首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The objectives of the present study were to examine the effect of a milk fat-depressing (MFD) diet on: 1) the activity of mammary acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), 2) ACC mRNA relative abundance and 3) distributions of conjugated linoleic acids (CLA) and trans-18:1 fatty acids (tFA) in milk fat. Twelve lactating Holstein cows were used in a single reversal design. Two diets were fed: a control diet (60:40% forage/concentrate) and an MFD diet (25:70% forage/concentrate, supplemented with 5% soybean oil). The MFD diet decreased (P: < 0 0.001) milk fat by 43% and ACC and FAS activity by 61 and 44%, respectively. A reduced ACC mRNA relative abundance (P: < 0.001) corresponded with the lower ACC activity. The fatty acids synthesized de novo were decreased (P: < 0. 002), whereas tFA were increased from 1.9 to 15.6% due predominantly to a change in trans-10-18:1 isomer (P: < 0.001). With the MFD diet, the trans-7, cis-9 and trans-10, cis-12 CLA isomers were elevated (P: < 0.001), in contrast to the decrease in trans-11-18:1 (P: < 0. 001) and cis-9, trans-11-18:2. The data were consistent with a dietary effect on mammary de novo FA synthesis mediated through a reduction in ACC and FAS activity and in ACC mRNA abundance. The results were compatible with a role of trans-10, cis-12 CLA in milk fat depression, but alterations noted in tFA and other CLA isomers suggest that they also may be important during diet-induced milk fat depression.  相似文献   

4.
Conjugated linoleic acid (CLA) is a naturally occurring anticarcinogen found in milk fat and body fat of ruminants. Although CLA is an intermediate in ruminal biohydrogenation of linoleic acid, we hypothesized that its primary source was from endogenous synthesis. This would involve Delta(9)-desaturase and synthesis from trans-11 18:1, another intermediate in ruminal biohydrogenation. Our first experiment supplied lactating cows (n = 3) with trans-11 18:1 by abomasal infusion and examined the potential for endogenous synthesis by measuring changes in milk fat CLA. By d 3, infusion of trans-11 18:1 resulted in a 31% increase in concentration of cis-9, trans-11 CLA in milk fat, demonstrating that an active pathway for endogenous synthesis of CLA exists. Our second experiment examined the quantitative importance of endogenous synthesis of CLA in lactating cows (n = 3) by abomasally infusing a putative stimulator (retinol palmitate) or an inhibitor (sterculic oil) of Delta(9)-desaturase. Infusion of retinol palmitate had no influence on milk fatty acid desaturation, and yield of CLA in milk fat was not altered. However, sterculic oil infusion decreased the concentration of CLA in milk fat by 45%. Consistent with Delta(9)-desaturase inhibition, the sterculic oil treatment also altered the milk fat concentration of other Delta(9)-desaturase products as indicated by the two- to threefold increase in the ratios of 14:0 to 14:1(,) 16:0 to 16:1 and 18:0 to cis-18:1. Using changes in the ratio of 14:0 to 14:1 as an indication of the extent of Delta(9)-desaturase inhibition with the sterculic oil treatment, an estimated 64% of the CLA in milk fat was of endogenous origin. Overall, results demonstrate that endogenous synthesis of CLA from trans-11 18:1 represented the primary source of CLA in milk fat of lactating cows.  相似文献   

5.
Cis-9, trans-11, the major isomer of conjugated linoleic acid (CLA) in bovine milk fat, is derived from ruminal biohydrogenation of 18:2 (n-6) and endogenous conversion of trans-11 18:1 (vaccenic acid; VA) in the mammary gland. Most evidence to date suggests that endogenous synthesis is the major source of cis-9, trans-11 CLA, but the extent of VA desaturation is less well defined. Four lactating cows were used in consecutive 4 x 4 Latin squares to examine changes in milk fatty acid composition and secretion in response to abomasal infusions of lipid supplements enriched with cis-9, trans-11 CLA (88.8%) or VA (29.4%). Treatments were infused over 4-d, followed by a 3-d washout, during 7 d experimental periods and administered to deliver 0, 3, 6, and 12 g cis-9, trans-11 CLA/d (Expt. 1) or 0, 7.5, 15 and 30 g VA/d (Expt. 2). Infusions of cis-9, trans-11 CLA increased linearly milk cis-9, trans-11 CLA concentrations from 0.68 to 1.46 g/100 g fatty acids. Abomasal infusions of VA increased linearly milk VA and cis-9, trans-11 CLA content from 1.22 to 2.72 and 0.61 to 1.24 g/100 g fatty acids, respectively. Changes in milk fatty acid secretion indicated that 28.9% of VA was converted to cis-9, trans-11 CLA. Results provide evidence that conversion by Delta9-desaturase to cis-9, trans-11 CLA in the lactating cow is independent of postruminal VA supply. In conclusion, endogenous synthesis via VA was equivalent to approximately 21% of the response to increases in cis-9, trans-11 CLA available for absorption.  相似文献   

6.
Duodenal and milk samples obtained from lactating cows in a previous study were analyzed to compare the content and isomer distribution of conjugated linoleic acids (CLA) and trans-18:1 fatty acids (tFA). Four diets containing either low [25 g/100 g dry matter (DM)] or high (60 g/100 g DM) forage were fed with or without 2% added buffer to four multiparous Holstein dairy cows in a 2 x 2 factorial, 4 x 4 Latin square design with 3-wk experimental periods. Duodenal flows of CLA were low (1.02-1.84 g/d), compared with that of tFA (57-120 g/d), regardless of diet. The greatest amounts of CLA and tFA, as well as the greatest proportions of trans-10-18:1 (P < 0.02), and cis-9, trans-11 (P < 0.01) and trans-10, cis-12 CLA (P < 0.01) were in the duodenal flow of cows fed the low forage unbuffered diet. In milk fat, tFA were increased by the low forage unbuffered diet and the trans-10-18:1 (P < 0.02) replaced trans-11-18:1 as the major 18:1 isomer. Milk CLA secretion (7.2-9.1 g/d) was greater (P < 0.001) than that in the duodenal flow with each diet. This was due to the increase in cis-9, trans-11-18:2 and trans-7, cis-9 CLA, resulting most likely from endogenous synthesis via Delta9-desaturation of ruminally derived tFA. For other CLA isomers, duodenal flow was always greater than milk secretion, suggesting that they essentially were produced in the rumen.  相似文献   

7.
Based on the potential benefits of cis-9, trans-11-conjugated linoleic acid (CLA) for human health there is interest in developing sustainable nutritional strategies for enhancing the concentration of this fatty acid in ruminant-derived foods. Most evidence to date suggests that endogenous synthesis is the major source of cis-9, trans-11 in milk fat and ruminal outflow is limited and largely independent of dietary 18 : 2n-6 supply. Four lactating cows fitted with a rumen cannula were used in a 4 x 4 Latin square with 14 d experimental periods to examine the effects of sunflower-seed oil (SFO) as a source of 18 : 2n-6 on ruminal lipid metabolism. Cows were offered grass silage-based diets supplemented with 0, 250, 500 or 750 g SFO/d. Supplements of SFO had no effect on DM intake, milk fat or protein secretion, but increased linearly (P < 0.01) milk yield and milk lactose output and shifted (P < 0.001) rumen fermentation towards propionate at the expense of acetate. SFO supplements increased linearly (P < 0.05) the flow of 18 : 0, 18 : 1, 18 : 2n-6 and total CLA at the omasum and enhanced ruminal cis-9-18 : 1, 18 : 2n-6 and 18 : 3n-3 metabolism. Flows of all-trans- (Delta4-16) and cis- (Delta9-16) 18 : 1 isomers were elevated, while increases in ruminal CLA outflow were confined to trans-8, trans-10 and geometric 9,11 and 10,12 isomers. It is concluded that supplementing grass silage-based diets with plant oils rich in 18 : 2n-6 enhances ruminal outflow of trans-11-18 : 1 and cis-9, trans-11-CLA in lactating cows.  相似文献   

8.
The utilization of (13)C-labeled vaccenic acid (VA) by lactating dairy cows to synthesize cis-9, trans-11 conjugated linoleic acid (CLA) was investigated. Primiparous ruminally cannulated Holstein cows (n = 3) were abomasally infused with 1.5 g of VA-1-(13)C. Blood and milk samples were taken frequently before and after VA infusion. Milk and plasma lipid were extracted using chloroform:methanol. Plasma lipid was separated into triacylglycerol (TG), cholesterol ester (CE), phospholipid (PL), nonesterified fatty acid (NEFA), and mono- and diacylglycerol (MDG) fractions. Lipid was methylated, converted to dimethyl disulfide and Diels-Alder adducts, and analyzed by GC-MS. Increased enrichment of (13)C was determined using a 2-sample t test for each sample time compared with -24 h, with significance declared at P < 0.05. Enrichment in milk fat VA was detected at 4 (3.0%), 8 (8.3%), 12 (4.1%), 16 (2.2%), and 20 h (0.8%). Enrichment in VA was also detected in plasma TG, NEFA, PL, and MDG. Enrichment in milk fat cis-9, trans-11 CLA, the Delta9-desaturase product of VA, was detected at 4 (2.6%), 8 (6.6%), 12 (3.4%), 16 (1.7%), and 24 h (0.7%). Enrichment was not detected in cis-9, trans-11 CLA for any plasma lipid fraction. Modeling of the data showed the exponential decay in (13)C enrichment over time for both VA and cis-9, trans-11 CLA in milk fat. Conversion of dietary VA to cis-9, trans-11 CLA endogenously was confirmed with the mammary gland being the primary site of Delta9-desaturase activity; approximately 80% of milk fat cis-9, trans-11 CLA originated from VA.  相似文献   

9.
Conjugated linoleic acid (CLA) supplements containing a variety of isomers reduce milk fat yield. We have recently identified trans-10, cis-12 CLA as the isomer responsible for inhibiting milk fat synthesis in dairy cows. Our objectives were to determine milk fat yield and fatty acid composition responses to different doses of trans-10, cis-12 CLA. Multiparous Holstein cows (n = 4) were used in a 4 x 4 Latin square design. Treatments consisted of a 5-d abomasal infusion of four doses of trans-10, cis-12 CLA, i.e., 0.0, 3.5, 7.0 and 14.0 g/d. Milk fat yield was decreased 25, 33, and 50%, and milk fat concentration was reduced 24, 37 and 46% when cows received 3.5, 7.0 and 14.0 g/d of trans-10, cis-12 CLA, respectively. Feed intake, milk yield, and milk protein content and yield were unaffected by treatment. Milk fatty acid composition revealed that de novo synthesized fatty acids (short and medium chain) were extensively reduced when cows received the two highest doses, but at the low dose (3.5 g/d), decreases in de novo synthesized fatty acids and preformed fatty acids were similar. Changes in milk fatty acid composition also demonstrated that (9)-desaturase activity was inhibited at the two high doses of trans-10, cis-12 CLA, but was unaffected by the low dose. Results indicate minimal quantities of trans-10, cis-12 CLA (0.016% of dietary dry matter) markedly inhibited milk fat synthesis (25% reduction) and that a curvilinear reduction in milk fat yield occurred with increasing quantities of trans-10, cis-12 CLA.  相似文献   

10.
Conjugated linoleic acid (CLA) isomers effect an impressive range of biological processes including the ability to inhibit milk fatty acid synthesis. Although this has been demonstrated in several mammals, research has been most extensive with dairy cows. The first isomer shown to affect milk fat synthesis during lactation was trans-10, cis-12 CLA, and its effects have been well characterized including dose-response relationships. Recent studies have tentatively identified 2 additional CLA isomers that regulate milk fat synthesis. Regulation by CLA occurs naturally in dairy cows when specific CLA isomers produced as intermediates in rumen biohydrogenation act to inhibit milk fat synthesis; this physiological example of nutritional genomics is referred to as diet-induced milk fat depression. Molecular mechanisms for the reduction in mammary lipid synthesis involve a coordinated down-regulation of mRNA expression for key lipogenic enzymes associated with the complementary pathways of milk fat synthesis. Results provide strong evidence of a role for sterol response element-binding protein 1 and Spot 14 in this translational regulation. Effects of CLA on body fat accretion have also been investigated in nonlactating animals, but CLA effects on mammary fatty acid synthesis occur at an order-of-magnitude lower dose and appear to involve very different mechanisms than those proposed for the antiobesity effects of CLA. Overall, results demonstrate the unique value of cows as a model to investigate the role of CLA in the regulation of milk fat synthesis during lactation.  相似文献   

11.
ABSTRACT: BACKGROUND: Conjugated linoleic acids (CLA) are in focus of dairy cattle research because of its milk fat reducing effects. Little is known about the impact of CLA on immune function in dairy cows. Therefore, in the present study we investigated the effects of a long term supplementation of dairy cows with CLA on the fatty acid profile of peripheral blood mononuclear cells (PBMC) and their proliferation ex vivo. RESULTS: The supplementation of dairy cows with either 100 g/d of a control fat preparation (CON,n = 15), 50 g/d of the control fat preparation and 50 g/d CLA supplement - containing 12.0 % cis-9,trans-11 and 11.9 % trans-10,cis-12 CLA of total fatty acid methyl esters - (CLA-50, n = 15) or 100 g/d of the CLA supplement (CLA-100, n = 16) did not influence the major fatty acids (C18:0, C16:0, cis-9 C18:1, cis-9,cis-12 C18:2, cis-5,cis-8,cis-11,cis-14 C20:4) in the lipid fraction of PBMC. The proportion of trans-10,cis-12 CLA of total fatty acids was increased in both CLA supplemented groups, but there was no effect on the cis-9,trans-11 isomer. Furthermore, the proportion of trans-9 C18:1 and cis-12 C24:1 was reduced in the CLA-100 group. The mitogen stimulated cell proliferation was not influenced by CLA feeding. CONCLUSION: CLA supplementation influenced the FA profile of some minor FA in PBMC, but these changes did not lead to differences in the mitogen induced activation of the cells.  相似文献   

12.
Dietary supplements of conjugated linoleic acid (CLA) containing trans-10, cis-12 CLA decrease milk fat secretion in the lactating cow and sheep, but their effects on mammary lipogenesis in the goat are less well defined. Eight lactating goats were used in two 4 x 4 Latin-square experiments with 14 d experimental periods to examine the effects of calcium salts of CLA methyl esters (CaCLA) containing trans-10, cis-12 on milk fat synthesis. Experimental treatments consisted of incremental inclusion of 0, 30, 60 or 90 g of CaCLA/d (corresponding to 7.47, 14.9 and 22.4 g/d of trans-10, cis-12 CLA) offered during the first 10 d of each experimental period that replaced maize grain in concentrates (Experiment 1) or calcium salts of palm oil fatty acids (Experiment 2). Relative to the control, inclusion of 30, 60 or 90 g CaCLA/d in the diet reduced milk fat yield by 19.8, 27.9 and 32.3 % and 17.5, 39.0 and 49.3 % in Experiments 1 and 2, respectively. Decreases in milk fat were due to reductions in the secretion of fatty acids synthesised de novo rather than the uptake of fatty acids from the peripheral circulation. Indirect comparisons with the studies in the lactating cow indicated a lower efficacy of CaCLA supplements on mammary lipogenesis in the goat. In conclusion, CaCLA in the diet inhibits milk fat synthesis in the goat, responses that are dependent on the supply of dietary fatty acids, with evidence that the caprine is less sensitive to the anti-lipogenic effects of trans-10, cis-12 CLA compared with the bovine or ovine.  相似文献   

13.
14.
Conjugated linoleic acids (CLA) have positive health effects in experimental models. Our objective was to determine the effect of CLA supplementation on milk of dairy cows. A commercial source of CLA was infused abomasally to by-pass rumen fermentation. The supplement contained 61.2% CLA; the major CLA isomers were cis/trans 8,10, cis/trans 9,11, cis/trans 10,12 and cis/trans 11,13. Four Holstein cows were used in a 4 x 4 Latin square design. Treatments were 5-d infusions of 0, 50, 100 and 150 g/d of CLA supplement. Infusion increased milk fat content of CLA from 6.8 mg/g fat (zero dose) to 63.6 mg/g fat (highest dose). All of the major CLA isomers in the supplement were transferred to milk fat in a dose-dependent manner. Apparent efficiency of transfer to milk fat was 22.5, 22.5, 10.2 and 26.3% for cis/trans 8,10, cis/trans 9,11, cis/trans 10,12 and cis/trans 11,13, respectively. CLA infusion had no effect on milk protein and little effect on milk yield (21.5, 20.4, 20.9 and 18.3 kg/d for 0, 50, 100 and 150 g/d CLA supplement, respectively). However, CLA infusion dramatically reduced milk fat. On average, the content and yield of milk fat were reduced by 52 and 55%, respectively. The role of specific CLA isomers and mechanism(s) for the reduction in milk fat have not been established, although the pattern of milk fatty acids demonstrated effects were most pronounced on de novo fatty acid synthesis and the desaturation process. Overall, dietary supplemention of CLA increased milk fat content of CLA, altered milk fatty acid composition and markedly reduced the content and yield of milk fat.  相似文献   

15.
Ruminal administration of a triple indigestible marker system comprised of cobalt EDTA (CoEDTA), ytterbium acetate (YbAc), and chromium-mordanted straw (CrS) decreases product:substrate ratios for Delta9-desaturase in bovine milk fat. This experiment was designed to identify the marker(s) responsible and develop an alternative system for simultaneous determination of nutrient flow in the gastro-intestinal tract and milk fatty acid composition. Five lactating dairy cows were used in a 5 x 5 Latin square with 21-d periods to evaluate the effects of YbAc, CoEDTA, and CrS independently or as part of a triple marker system (TMS), and CrEDTA as an alternative to CoEDTA on milk fat composition. Markers were administered in the rumen over a 7-d interval and samples of milk were collected on d -1, 3, 7, and 11. Both TMS and CoEDTA alone reduced the concentrations of milk fatty acids containing a cis-9 double bond, whereas YbAc, CrS, and CrEDTA had no effect. Reductions in product:substrate ratios for Delta9-desaturase were time dependent and evident within 3 d of administration. Ruminal infusion of CoEDTA for 7 d induced mean decreases in milk cis-9 14:1/14:0, cis-9 16:1/16:0, cis-9 18:1/18:0, and cis-9, trans-11 conjugated linoleic acid/trans-11 18:1 concentration ratios of 47.7, 26.7, 40.3, and 42.6%, respectively. In conclusion, ruminal infusion of CoEDTA alters milk fatty acid composition and appears to inhibit Delta9-desaturase activity in the bovine mammary gland. Results indicate that a TMS based on CrEDTA, YbAc, and indigestible neutral detergent fiber can be used for estimating nutrient flow without altering milk fat composition in lactating cows.  相似文献   

16.
17.
We studied the incorporation of the trans-11 vaccenic-1-(13)C acid ((13)C-VA) into milk and endogenous synthesis of cis-9, trans-11 conjugated linoleic acid (CLA) in lactating women. Subjects (n = 4) were 247 +/- 30 d postpartum, weighed 70.8 +/- 3.7 kg, breast-fed at least 6 times/d and consumed self-selected diets. After an overnight fast, they consumed the (13)C-VA (2.5 mg/kg body wt). Milk samples were obtained by complete breast expression at 0, 2, 4, 8, 12, 18, 24, and 48 h post-(13)C-VA ingestion. Lipid was extracted using chloroform:methanol. Fatty acids were methylated and converted to dimethyl disulfide and Diels-Alder derivatives before analysis by gas chromatography mass spectrometry. The mean (13)C-enrichment of milk VA was 3.1% at 8 h and reached maximal enrichment of 7.6% at 18 h. The (13)C enrichment of milk cis-9, trans-11 CLA reached a maximum of 0.4% at 18 h, confirming its conversion of VA to the Delta9-desaturase enzyme product. In the subjects examined, a portion (<10%) of the cis-9, trans-11 CLA present in milk was endogenously synthesized from VA.  相似文献   

18.
Based on the potential benefits to long-term human health there is interest in developing sustainable nutritional strategies for reducing saturated and increasing specific unsaturated fatty acids in ruminant milk. The impact of plant oil supplements to diets containing different forages on caprine milk fatty acid composition was examined in two experiments using twenty-seven Alpine goats in replicated 3 x 3 Latin squares with 28 d experimental periods. Treatments comprised of no oil (control) or 130 g/d of sunflower-seed oil (SO) or linseed oil (LO) supplements added to diets based on grass hay (H; experiment 1) or maize silage (M; experiment 2). Milk fat content was enhanced (P<0.01) on HSO, HLO and MLO compared with the corresponding H or M control diets, resulting in 17, 15 and 14% increases in milk fat secretion, respectively. For both experiments, plant oils decreased (P<0.05) milk 10:0-16:0 and odd- and branched-chain fatty acid content and increased 18:0, trans-Delta(6-9,11-14,16)-18:1 (and their corresponding Delta-9 desaturase products), trans-7, trans-9-conjugated linoleic acid (CLA), trans-9, trans-11-CLA and trans-8, cis-10-CLA concentrations. Alterations in the distribution of cis-18:1, trans-18:1, -18:2 and CLA isomers in milk fat were related to plant oil composition and forage in the diet. In conclusion, plant oils represent an effective strategy for altering the fatty acid composition of caprine milk, with evidence that the basal diet is an important determinant of ruminal unsaturated fatty acid metabolism in the goat.  相似文献   

19.
The current literature suggests that linolenic acid biohydrogenation converts to stearic acid without the formation of CLA. However, a multitude of CLA were identified in the rumen that are generally attributed to linoleic acid biohydrogenation. This study used a stable isotope tracer to investigate the biohydrogenation intermediates of (13)C-linolenic acid, including CLA. A continuous culture fermenter was used to maintain a mixed microbial population obtained from the rumen of cattle at pH 6.5 for 6 d. The mixed fermenter contents were then transferred to batch cultures containing either (13)C-labeled or unlabeled linolenic acid, which were run in triplicate for 0, 3, 24, and 48 h. The (13)C enrichment was determined by GC-MS. After 48 h of incubation, 8 CLA isomers were significantly enriched, suggesting that these CLA isomers originated directly from linolenic acid. The cis-10, cis-12 CLA isomer exhibited the highest enrichment (21.7%), followed by cis-9, cis-11 and trans-8, trans-10 CLA. The enrichment of these 2 CLA isomers ranged from 20.1 to 21.1% and the remaining 5 CLA including cis-9, trans-11 CLA were <15.0%. A multitude of nonconjugated and partially conjugated 18:2 and 18:3 isomers was enriched during the 48 h of incubation. The results of this study confirm that mixed ruminal microbes are capable of the formation of several CLA and 18:3 isomers from linolenic acid, indicating that linolenic acid biohydrogenation pathways are more complex than previously reported.  相似文献   

20.
The potential benefits on human health have prompted an interest in developing nutritional strategies for reducing saturated and increasing specific unsaturated fatty acids (FA) in ruminant milk. The impact of the level and type of starchy concentrate added to diets supplemented with sunflower-seed oil on caprine milk FA composition and on mammary, omental and perirenal adipose, and liver lipid metabolism was examined in fourteen Alpine goats in a replicated 3 × 3 Latin square with 21 d experimental periods. Treatments were a grass hay-based diet with a high level of forage (F) or a high level of concentrate with either maize grain (CM) or flattened wheat (CW) as source of starch and supplemented with 130 g/d sunflower-seed oil. Milk yield was enhanced (P<0·01) and milk fat content was decreased on the CM and CW diets compared with the F diet, resulting in similar milk fat secretion. Both high-concentrate diets increased (P<0·05) milk yield of 10 : 0-16 : 0 and decreased trans-9,11-18 : 1 and cis-9, trans-11-18 : 2. The CW diet decreased (P<0·05) the output of ΣC18 and Σcis-18 : 1 and increased (P<0·05) the output of trans-10-18 : 1 in milk. The expression and/or activity of fourteen proteins involved in the major lipogenic pathways in mammary tissues and of lipogenic genes in adipose and liver tissues were similar among treatments. In conclusion, high starch concentrates alter milk FA yield via mechanisms independent of changes in mammary, liver or adipose tissue lipogenic gene expression. Furthermore, data provided indications that mammary lipogenic responses to starch-rich diets differ between caprine and bovine ruminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号