首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Chen Q  Peng W  Qi S  Xu A 《Planta medica》2002,68(6):550-553
The present study demonstrates for the first time that acutiaporberine, a bisalkaloid isolated from the tranditional Chinese medical herb Thalictrum acutifolium (Hand.-Mazz.) Boivin. (TAB), induces apoptosis of a cultured highly metastatic human lung cancer cell line 95-D. Immunohistochemistry assay (IHC) and Western-blot analysis show down-regulation of bcl-2 gene and up-regulation of bax gene and c-myc gene in the treated cells. These results suggest that acutiaporberine may be a natural potential apoptosis-inducing agent for highly metastatic lung cancer.  相似文献   

2.
We screened a library of 11,000 small molecular weight chemicals, looking for compounds that affect cell viability. We have identified 2-amino-N-quinoline-8-yl-benzenesulfonamide (QBS) as a potent cytotoxic compound that induces cell cycle arrest and apoptosis. Treatment of Jurkat T cells with QBS increased the levels of cyclin B1 as well as phosphorylated-cdc2, which was accompanied by reduced activity of cdc2 kinase, suggesting that QBS may induce cell cycle arrest at G2 phase. Structural analogues of QBS also exhibited similar effects on cell cycle progression and cell viability. Long-term treatment with QBS resulted in DNA fragmentation, cytochrome C release, and PARP cleavage, and an increase in the number of subdiploidy cells, indicative of cellular apoptosis. Moreover, QBS-induced apoptosis was blocked by z-VAD-fmk, a pan-caspase inhibitor. These results suggest that QBS is a novel and potent compound that induces G2 arrest and subsequent apoptosis, implicating it as a putative candidate for chemotherapy.  相似文献   

3.
Sorafenib, a multikinase inhibitor, is emerging as a promising targeted agent that may possess antitumor activity against a broad range of cancers. The mechanism by which sorafenib induces lung cancer cell death and apoptosis, however, is not understood. In the present study, we provide evidence that sorafenib acts through inhibition of mammalian target of rapamycin (mTOR) to down-regulate survivin and promote apoptotic cell death in human non-small cell lung cancer (NSCLC) cells. Sorafenib induced ATF4-mediated Redd1 expression, leading to mTOR inhibition—the upstream signal for down-regulation of survivin. Overexpression of survivin reduced sorafenib-induced apoptosis, whereas silencing survivin using small interfering RNA (siRNA) enhanced it, supporting the interpretation that down-regulation of survivin is involved in sorafenib-induced cell death in human NSCLC cells. Furthermore, sorafenib abolished the induction of survivin that normally accompanies IGF-1-stimulated mTOR activation. We further found that Redd1-induced mTOR down-regulation and ATF4/CHOP-induced expression of the TRAIL receptor DR5 associated with sorafenib treatment helped sensitize cells to TRAIL-induced apoptosis. Our study suggests that sorafenib mediates apoptotic cell death in human NSCLC cells through Redd1-induced inhibition of mTOR and subsequent down-regulation of survivin, events that are associated with sensitization to TRAIL-induced apoptotic cell death.  相似文献   

4.
Leptomycin B (LMB), which is originally isolated from Streptomyces, possesses anti-tumor properties in vivo and in vitro. Though it was previously reported that LMB induces cell cycle arrest and p53-mediated apoptosis in certain cancer cells, however, the mechanism by which LMB induces apoptosis remains poorly understood. Here, we investigated the mechanisms of apoptosis induced by LMB in U937 cells. Treatment with LMB concentration-dependently induced cytotoxicity and apoptosis in U937 cells that correlated temporally with activation of caspases and down-regulation of Mcl-1 and XIAP. LMB did not change the expressions of Bcl-2 or Bax. A broad spectrum caspase inhibitor, z-VAD-fmk, blocked caspase-3 activation and elevated the survival in LMB-treated U937 cells, suggesting that caspase-3 activation is critical for LMB-induced apoptosis. Interestingly, Bcl-2 overexpression that blocked cytochrome c release by LMB effectively attenuated the apoptotic response to LMB, suggesting that LMB-induced apoptosis is mediated through the mitochondrial pathway. Antioxidants or antioxidant enzymes had no effects on LMB-induced apoptosis. Data of flow cytometry analysis using 2',7'-dichlorofluorescein-diacetate further revealed no reactive oxygen species (ROS) generation by LMB, indicating that apoptosis induced by LMB is ROS-independent. However, the apoptotic response to LMB was not shown in U937 cells pretreated with the sulfhydryl group-containing antioxidant N-acetylcysteine (NAC). Further analysis suggested that NAC directly binds LMB and abolishes the apoptotic effects of LMB. Collectively, these findings suggest that LMB potently induces apoptosis in U937 cells, and LMB-induced apoptosis in U937 cells is related with cytochrome c release, activation of caspases, and selective down-regulation of Mcl-1 and XIAP.  相似文献   

5.
Gossypol, a male contraceptive drug, has been demonstrated to have antiproliferative and antimetastatic effects on many kinds of cancer cells in vitro. HT-29 human carcinoma cell line is one of the most susceptible cell lines to gossypol-induced cell death. Here, it is shown that treatment of HT-29 cells with gossypol not only induces cell cycle arrest on the G0/G1 phase, but also induces apoptosis. With a serial of Western blot analysis, it is revealed that gossypol-induced cell cycle arrest is involved in P21 up-regulation and cyclin D1 down-regulation; gossypol-induced apoptosis triggers down-regulation of anti-apoptosis Bcl-2 members: Bcl-X(L), Bag-1 and Mcl-1, up-regulation of pro-apoptosis Bcl-2 member Bak, activation of caspase-3, -6, -7, -8, and -9, up-regulation of Apaf-1, release of cytochrome c (cyto-c) from mitochondria, and activation of both DFF45 and PARP. Taken together, gossypol-induced cell death initiates extensive alterations of cell cycle and apoptosis proteins. Gossypol-induced apoptosis of HT-29 cells is through first the mitochondrial pathway, then the death receptor pathway, and the mitochondria pathway is, at least in part, involved in cyto-c release.  相似文献   

6.
The treatment of rat thymocytes with YO-2, a novel inhibitor of plasmin, resulted in an increase in DNA fragmentation. DNA fragmentation was also induced by another YO compounds such as YO-0, -3, -4 and -5. These YO compounds are the inhibitor of plasmin activity. On the other hand, YO-1, -6 and -8 that hardly inhibit plasmin activity had no effect on DNA fragmentation. Analysis of fragmented DNA from thymocytes treated with YO-2 by agarose gel electrophoresis revealed that the compound caused internucleosomal DNA fragmentation. In addition, judging from a laser scanning microscopy, annexin V-positive and propidium iodide-negative cells were increased by the treatment of the cells with the compound. Moreover, chromatin condensation was observed in thymocytes treated with the compound. These results demonstrated that YO-2 induces thymocyte apoptosis. There seemed to be some correlation between the apoptosis induced by YO compounds and their plasmin inhibitory effect. However, because the other protease inhibitors including pepstatin A, leupeptin, AEBSF, DFP and E-64-d did not affect DNA fragmentation, YO compounds are likely to have unique mechanism on plasmin or to show the effect on the other plasmin-like proteases. The plasmin inhibitory activity may have an important role in YO-2-induced apoptosis. Furthermore, the stimulations of caspase-8, -9 and -3-like activities were observed in thymocytes treated with YO-2. These results suggest that YO-2 induces thymocyte apoptosis via activation of caspase cascade.  相似文献   

7.
8.
Apoptosis of Hela cells induced by extract from Cremanthodium humile.   总被引:1,自引:0,他引:1  
Cremanthodium humile (C. humile) is a traditional herbal medicine for treatment of inflammation. Based on initial screening results, the purpose of this study was to evaluate the cytotoxic effect on four human cancer cell lines and one non-cancer cell line (293), then to determine the possible mechanisms of cell death elicited by the extract of C. humile on Hela cells. We have found the ether extract of C. humile (CH-EE) strongly decreased the survival rate of the four human tumor cell lines: Hela, A549, HepG2 and SW480. The cytotoxic effect of CH-EE on 293 was smaller than on tumor cell lines. Flow cytometry assays and nuclear staining showed that CH-EE induced apoptosis in Hela cells. This process was accompanied by the collapse of mitochondrial membrane potential, the release of cytochrome c and the activation of caspase-3/7 and -9. Furthermore, CH-EE generated reactive oxygen species (ROS) in Hela cells. These results indicate that CH-EE induces apoptosis in Hela cells through a ROS-mediated mitochondrial dysfunction pathway.  相似文献   

9.
OBJECTIVETo investigte the effects of KLT on drug sensitivity of DDP to PLA-801D in vitro,and find the best time of combination.METHODMTT assay.RESULTS1.Various concentration of KLT and DDP could inhibit the proliferation of PLA-801D. 2.KLT could advance  相似文献   

10.
谢冬冰  孟建宇  郭玉婷 ?  任霞  李雪 《天津医药》2016,44(11):1334-1337
摘要: 目的 探究 N-甲基-D-天冬氨酸受体亚型 1(NMDAR1)在结肠癌细胞 HT29 和 SW116 中的表达, 以及 NMDAR1 拮抗剂 MK801 对 HT-29 和 SW116 细胞生长抑制、 凋亡和迁移的影响。方法 采用免疫组织化学法检测 结肠癌细胞 HT-29 和 SW116 细胞表面 NMDAR1 的表达; 应用噻唑蓝(MTT)比色法测定 62.5、 125.0、 250.0、 500.0、 1 000.0、 2 000.0 μmol/L 的 MK801 对于 HT-29 和 SW116 细胞增殖作用的影响; 应用流式细胞术检测 2 000 μmol/L 的 MK801 对 HT29 和 SW116 细胞凋亡的影响; 应用细胞划痕实验检测 50 μmol/L MK801 对于结肠癌细胞 HT-29 和 SW116 迁移能力的影响。结果 结肠癌细胞 HT-29 和 SW116 均表达 NMDAR1, 且主要表达于细胞质中; 各浓度的 MK801 对 HT-29 细胞, 以及浓度为 500.0、 1 000.0、 2 000.0 μmol/L 的 MK801 对 SW116 细胞的生长抑制作用具有时 间效应关系, 24、 48 及 72 h 各 MK801 浓度组对 HT-29 和 SW116 细胞的抑制率随浓度升高整体呈增强趋势, 但抑制 率不呈明显的剂量效应关系; MK801 具有促进 HT-29 和 SW116 细胞凋亡的作用, 且主要表现诱导细胞早期凋亡; MK801 可抑制 HT-29 和 SW116 细胞迁移。结论 NMDAR1 在结肠癌细胞胞质中表达, 且 NMDAR1 拮抗剂 MK801 具有抑制肿瘤细胞生长、 迁移, 促进其早期凋亡的作用, 有望成为新一代抗肿瘤药物。  相似文献   

11.
Growth inhibitory effects of 15-lipoxygenase-1 [13-(S)-HPODE and 13-(S)-HODE] and 15-lipoxygenase-2 [15-(S)-HPETE and 15-(S)-HETE] (15-LOX-1 and LOX-2) metabolites and the underlying mechanisms were studied on chronic myeloid leukemia cell line (K-562). The hydroperoxy metabolites, 15-(S)-HPETE and 13-(S)-HPODE rapidly inhibited the growth of K-562 cells by 3h with IC(50) values, 10 and 15microM, respectively. In contrast, the hydroxy metabolite of 15-LOX-2, 15-(S)-HETE, showed 50% inhibition only at 40microM by 6h and 13-(S)-HODE, hydroxy metabolite of 15-LOX-1, showed no significant effect up to 160microM. The cells exposed to 10microM of 15-(S)-HPETE and 40microM of 15-(S)-HETE showed typical apoptotic features like release of cytochrome c, caspase-3 activation and PARP-1 (poly(ADP) ribose polymerase-1) cleavage. A flow cytometry based DCFH-DA analysis and inhibitory studies with DPI, a pharmacological inhibitor of NADPH oxidase, NAC (N-acetyl cysteine) and GSH revealed that NADPH oxidase-mediated generation of ROS is responsible for caspase-3 activation and subsequent induction of apoptosis in the K-562 cell line.  相似文献   

12.
F 11782 (2",3"-bis-pentafluorophenoxyacetyl-4",6"ethylidene-beta-D-glucoside of 4'-phosphate-4'-dimethylepipodophyllotoxin-2N-methyl glucamine salt), is a novel dual catalytic inhibitor of topoisomerases I and II characterised by marked in vivo antitumour activity, which also proved cytotoxic and exhibited DNA damaging properties in vitro. Mechanisms associated with this cell killing by F 11782 have been examined in P388 leukaemia cells. Treatment with F 11782 resulted in a dose-dependent DNA fragmentation coupled with the characteristic morphological features of apoptosis. Apoptosis-inducing concentrations of F 11782 induced caspases-3/7 activation accompanied by proteolytic cleavage of poly(ADP-ribose)-polymerase, which could be inhibited by the caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde. In addition, F 11782-induced apoptosis in P388 cells was associated with an increased expression of the pro-apototic Bax protein, without significant changes in the level of the anti-apoptotic Bcl-2 protein, and with modification at the mitochondrial membrane function. These results indicate that F 11782 leads to apoptosis through a caspase-3/7 dependent mechanism and suggest that the so-called "mitochondrial pathway" is implicated in F 11782-induced apoptosis in P388 cells.  相似文献   

13.
We examined the effects of diallyl disulfide (DADS), an oil-soluble organosulfur compound found in garlic, on human HepG2 hepatoma cells to better understand its effect on apoptosis and apoptosis-related genes. Our study has demonstrated that DADS affects cell proliferation activity and viability and elicits typical apoptotic morphologic changes (chromatic condensation and nuclear fragmentation) in human HepG2 hepatoma cells. Also, treatment with DADS induces a temporary increase in phosphorylated p38 MAPK (phospho-p38) and phosphorylated p42/44 MAPK (phospho-p42/p44) in a time- and concentration-dependent manner. Inhibition of activated/phosphorylated mitogen-activated protein kinase (MAPK) with phospho-p38 or phospho-p42/44 specific inhibitors, SB203580 or U0126, induces apoptosis without DADS treatment, indicating that at least the endogenous activated forms of p38 MAPK and p42/p44 MAPK markedly exert cytoprotective roles from cell apoptosis in the HepG2 hepatoma cells. Combined treatment with these inhibitors followed by DADS further enhances the DADS-induced apoptosis. Taken together, these results show that both DADS and the specific inhibitors of MAPKs could induce apoptosis in HepG2 hepatoma cells and that the MAPKs inhibitors further enhance the apoptotic effect in DADS-treated HepG2 hepatoma cells.  相似文献   

14.
The benzoacronycine derivative S23906-1 is a highly potent antitumor agent with a broad spectrum of activity against different human solid tumor xenografts. The marked cytotoxic potential of this drug may be the result of its interaction with DNA but the precise mechanism of action remains unclear at present. We have investigated the induction of apoptosis in human promyelocytic leukemia HL-60 and murine melanoma B16 cells treated with S23906-1. With both cell lines, the drug induces cell cycle perturbations (G2/M arrest) and triggers apoptosis as revealed by the externalization of Annexin V-targeted PS residues at the periphery of the cells. But the biochemical pathways leading to apoptosis are different for the two cancer cell lines. In HL-60 cells, the drug induces significant variations of the Delta Psi(mt), measured by flow cytometry using the fluorochromes JC-1 and cm-X-ros. Activation of caspase-3 and chromatin condensation in HL-60 cells exposed to submicromolar concentrations of S23906-1 for 24hr were also clearly seen by flow cytometry and confocal microscopy experiments. In contrast, the extent of apoptosis induced by S23906-1 was found to be much more limited in B16 cells. No significant variations of Delta Psi(mt) and no cleavage of the fluorescent caspase-3 substrate GDEVDGI (PhiPhiLux-G(1)D(2) probe) could be detected by cytometry in B16 cells exposed to S23906-1. In addition, we characterized the mitochondrial production of reactive oxygen species (ROS) using the probe dihydroethidine (HE) and the variations of the mitochondrial mass using the cardiolipin-interacting probe nonyl acridine orange (NAO). S23906-1 stimulates the production of ROS in both cell lines but the number of mitochondria seems to increase only in drug-treated B16 cells. Collectively these findings identify S23906-1 as a potent inducer of cell apoptosis in the leukemia cells and to a lower extent in the melanoma cells. The results help to understand the downstream cytotoxic actions of this new anticancer agent which is currently undergoing preclinical development.  相似文献   

15.
Capsaicin, a pungent compound found in hot chili peppers, induces apoptotic cell death in various cell lines, however, the precise apoptosis signaling pathway is unknown. Here, we investigated capsaicin-induced apoptotic signaling in the human breast cell line MCF10A and found that it involves both endoplasmic reticulum (ER) stress and calpain activation. Capsaicin inhibited growth in a dose-dependent manner and induced apoptotic nuclear changes in MCF10A cells. Capsaicin also induced degradation of tumor suppressor p53; this effect was enhanced by the ER stressor tunicamycin. The proteasome inhibitor MG132 completely blocked capsaicin-induced p53 degradation and enhanced apoptotic cell death. Capsaicin treatment triggered ER stress by increasing levels of IRE1, GADD153/Chop, GRP78/Bip, and activated caspase-4. It led to an increase in cytosolic Ca2+, calpain activation, loss of the mitochondrial transmembrane potential, release of mitochondrial cytochrome c, and caspase-9 and -7 activation. Furthermore, capsaicin-induced the mitochondrial apoptotic pathway through calpain-mediated Bid translocation to the mitochondria and nuclear translocation of apoptosis-inducing factor (AIF). Capsaicin-induced caspase-9, Bid cleavage, and AIF translocation were blocked by calpeptin, and BAPTA and calpeptin attenuated calpain activation and Bid cleavage. Thus, both ER stress- and mitochondria-mediated death pathways are involved in capsaicin-induced apoptosis.  相似文献   

16.
Tetrandrine, a bis-benzylisoquinoline alkaloid from the root of Stephania tetrandra, induces apoptosis in human T-cell lines, lung carcinoma and hepatoblastoma cells. However, the mechanisms by which tetrandrine inhibits tumor cell growth are poorly understood. The purpose of the present study was to investigate the intracellular signaling mechanism of tetrandrine-induced apoptosis in HepG2 cells. The induction of apoptosis was determined by morphological analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Treatment of cells with tetrandrine caused the upregulation of p53, downregulation of Bcl-X(L), cleavage of Bid and Bax, and release of cytochrome c, which were accompanied by activation of caspases 9, 3 and 8. The activation of caspases 9 and 3 preceded that of caspase 8. A broad-spectrum caspase inhibitor and a caspase 8-specific inhibitor completely blocked tetrandrine-induced Bid processing, cytochrome c release, activation of caspase 3, and cell death. These findings and data showing the early release of cytochrome c, cleavage of Bid and downregulation of Bcl-X(L) suggest that the mitochondrial pathway is primarily involved in tetrandrine-induced apoptosis. The activation of caspase 8 after early caspases 9 and 3 activation might act as an amplification loop for activation of upstream signals such as Bid cleavage or cytochrome c release. These data suggest that tetrandrine may constitute a plausible therapeutic for hepatocellular carcinoma.  相似文献   

17.
The formation of reactive oxygen species (ROS) plays a critical role in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced toxicities in mammalian cells since it promotes cell proliferation, growth arrest, and apoptosis. In this study, we investigated whether TCDD induces oxidative stress and DNA damage in human ERalpha(+)/MCF-7 and ERalpha(-)/MDA-MB-231 breast cancer cells and whether this is accompanied by the initiation of DNA repair events. Results indicated that viability of MCF-7 and MDA-MB-231 cells was concentration- and time-dependently reduced by TCDD. Further, we observed significant increases in ROS formation and decreases in intracellular glutathione (GSH) in these two cell lines after TCDD treatment. Overall, the extent of cell death was greater in MCF-7 cells than in MDA-MB-231 cells whereas the magnitude of ROS formation and GSH depletion was greater in MDA-MB-231 cells than in MCF-7 cells. In addition, we observed that at non-cytotoxic concentration (1nM for 5h), TCDD induced decreases in intracellular NAD(P)H and NAD(+) in MCF-7 and MDA-MB-231 cells. These decreases were completely blocked by three types of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. The catalytic activation of PARP-1 in cells treated with TCDD was confirmed by detection of the presence of polymers of ADP-ribose-modified PARP-1 using Western blotting. Moreover, we demonstrated increases in the number of DNA strand breaks in MCF-7 and MDA-MB-231 cells exposed to TCDD as measured by the single-cell gel electrophoresis (Comet) assay. Overall, this evidence confirms that TCDD induces decreases in intracellular NAD(P)H and NAD(+) through PARP-1 activation mediated by formation of DNA strand breaks. In addition, we demonstrated that the extent of oxidative stress and DNA damage was greater in MDA-MB-231 cells than in MCF-7 cells, with a strong correlation to estrogen receptor (ER) status. In conclusions, our findings add further support to the theme that ROS formation is a significant determinant factor in mediating the induction of oxidative DNA damage and repair in human breast cancer cells exposed to TCDD and that the TCDD-induced oxidative stress and DNA damage may, in part, contribute to TCDD-induced carcinogenesis.  相似文献   

18.
Synthetic analogs of 1,4-anthraquinone (AQ code number), a compound that mimics the antiproliferative effects of daunorubicin (daunomycin) in the nanomolar range in vitro but has the advantage of blocking nucleoside transport and retaining its efficacy in multidrug-resistant tumor cells, were tested for their ability to induce apoptosis in the HL-60 cell system. AQ10 and, especially, the new lead antiproliferative compounds AQ8 and AQ9 reduce the growth and integrity of wild-type, drug-sensitive, HL-60-S cells more effectively than AQ1, suggesting that various methyl group substituents at C6 may enhance the bioactivity of the parent compound. Internucleosomal DNA fragmentation, a late marker of apoptosis, is similarly induced in a biphasic manner by increasing concentrations of AQ8 and AQ9 at 24 hr. Poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, an early event required for cells committed to apoptosis, is detected within 3-6 hr in HL-60-S cells treated with AQ9. In accord with the fact that the caspases 9 and 3 cascade is responsible for PARP-1 cleavage, the activities of initiator caspase-9 and effector caspase-3 are induced by AQ9 in the same time- and concentration-dependent manners and to the same maximal degrees in both the HL-60-S and multidrug-resistant HL-60-RV cell lines. Interestingly, a 1-hr pulse treatment is sufficient for AQ8 and AQ9 to maximally induce caspase-9 and -3 activities at 6 hr. The release of mitochondrial cytochrome c (Cyt c) is also detected within 3-6hr in HL-60-S cells treated with AQ9, a finding consistent with the fact that Cyt c is the apoptotic trigger that activates caspase-9. Moreover, AQ analogs induce Cyt c release, caspase-9 and -3 activities and PARP-1 cleavage in relation with their abilities to decrease tumor cell growth and integrity, AQ8 and AQ9 being consistently the most effective. Since apical caspases 2 and 8 may both act upstream of mitochondria to promote Cyt c release, it is significant to show that AQ9 maximally induces caspase-2 and -8 activities at 6 and 9 hr, respectively. During AQ8 treatment, the caspase-2 inhibitor benzyloxycarbonyl (z)-Val-Asp-Val-Ala-Asp (VDVAD)-fluoromethyl ketone (fmk) totally blocks caspase-9, -3, and -8 activations, whereas the caspase-8 inhibitor z-Ile-Glu-Thr-Asp-(IETD)-fmk does not prevent caspase-2, -9, and -3 activations, suggesting that AQ-induced caspase-2 activity is an upstream event critical for the activation of the downstream caspases 9 and 3 cascade, including the mitochondrial amplification loop through caspase-8. However, these caspase-2 and -8 inhibitors fail to alter AQ8-induced Cyt c release, suggesting that AQs might also target mitochondria independently from caspase activation. Furthermore, the antagonistic anti-Fas DX2 and ZB4 monoclonal antibodies (mAbs), which block the induction of Cyt c release and caspase-2, -8, and -9 activities by the agonistic anti-Fas CH11 mAb, and the neutralizing anti-Fas ligand (FasL) NOK-1 mAb all fail to inhibit AQ9-induced Cyt c release and caspase-2, -8, and -9 activities, suggesting that the FasL/Fas signaling pathway is not involved in the mechanism by which antiproliferative AQ analogs trigger apoptosis in HL-60 cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号