首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the potential of the pH-sensitive dye, CypHer5E, conjugated to Herceptin (pH-Her) for the sensitive detection of breast tumors in mice using noninvasive time-domain near-infrared fluorescence imaging and different methods of data analysis. First, the fluorescence properties of pH-Her were analyzed as function of pH and/or dye-to-protein ratio, and binding specificity was confirmed in cell-based assays. Subsequently, the performance of pH-Her in nude mice bearing orthotopic HER2-positive (KPL-4) and HER2-negative (MDA-MB-231) breast carcinoma xenografts was compared to that of an always-on fluorescent conjugate Alexa Fluor 647-Herceptin (Alexa-Her). Subtraction of autofluorescence and lifetime (LT)-gated image analyses were performed for background fluorescence suppression. In mice bearing HER2-positive tumors, autofluorescence subtraction together with the selective fluorescence enhancement of pH-Her solely in the tumor's acidic environment provided high contrast-to-noise ratios (CNRs). This led to an improved sensitivity of tumor detection compared to Alexa-Her. In contrast, LT-gated imaging using LTs determined in model systems did not improve tumor-detection sensitivity in vivo for either probe. In conclusion, pH-Her is suitable for sensitive in vivo monitoring of HER2-expressing breast tumors with imaging in the intensity domain and represents a promising tool for detection of weak fluorescent signals deriving from small tumors or metastases.  相似文献   

2.
Fluorescence lifetime imaging can provide valuable diagnostic information relating to the functional status of diseases. In this study, a near-infrared (NIR) dye-labeled hexapeptide (abbreviated Cyp-GRD) was synthesized. In vitro, Cyp-GRD internalized in nonsmall cell lung cancer cells (A549) without observable cytotoxic or proliferative effects to the cells at a concentration up to 1x10(-4) M. Time-domain fluorescence intensity and lifetime imaging of Cyp-GRD injected into A549 tumor-bearing mice revealed that the probe preferentially accumulated in the tumor and the major excretion organs. The fluorescence lifetime of the conjugate at the tumor site was mapped, showing the spatial distribution of the lifetime related to its environment. Additionally, fluorescence intensity image reconstruction obtained by integrating the time-resolved intensities enabled the contrast ratios of tumor-to-kidney or liver in slices at different depths to be displayed. The mean lifetime was 1.03 ns for the tumor and 0.80 ns for the liver when averaging those pixels exhibiting adequate signal-to-noise ratio, showing the tumor had a higher lifetime average and reflecting the altered physiopathology of the tumor. This study clearly demonstrated the feasibility of whole-body NIR fluorescence lifetime imaging for tumor localization and its spatial functional status in living small animals.  相似文献   

3.
Anti-cancer drugs typically exert their pharmacological effect on tumors by inducing apoptosis, or programmed cell death, within the cancer cells. However, no tools exist in the clinic for detecting apoptosis in real time. Microscopic examination of surgical biopsies and secondary responses, such as morphological changes, are used to verify efficacy of a treatment. Here, we developed a novel near-infrared dye-based imaging probe to directly detect apoptosis with high specificity in cancer cells by utilizing a noninvasive photoacoustic imaging (PAI) technique. Nude mice bearing head and neck tumors received cisplatin chemotherapy (10 mg/kg) and were imaged by PAI after tail vein injection of the contrast agent. In vivo PAI indicated a strong apoptotic response to chemotherapy on the peripheral margins of tumors, whereas untreated controls showed no contrast enhancement by PAI. The apoptotic status of the mouse tumor tissue was verified by immunohistochemical techniques staining for cleaved caspase-3 p11 subunit. The results demonstrated the potential of this imaging probe to guide the evaluation of chemotherapy treatment.  相似文献   

4.
Receiver operating characteristic (ROC) analysis was performed on simulated near-infrared tomography images, using both human observer and contrast-to-noise ratio (CNR) computational assessment, for application in breast cancer imaging. In the analysis, a nonparametric approach was applied for estimating the ROC curves. Human observer detection of objects had superior capability to localize the presence of heterogeneities when the objects were small with high contrast, with a minimum detectable threshold of CNR near 3.0 to 3.3 in the images. Human observers were able to detect heterogeneities in the images below a size limit of 4 mm, yet could not accurately find the location of these objects when they were below 10 mm diameter. For large objects, the lower limit of a detectable contrast limit was near 10% increase relative to the background. The results also indicate that iterations of the nonlinear reconstruction algorithm beyond 4 did not significantly improve the human detection ability, and degraded the overall localization ability for the objects in the image, predominantly by increasing the noise in the background. Interobserver variance performance in detecting objects in these images was low, suggesting that because of the low spatial resolution, detection tasks with NIR tomography is likely consistent between human observers.  相似文献   

5.
Activatable fluorescent molecular probes are predominantly nonfluorescent in their inactivated state due to intramolecular quenching, but increase fluorescence yield significantly after enzyme-mediated hydrolysis of peptides. Continuous wave in vivo detection of these protease-activatable fluorophores in the heart, however, is limited by the inability to differentiate between activated and nonactivated fractions of the probe and is frequently complicated by large background signal from probe accumulation in the liver. Using a cathepsin-activatable near-infrared probe (PGC-800), we demonstrate here that fluorescence lifetime (FL) significantly increases in infarcted murine myocardial tissue (0.67 ns) when compared with healthy myocardium (0.59 ns) after 24 h. Furthermore, we show that lifetime contrast can be used to distinguish in vivo cardiac fluorescence from background nonspecific liver signal. The results of this study show that lifetime contrast is a helpful addition to preclinical imaging of activatable fluorophores in the myocardium by reporting molecular activity in vivo due to changes in intramolecular quenching. This characterization of FL from activatable molecular probes will be helpful for advancing in vivo imaging of enzyme activity.  相似文献   

6.
7.
Peritonitis is an inflammatory process characterized by massive monocytes-macrophages infiltration. Since early diagnosis is important for a successful therapeutic outcome, the feasibility for a selective labeling and imaging of macrophages for highly sensitive optical imaging was assessed. After in vitro incubation of mouse macrophages J774A.1 with the far-red/near-infrared fluorochrome DY-676, distinct fluorescence intensities (1026+/-142 a.u.) were detected as compared to controls (552+/-54 a.u.) using a whole-body small animal near-infrared fluorescence (NIRF) imaging system. Macrophage labeling was confirmed by confocal laser scanning microscopy (CLSM) and fluorescence-activated cell sorting, (FACS). The fluorochrome was also found to be predominantly distributed within compartments in the cytoplasm. Additionally, peritonitis was induced in mice by intraperitoneal injection of zymosanA. After intravenous injection of fluorochrome (55 nmol/kg) and using whole-body fluorescence imaging, higher fluorescence intensities (869+/-151 a.u.) were detected in the peritoneal area of diseased mice as compared to controls (188+/-41 a.u.). Furthermore, cells isolated from peritoneal lavage revealed the presence of labeled monocytes-macrophages. The results indicate that in vivo diagnosis of peritonitis by near-infrared optical imaging of labeled monocytes-macrophages is feasible. Possibly, early stages of other inflammatory diseases could also be detected by the proposed diagnostic method in the long term.  相似文献   

8.
9.
10.
In vivo measurement of lead in bone using x-ray fluorescence   总被引:16,自引:0,他引:16  
The factors affecting the accuracy and minimum detectable concentration of in vivo tibia lead measurement are discussed, and it is demonstrated that the use of a 109Cd source in a backscatter geometry and using the 88 keV coherently scattered photon for normalisation optimizes both criteria. The measurement is shown to be independent of variations in source-sample distance, thickness of overlying tissue and tibia size and shape. Applying the same technique in vitro to samples of human tibia and metatarsals, it is shown that the results are not significantly different (p approximately equal to 0.9) from atomic absorption spectrometry results from another laboratory. The results of Monte Carlo dose distribution calculations are presented and compared with measurements using thermoluminescent dosemeters: the mean absorbed dose to a 20 cm leg section is less than 0.1 mGy (10 mrad) and the maximum absorbed skin dose is 0.45 mGy (45 mrad). For this dose the minimum detectable lead concentration is 10 micrograms g-1. Finally, the technique has been applied to groups of normals and occupationally exposed workers, and the means have been shown to be significantly different, namely 10 and 31 micrograms g-1 respectively. In the normal subjects tibia lead correlated strongly with age (r = 0.63, p less than 0.001).  相似文献   

11.
Cancer-related enzyme activity can be detected noninvasively using activatable fluorescent molecular probes. In contrast to "always-on" fluorescent molecular probes, activatable probes are relatively nonfluorescent at the time of administration due to intramolecular fluorescence resonance energy transfer (FRET). Enzyme-mediated hydrolysis of peptide linkers results in reduced FRET and increase of fluorescence yield. Separation of signal from active and inactive probe can be difficult with conventional intensity-based fluorescence imaging. Fluorescence lifetime (FLT) measurement is an alternative method to detect changes in FRET. Thus, we investigate FLT imaging for in vivo detection of FRET-based molecular probe activation in an orthotopic breast cancer model. Indeed, the measured FLT of the enzyme-activatable molecular probe increases from 0.62 ns just after injection to 0.78 ns in tumor tissue after 4 h. A significant increase in FLT is not observed for an always-on targeted molecular probe with the same fluorescent reporter. These results show that FLT contrast is a powerful addition to preclinical imaging because it can report molecular activity in vivo due to changes in FRET. Fluorescence lifetime imaging exploits unique characteristics of fluorescent molecular probes that can be further translated into clinical applications, including noninvasive detection of cancer-related enzyme activity.  相似文献   

12.
We demonstrate quantitative functional imaging using image-guided near-infrared spectroscopy (IG-NIRS) implemented with the boundary element method (BEM) for reconstructing 3-D optical property estimates in breast tissue in vivo. A multimodality MRI-NIR system was used to collect measurements of light reflectance from breast tissue. The BEM was used to model light propagation in 3-D based only on surface discretization in order to reconstruct quantitative values of total hemoglobin (HbT), oxygen saturation, water, and scatter. The technique was validated in experimental measurements from heterogeneous breast-shaped phantoms with known values and applied to a total of seven subjects comprising six healthy individuals and one participant with cancer imaged at two time points during neoadjuvant chemotherapy. Using experimental measurements from a heterogeneous breast phantom, BEM for IG-NIRS produced accurate values for HbT in the inclusion with a <3% error. Healthy breast tissues showed higher HbT and water in fibroglandular tissue than in adipose tissue. In a subject with cancer, the tumor showed higher HbT compared to the background. HbT in the tumor was reduced by 9 μM during treatment. We conclude that 3-D MRI-NIRS with BEM provides quantitative and functional characterization of breast tissue in vivo through measurement of hemoglobin content. The method provides potentially complementary information to DCE-MRI for tumor characterization.  相似文献   

13.
This article provides a quantitative evaluation of Varian Medical Systems' beam matching procedure. A one-dimensional y analysis is employed to investigate the level of agreement of matched beams. A customized concept of one-dimensional gamma evaluation was designed. Our algorithm first performs a "local" fit of the reference and the evaluated datasets. For a particular point on the fitted evaluated curve, the y is derived as the shortest distance between the point and the fitted reference curve. This approach removes variations of the obtained y value related to the discrete character and noise in the original datasets. Criteria of 1 mm distance-to-agreement and 1% dose difference were used to evaluate the level of agreement of according profiles. Relative point and profile measurements were performed for all photon and electron beams of two Varian Clinacs 2100C/D. Matched beams show a good level of agreement. 70% of profiles completely pass the chosen criteria. The analysis of remaining 30% of the profiles demonstrates that measurement error becomes a limiting factor in achieving a better score. The highest obtained y value was 1.70. The quality of beam matching allowed us to treat according beams of both treatment units as "identical" and to use the reference beam data for the new unit. Nevertheless, the vendor's acceptance criteria of beam matching are much more benevolent. It might happen that the acceptance criteria are met, however, resulting quality of beam matching does not allow full interchangeability of beams.  相似文献   

14.
Nucleic acid sequence capture extraction was coupled with LightCycler PCR amplification and product detection using real-time fluorescence for rapid, definitive detection of Mycobacterium bovis in lymph node specimens from 38 cattle with bovine tuberculosis lesions. PCR amplification of sequence-captured DNA using both a conventional heating block thermocycler and a LightCycler thermocycler was compared with culture and histopathological analyses. Conventional PCR enabled detection of 26 of 28 culture-positive specimens (93%) in approximately 9 h, and the LightCycler PCR detected 20 of 28 culture-positive specimens (71%) in only 30 min. Specific confirmation of Mycobacterium tuberculosis complex DNA was achieved by LightCycler PCR amplification using Syb Green 1 and an M. tuberculosis complex-specific Cy5-labeled fluorescence resonance energy transfer probe. The system described here enabled rapid and specific laboratory confirmation of bovine tuberculosis, and this is the first report of the detection of M. bovis in tissues using LightCycler PCR. The fluorescence technology used in the study has potential to allow development of a high-throughput molecular diagnostic test for bovine tuberculosis.  相似文献   

15.
Imaging of oxygen saturation provides a spatial map of the tissue metabolic activity and has potential in diagnosis and treatment monitoring of breast cancer. Oxygen-saturation imaging is possible through near-infrared (NIR) tomography, but has low signal-to-noise ratio (SNR). This can be augmented by using NIR tomography as an add-on to MRI. Presented are results from a free-standing NIR system and a hybrid MR-guided system for breast imaging. In results from imaging 60 healthy volunteers in the initial NIR system, oxygen saturation was a significant discriminator between the BIRADS classifications of adipose tissue, heterogeneously dense, and extremely dense tissue. By using the MR-guided NIR system, more accurate tissue-specific data were obtained on adipose and fibroglandular volumes, with 11 healthy volunteers. In these data, oxygen saturation in the adipose tissue correlated with percentage of adipose tissue. In two case studies of infiltrating ductal carcinomas, oxygen saturation was reduced at the site of the tumor, as compared with the surrounding healthy tissue, agreeing with conventional thought that hypoxia exists in larger solid tumors. The MRI-guided NIR images of oxygen saturation provide higher resolution and superior SNR and will likely be used in the future to study and characterize specific tissue volumes.  相似文献   

16.
The purpose of this study was to obtain quantitative information of the relative displacements and rotations of the carpal bones during movement of the wrist. Axial helical CT scans were made of the wrists of 11 volunteers. The wrists were imaged in the neutral position with a conventional CT technique, and in 15-20 other postures (flexion-extension, radial-ulnar deviation) with a low-dose technique. A segmentation of the carpal bones was obtained by applying a deformable surface model to the regular-dose scan. Next, each carpal bone, the radius, and ulna in this scan was registered with the corresponding bone in each low-dose scan using a three-dimensional matching technique. A detailed definition of the surfaces of the carpal bones was obtained from the regular-dose scans. The low-dose scans provided sufficient information to obtain an accurate match of each carpal bone with its counterpart in the regular-dose scan. Accurate estimates of the relative positions and orientations of the carpal bones during flexion and deviation were obtained. This quantification will be especially useful when monitoring changes in kinematics before and after operative interventions, like mini-arthrodeses. This technique can also be applied in the quantification of the movement of other bones in the body (e.g., ankle and cortical spine).  相似文献   

17.
A quantitative analysis of prostate-specific antigen (PSA) in samples of human blood serum by fluorescence immunochromatography using monoclonal antibodies to PSA was developed. The fluorescence immunochromatographic analysis system is composed of anti-PSA-monoclonal antibody (mAb), fluorescence conjugates in detection solution, a immunochromatographic assay strip, and a laser fluorescence scanner. A fluorescence immunochromatographic analysis system was employed to detect PSA on the basis of the area ratio between the control line and the test line of the strip. Under optimal conditions, the area ratio was proportional to PSA concentration ranging from 0.72 to 46.0 ng/mL with a detection limit of 0.72 ng/mL.  相似文献   

18.
We compare pharmacokinetic, tolerance, and imaging properties of two near-IR contrast agents, indocyanine green (ICG) and 1,1(')-bis-(4-sulfobutyl) indotricarbocyanine-5,5(')-dicarboxylic acid diglucamide monosodium salt (SIDAG). ICG is a clinically approved imaging agent, and its derivative SIDAG is a more hydrophilic counterpart that has recently shown promising imaging properties in preclinical studies. The rather lipophilic ICG has a very short plasma half-life, thus limiting the time available to image body regions during its vascular circulation (e.g., the breast in optical mammography where scanning over several minutes is required). In order to change the physicochemical properties of the indotricarbocyanine dye backbone, several derivatives were synthesized with increasing hydrophilicity. The most hydrophilic dye SIDAG is selected for further biological characterization. The acute tolerance of SIDAG in mice is increased up to 60-fold compared to ICG. Contrary to ICG, the pharmacokinetic properties of SIDAG are shifted toward renal elimination, caused by the high hydrophilicity of the molecule. N-Nitrosomethylurea (NMU)-induced rat breast carcinomas are clearly demarcated, both immediately and 24 h after intravenous administration of SIDAG, whereas ICG shows a weak tumor contrast under the same conditions. Our findings demonstrate that SIDAG is a high potential contrast agent for optical imaging, which could increase the sensitivity for detection of inflamed regions and tumors.  相似文献   

19.
Fluorescence molecular tomography (FMT) has emerged as a means of quantitatively imaging fluorescent molecular probes in three dimensions in living systems. To assess the accuracy of FMT in vivo, translucent plastic tubes containing a turbid solution with a known concentration of Cy 5.5 fluorescent dye are constructed and implanted subcutaneously in nude mice, simulating the presence of a tumor accumulating a fluorescent molecular reporter. Comparisons between measurements of fluorescent tubes made before and after implantation demonstrate that the accuracy of FMT reported for homogeneous phantoms extends to the in vivo situation. The sensitivity of FMT to background fluorescence is tested by imaging fluorescent tubes in mice injected with Cy 5.5-labeled Annexin V. For small tube fluorochrome concentrations, the presence of background fluorescence results in increases in the reconstructed concentration. This phenomenon is counteracted by applying a simple subtraction correction to the measured fluorescence data. The effects of varying tumor photon absorption are simulated by imaging fluorescent tubes with varying ink concentrations, and are found to be minor. These findings demonstrate the in vivo quantitative accuracy of fluorescence tomography, and encourage further development of this imaging modality as well as application of FMT in molecular imaging studies using fluorescent reporters.  相似文献   

20.
The aim of this study is to evaluate the biochemical foundation and clinical capability of an image-guided near-infrared (NIR) autofluorescence (AF) spectroscopy technique for in vivo diagnosis of colonic malignancies during clinical colonoscopy. A novel endoscopic fiber-optic AF system was utilized for in vivo NIR AF measurements at 785 nm excitation. A total of 263 in vivo NIR AF spectra of colonic tissues were measured from 100 patients, in which 164 spectra were from benign tissue (116 normal and 48 hyperplastic polyps), 34 spectra were from precancer (adenomatous polyps), and 65 spectra were from cancer. The non-negativity constrained least squares minimization biochemical modeling was explored to estimate the biochemical compositions of colonic tissue using nine basis reference spectra from the representative biochemicals (i.e., collagen I, elastin, β-nicotinamide adenine dinucleotide, flavin adenine dinucleotide, L-tryptophan, hematoporphyrin, 4-pyridoxic acid, pyridoxal 5'-phosphate, and water) associated with structural or cellular metabolic progression in colonic precancer and cancer. High-quality in vivo NIR AF spectra in the spectral range of 810 to 1000 nm were acquired from colonic benign, precancerous, and cancerous mucosa under white-light reflectance endoscopic imaging guidance. Partial least squares discriminant analysis, together with the leave-one tissue site-out, cross validation on in vivo NIR AF spectra yields diagnostic sensitivities of 85.4%, 76.5%, and 84.6%, and specificities of 89.9%, 93.4%, and 91.4%, respectively, for classification of benign, precancer, and cancer in the colon. This work demonstrates that image-guided NIR AF spectroscopy in conjunction with biochemical modeling has promising potential for improving in vivo detection and diagnosis of colonic precancer and cancer during clinical colonoscopic screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号