagnosis of affected patients with MPS IVA can be made, the detection of obligate heterozygotes by enzymatic measurement is less reliable because of a marked overlap of GALNS in fibroblasts or leucocytes from affected phenotype and normal controls. The genetic heterozygoty of MPS IVA has been facilitated by the isolation and characterization of the full lengh cDNA encoding human GALNS. Conventional therapy is symptomatic and limited to palliative procedures, which have virtually no impact upon mortality. To date, there is still no general consensus about the effectiveness of bone marrow transplantation. In the future, gene therapy could represent a great therapeutic improvement.  相似文献   

6.
Design of efficient treatment strategies for diseases requires clarification of the nature of each mutation causing the disease. In this study, we have investigated three factors to correctly predict the correlation between genotype and phenotype on N-acetylgalactosamine-6-sulfate sulfatase (GALNS) gene responsible for one of lysosomal storage diseases, known as mucopolysaccharidosis IVA (MPS IVA); (i) evolutionary conservation of amino acid residues among family proteins, (ii) conservativeness of amino acid changes in GALNS, and (iii) structural conservation of amino acid residue. The results showed that (i) the likelihood of a missense variant causing MPS IVA was directly correlated with the level of evolutionary conservation and inversely correlated with conservativeness but not correlated with the structural conservation, (ii) the disease-causative mutations were 9 times more likely to be located on the 'highly conserved' residues than the polymorphisms, (iii) the likelihood of 'non-conservative' amino acid changes in missense mutations was 6.8 times higher than those in the polymorphisms, (iv) the degree of evolutionary conservation was nearly as predictive in phenotype as that of conservativeness of amino acid changes, and (v) the combination of the two factors, evolutionary conservation and conservativeness, provides a better association between missense variants and clinical severity with higher sensitivity (83.5-88.9%) and specificity (71.4-88.3%), than that obtained by either factor alone. These findings suggest that the combination of evolutionary conservation and conservativeness is a useful tool to predict the effect of each mutation on the clinical phenotype and can be applied to the analysis of phenotype/genotype relation in other genetic diseases.  相似文献   

7.
Morquio disease (MPS IVA) is an autosomal recessive disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS) activity. Patients commonly present in early infancy with growth failure, spondyloepiphyseal dysplasia, corneal opacification, and keratan sulfaturia, but milder forms have been described. We report on a patient who grew normally until age 5 years. Her keratan sulfaturia was not detected until adolescence, and she now has changes restricted largely to the axial skeleton. She has experienced only mildly impaired vision. At age 22, thin-layer chromatography of purified glycosaminoglycans showed some keratan sulfaturia. GALNS activity in fibroblast homogenate supernatants was 20 ± 5% of controls (as compared to 5 ± 3% of controls in severe MPS IVA, P <.003). Kinetic analysis of residual fibroblast GALNS activity in patient and parents revealed decreased Km and increased Vmax in the mother and daughter, but not in the father, compatible with compound heterozygosity. GALNS exons were amplified from patient genomic DNA and screened by SSCP. Two missense mutations, a C to T transition at position 335 (predicting R94C) and a T to G transversion at position 344 (predicting F97V), were found on sequencing an abnormally migrating exon 3 amplicon. Digestion of the amplicon with FokI and AccI restriction enzymes (specific for the R94C and F97V mutations, respectively) confirmed heterozygosity. In fibroblast transfection experiments, heterozygous R94C and F97V mutants independently expressed as severe and mild GALNS deficiency, respectively. We interpret these findings to indicate that our patient bears heteroallelic GALNS missense mutations, leading to GALNS deficiency and mild MPS IVA. Our findings expand the clinical and biochemical phenotype of MPS IVA, but full delineation of the genotype-phenotype relationship requires further study of native and transfected mutant cell lines. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), required for degradation of keratan sulfate and chondroitin-6-sulfate. In order to study the effects of a missense mutation in the active site cysteine in the GALNS gene that is conserved in all mammalian sulfatases, we produced a p.C76S (an active site replacement) knock-in mouse by replacing the Cys76 with Ser in the endogenous murine Galns by targeted mutagenesis. Homozygous Galns(tm(C76S)slu) mice had no detectable GALNS enzyme activity. At age of 2-4 months, lysosomal storage was present primarily within reticuloendothelial cells such as Kupffer cells and spleen sinusoidal lining cells. Vacuolar change was present in glomerular visceral epithelial cells and was not present in hepatocytes or renal tubular cells. In the brain, hippocampal and neocortical neurons and meningeal cells showed lysosomal storage. Radiographs revealed no change in the skeletal bones of mice up to 12 months old. Thus, the Galns(tm(C76S)slu) mice had visceral storage of GAGs in organs but lacked the skeletal features of human MPS IVA. In contrast to a previously reported transgenic model (Galns(tm(hC79S.mC76S)slu)), in which the inactive human GALNS transgene was overexpressed, no reduction in other sulfatases was observed. In addition, the Galns(tm(C76S)slu) mice displayed milder storage. We conclude that the milder phenotype is characteristic of isolated GALNS deficiency while the more severe phenotype reflected in the Galns(tm(hC79S.mC76S)slu) mice was due to deficiency of other sulfatases caused by oversaturation of the sulfate modifying enzyme by the inactive human gene product.  相似文献   

9.
Morquio A syndrome (MPS IVA) is a recessive lysosomal storage disorder (LSD) caused by mutations in the GALNS gene leading to the deficiency of lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Patients show a broad spectrum of phenotypes ranging from classical severe type to mild forms. Classical forms are characterized by severe bone dysplasia and usually normal intelligence. So far, more than 170 unique mutations have been identified in the GALNS gene of MPS IVA patients. We report on a Morquio A patient with a classical phenotype who was found to be homozygous for a missense mutation (c.236 G>A; p.Cys79Tyr) in the GALNS gene. This alteration affects the highly conserved p.Cys79 that is transformed into formylglycine, the catalytic residue of the active site. The mutation was present in the proband's mother, but not in the father, whose paternity was confirmed by microsatellite analysis. In order to test the hypothesis of maternal uniparental disomy (UPD), we investigated the segregation of sixteen microsatellite markers from chromosome 16. The results showed a condition of maternal UPD due to an error in meiosis I. Maternal isodisomy of the 16q24 region led to homozygosity for the GALNS mutant allele, causing the patient's disease. These findings allow to add for the first time the LSD Morquio A syndrome to the list of conditions that can be caused by UPD. The possibility of UPD is relevant when giving genetic counseling to couples since the recurrent risk in future pregnancies is dramatically reduced.  相似文献   

10.
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive lysosomal storage disorder caused by a genetic defect in N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Previous studies of patients from a British–Irish population showed that the I113F mutation is the most common single mutation among MPS IVA patients and produces a severe clinical phenotype. We studied mutations in the GALNS gene from 23 additional MPS IVA patients (15 from Australia, 8 from Northern Ireland), with various clinical phenotypes (severe, 16 cases; intermediate, 4 cases; mild, 3 cases). We found two common mutations that together accounted for 32% of the 44 unrelated alleles in these patients. One is the T312S mutation, a novel mutation found exclusively in milder patients. The other is the previously described I113F that produces a severe phenotype. The I113F and T312S mutations accounted for 8 (18%) and 6 (14%) of 44 unrelated alleles, respectively. The relatively high residual GALNS activity seen when the T312S mutant cDNA is overexpressed in mutant cells provides an explanation for the mild phenotype in patients with this mutation. The distribution and relative frequencies of the I113F and T312S mutations in Australia corresponded to those observed in Northern Ireland and are unique to these two populations, suggesting that both mutations were probably introduced to Australia by Irish migrants during the 19th century. Haplotype analysis using 6 RFLPs provides additional data that the I113F mutation originated from a common ancestor. The other 9 novel mutations identified in these 23 patients were each limited to a single family. These data provide further evidence for extensive allelic heterogeneity in MPS IVA in British–Irish patients and provide evidence for their transmission to Australia by British–Irish migrants. Hum Mutat 11:202–208, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), leading to accumulation of keratan sulfate (KS) and chrondroitin-6-sulfate. The pharmacokinetics and biodistributions were determined for two recombinant human GALNSs produced in CHO cell lines: native GALNS and sulfatase-modifier-factor 1 (SUMF1) modified GALNS. Preclinical studies of enzyme replacement therapy (ERT) by using two GALNS enzymes were performed on MPS IVA mice. The half-lives in blood circulation of two phosphorylated GALNS enzymes were similar (native, 2.4 min; SUMF1, 3.3 min). After intravenous doses of 250 units/g body weight were administered, each enzyme was primarily recovered in liver and spleen, with detectable activity in other tissues including bone and bone marrow. At 4 h post-injection, enzyme activity was retained in the liver, spleen, bone and bone marrow at levels that were 20-850% of enzyme activity in the wild-type mice. After intravenous doses of 250 units/g of native GALNS, and 250, 600 or 1000 units/g of SUMF1-GALNS were administered weekly for 12 weeks, MPS IVA mice showed marked reduction of storage in visceral organs, sinus lining cells in bone marrow, heart valves, ligaments and connective tissues. A dose-dependent clearance of storage material was observed in brain. The blood KS level assayed by tandem mass spectrometry was reduced nearly to normal level. These preclinical studies demonstrate the clearance of tissue and blood KS by administered GALNS, providing the in vivo rationale for the design of ERT trials in MPS IVA.  相似文献   

12.
Type IVA mucopolysaccharidosis or Morquio A disease is a lysosomal storage disease, autosomal recessive, caused by deficiency of the N-acetylgalactosamine-6-sulfate sulfatase or GALNS. The severe phenotype is characterized by a severe skeletal dysplasia without any mental retardation. The aim of this study was to propose a strategy of molecular and prenatal diagnosis of this pathology. A molecular study was carried out on 7 patients MPS IVA issued from 5 unrelated families recruited from different Tunisian regions. All the patients were offspring of consanguineous marriages. The clinical and biologic study confirmed the diagnosis of MPS IVA within the 7 studied patients. Three GALNS mutations were identified by molecular analysis: IVS1+1G>A, G66R and A85T. The unions between Tunisian relatives are important and increase the Morquio A incidence in Tunisia. The identification of GALNS mutations in the Tunisian population permits better understanding of the Morquio A phenotype, a reliable genetic counselling and a molecular prenatal diagnosis to Tunisian at-risk relatives.  相似文献   

13.
Summary 1. A human peroxisome assembly factor-1 (PAF-1) complementary DNA has been cloned that restores the morphological and biochemical abnormalities (including defective peroxisome assembly) in fibroblasts from a patient with group F Zellweger syndrome. The cause of the syndrome in this patient was a point mutation that resulted in the premature termination of PAF-1. The homozygous patient apparently inherited the mutation from her parents, each of whom was heterozygous for that mutation. Furthermore, we cloned and characterized the rat and human cDNAs for peroxisome-assembly factor-2 (PAF-2), which restores peroxisomes of the complementary group C Zellweger cells, by functional complementation, and identified two pathogenic mutations in the PAF-2 gene in two patients. 2. Seventeen mutations have been identified in 13 mitochondrial acetoacetyl-CoA thiolase-deficient patients. 3. We purifiedN-acetylgalactosamine-6-sulfate (GalNAc6S) sulfatase and cloned the full-length cDNA of humanN-acetylgalactosamine-6-sulfate sulfatase (GALNS). The gene encoding GalNAc6S sulfatase has been localized by fluorescencein situ hybridization to chromosome 16q24, and the entire genomic gene structure has been characterized. About 40 different GALNS gene mutations have been identified in the patients with mucopolysaccharidosis IVA.  相似文献   

14.
Mucopolysaccharidosis IVA is an autosomal recessive disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), a lysosomal enzyme required for the stepwise degradation of keratan sulfate (KS) and chondroitin-6-sulfate (C6S). To generate a model for studies of the pathophysiology and of potential therapies, we disrupted exon 2 of Galns, the homologous murine gene. Homozygous Galns-/- mice have no detectable GALNS enzyme activity and show increased urinary glycosaminoglycan (GAGs) levels. These mice accumulate GAGs in multiple tissues including liver, kidney, spleen, heart, brain and bone marrow. At 2 months old, lysosomal storage is present primarily within reticuloendothelial cells such as Kupffer cells and cells of the sinusoidal lining of the spleen. Additionally, by 12 months old, vacuolar change is observed in the visceral epithelial cells of glomeruli and cells at the base of heart valves but it is not present in parenchymal cells such as hepatocytes and renal tubular epithelial cells. In the brain, hippocampal and neocortical neurons and meningeal cells had lysosomal storage. KS and C6S were more abundant in the cytoplasm of corneal epithelial cells of Galns-/- mice compared with wild-type mice by immunohistochemistry. Radiographs revealed no change in the skeletal bones of mice up to 12 months old. Thus, targeted disruption of the murine Galns gene has produced a murine model, which shows visceral storage of GAGs but lacks the skeletal features. The complete absence of GALNS in mutant mice makes them useful for studies of pharmacokinetics and tissue targeting of recombinant GALNS designed for enzyme replacement.  相似文献   

15.
Mucopolysaccharidosis type IVA (Morquio A) is caused by a deficiency of N -acetylgalactosamine-6-sulfatase (GALNS), an enzyme capable of cleaving the sulfate group from both N -acetylgalactosamine-6-sulfate and galactose-6-sulfate. We describe here a two-generation Morquio A family with two distinct clinical phenotypes. The two probands from the second generation showed intermediate signs of the disease whereas their affected mother, aunt and two uncles had only very mild symptoms. Galactose-6-sulfatase (GALS) activity in leukocytes and fibroblasts of the affected family members was clearly deficient. Molecular genetic analysis of the GALNS gene revealed that two different point mutations segregate in the family, which correlated well with the clinical phenotype. The probands with intermediate symptoms were compound heterozygotes for the mutations R259Q and R94G, the latter one being inherited from the unaffected father. The mother and her affected siblings with the unusually mild phenotype were proven to be homozygous for the novel missense point mutation R259Q.  相似文献   

16.
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency of the lysosomal N-acetylgalactosamine-6-sulfate sulfatase. Here, we report our analysis of data on 21 patients of diverse ethnic and geographic origins studied by SSCP and sequencing analysis. Sixteen mutations were detected, including 14 new mutations (11 missense, one premature termination, one splice site alteration, and one cryptic site alteration). The donor splice site mutation (IVS4 + 1G→A) predicts that normal splicing will be abolished and that translation would lead to an immediate premature termination (W141X). Another novel nucleotide change outside the coding sequence is an intronic alteration (IVS9-42C→T:ggtcggtgcggttggtgc) creating a potential cryptic donor site. The nucleotide sequence surrounding this alteration is highly suggestive of a consensus donor splice site. All 12 missense and nonsense mutations were shown by transient expression to abolish or greatly reduce GALNS activity, thereby providing an explanation as to why they produce MPS IVA. All mutations were readily confirmed by restriction enzyme or by allelic specific oligonucleotide analysis (ASO). These findings, coupled with previously reported mutations, bring the total of different mutations to 41 among independent families with MPS IVA, illustrating the extensive allelic heterogeneity among mutations producing MPS IVA. Hum Mutat 10:368–375, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Mucopolysaccharidosis IVA (MPS IVA; OMIM #253000) is caused by the deficiency of N‐acetylgalactosamine‐6‐sulfate sulfatase (GALNS), a lysosomal enzyme involved in the catabolism of keratan and chondroitin sulfate. In this study, we examined biochemical and genetic data from 6 Korean patients presenting with classic MPS IVA by measuring GALNS activity in peripheral blood leukocytes and skin fibroblasts. We initially identified Korean patients with MPS IVA by clinical, biochemical, and genetic analyses. We performed PCR‐direct sequencing to identify molecular defects of the GALNS gene in patients and assessed the mutational statuses of family members as well as 50 healthy unrelated subjects. In silico analyses were performed to check for novel mutations. The mean age of the six female patients was 8.0 ± 5.2 years (range: 2–17 years), and were all found to have severe reductions of GALNS enzyme. A total of 12 mutant alleles were identified, corresponding to 7 different mutations. Five novel mutations were c.218A>G (p.Y73C), c.451C>A (p.P151T), c.725C>G (p.S242C), c.752G>A (p.R251Q), and c.1000C>T (p.Q334X). Two other mutations were c.1156C>T (p.R386C) and c.1243‐1G>A. Two mutations, c.451C>A and c.1000C>T, accounted for 58% of all mutations in this sample. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Mucopolysaccharidosis type IV A (MPS IV A) is an autosomal recessive disorder resulting from the deficient activity of the lysosomal enzyme, N-acetylgalactosamine-6-sulfate sulfatase (GALNS) and the progressive lysosomal accumulation of keratane sulfate. Clinically, the MPS IV A differs from the other MPS by the localisation of the keratane sulfate in skelet and in eyes associated to the conservation of a normal intelligence. To date, the characterization and purification of the GALNS gene made a research for pathogenic mutations in patients with MPS IV A easier. These mutations are responsible of severe, intermediate or mild phenotype. The aim for this work was the research of clinical, biologic and molecular characteristics of two Tunisian MPS IV A patients who were offsprings of consanguineous mating. Enzymatic and urinary diagnostics suggested a MPS IV A phenotype. A novel homozygous mutation IVS1+1G-A was identified by direct sequencing in the GALNS gene of the two patients. Identification of GALNS mutations provide genotype/phenotype correlations and permit the precision of anomalies responsible of Morquio A phenotype in concerned families.  相似文献   

19.
Mutation analysis of the N-acetylgalactosamine-6-sulfate sulfatase gene was performed in a group of 35 patients with mucopolysaccharidosis type IVA from 33 families, mainly of European origin. By nonradioactive SSCP screening, 35 different gene mutations were identified, 31 of them novel. Together they account for 88.6% of the disease alleles of the patients investigated. The vast majority of the gene alterations proved to be point mutations, 23 missense, 2 nonsense, and 3 affecting splicing. Six small deletions (1–27 bp) and one insertion were also characterized. In a Polish family, two mildly affected siblings were compound heterozygotes for R94G and R259Q. Their mother was homozygous for the latter point mutation, leading to enzyme deficiency and a borderline disease phenotype. Hum Mutat 10:223–232, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号