首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Sustained release of TAK-029 [4-(4-amidinobenzoylglycyl)-3-methoxycarbonyl-2-oxopiperazine-l-acetic acid], a glycoprotein (GP) IIb/IIIa antagonist, from injectable microspheres was achieved by a W/O/W emulsion solvent evaporation technique using copoly(d-lactic/glycolic)acid (PLGA). Entrapment of the drug into microspheres increased with addition of sodium chloride into an external aqueous polyvinyl alcohol solution. Addition of l-arginine to an internal water phase dose-dependently reduced initial burst of the drug from the microspheres in vitro and in vivo, probably by forming hydrophobic diffusion barriers with rigid inner structure and increased glass transition temperature (Tg). Microspheres obtained using sodium chloride and l-arginine demonstrated sustained plasma levels of TAK-029 for 3 weeks after subcutaneous injection in rats, while causing a slight increase of its plasma levels in 2–3 weeks.  相似文献   

2.
Xu H  Zhong H  Liu M  Xu C  Gao Y 《Die Pharmazie》2011,66(9):654-661
Lappaconitine instead of its hydrobromide salts has been encapsulated in poly (lactide-co-glycolide) acid (PLGA) microspheres by the simple o/w emulsion solvent evaporation technique. The effects of several variables including emulsifier (polyvinyl alcohol, PVA) concentration, stirring speed, PLGA concentration and drug/polymer mass ratios on quality of microspheres have been investigated. The particle size and size distribution can be controlled by PVA concentration, stirring speed and PLGA concentration. The entrapment efficiency and the burst release of lappaconitine from drug-loaded microspheres were dominantly affected by the drug/polymer mass ratio and PVA concentration. The best parameters of formulation were 1.5% PVA, the PLGA concentration of 50 g/L, and the stirring speed of 800 rpm and drug/polymer of 1:5. The optimized formulation has a mean particle size of 19.3 +/- 0.93 microm, mean entrapment efficiency of 70.77 +/- 3.23% and mean drug loading of 11.45 +/- 0.47%. Based on the optimized parameters of formulation, the effects of oil/aqueous solubility partition ratio of drug on entrapment efficiency of drug-loaded microspheres prepared by o/w emulsion solvent evaporation were further studied. A good linear relation existed between the partition ratio and entrapment efficiency. The optimized microspheres were characterized by SEM, FT-IR, DSC and XRD. SEM shows spherical and smooth surface and uniform size distribution. The results of DSC, FT-IR study reveal no interaction between drug and polymer. The results of the XRD study indicate lappaconitine trapped in microsphere exists in form of an amorphous or disordered crystalline status in polymer matrix. The in vitro release models were evaluated with two different groups of drug-loaded microspheres including microspheres washed with distilled water and 0.01N HCL, respectively. The drug release profile of lappaconitine-loaded microspheres washed with distilled water agreed with zero order equation and that of the latter better agreed with first order equation.  相似文献   

3.
Abstract

The release of actives encapsulated in biodegradable poly-lactide-co-glycolide (PLGA)-based microparticles may be diffusion controlled, dependent on polymer degradation, or may occur by a combination of drug diffusion and polymer degradation. This report applies a model, describing combined diffusional and polymer degradation-assisted drug release, to quantify the release of fluphenazine HCl (F-HCl) from PLGA microspheres. Parameters for the release process showed that both the initial drug release phase and the polymer controlled drug release phase were dependent on the F-HCl loading of the microspheres. The percentage drug released in the burst phase and the length of the lag phase were dependent on F-HCl loading. In the degradation controlled release phase, drug release was faster the higher the loading, as shown by the decrease in tmax from 27 to 10 days, as F-HCl loadings increased from 4.2 to 16.6%w/w. The presence of F-HCl was found to catalyse the degradation of PLGA polymer during particle manufacture and during dissolution. When compared to drug free microspheres, F-HCl accelerated PLGA degradation as shown by the ~5-fold increase in both PLGA degradation rate constant (k) and reduction in tmax.  相似文献   

4.
Purpose  To develop and characterize the solid-state properties of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) microspheres for the localized and controlled release of fusidic acid (FA). Methods  The effects of FA loading and polymer composition on the mean diameter, encapsulation efficiency and FA released from the microspheres were determined. The solid-state and phase separation properties of the microspheres were characterized using DSC, XRPD, Raman spectroscopy, SEM, laser confocal and real time recording of single microspheres formation. Results  Above a loading of 1% (w/w) FA phase separated from PLGA polymer and formed distinct spherical FA-rich amorphous microdomains throughout the PLGA microsphere. For FA-loaded PLGA microspheres, encapsulation efficiency and cumulative release increased with initial drug loading. Similarly, cumulative release from FA-loaded PHBV microspheres was increased by FA loading. After the initial burst release, FA was released from PLGA microspheres much slower compared to PHBV microspheres. Conclusions  A unique phase separation phenomenon of FA in PLGA but not in PHBV polymers was observed, driven by coalescence of liquid microdroplets of a DCM-FA-rich phase in the forming microsphere. Electronic supplementary material   The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Purpose. To produce and characterize controlled release formulations of plasmid DNA (pDNA) loaded in poly (D,L-lactide-co-glycolide) (PLGA) microspheres both in free form and as a complex with poly (L-lysine). Methods. Poly (L-lysine) (PLL) was used to form pDNA/PLL complexes with complexation ratio of 1:0.125 and 1:0.333 w/w to enhance the stability of pDNA during microsphere preparation and protect pDNA from nuclease attack. pDNA structure, particle size, zeta potential, drug loading, in vitro release properties, and protection from DNase I were studied. Results. The microspheres were found to be spherical with average particle size of 3.1-3.5 m. Drug loading of 0.6% was targeted. Incorporation efficiencies of 35.1% and 29.4-30.6% were obtained for pDNA and pDNA/PLL loaded microspheres respectively. Overall, pDNA release kinetics following the initial burst did not correlate with blank microsphere polymer degradation profile suggesting that pDNA release is convective diffusion controlled. The percentage of supercoiled pDNA in the pDNA and pDNA/PLL loaded microspheres was 16.6 % and 76.7-85.6% respectively. Unencapsulated pDNA and pDNA/PLL degraded completely within 30 minutes upon the addition of DNase I. Encapsulation of DNA/PLL in PLGA microspheres protected pDNA from enzymatic degradation. Conclusions. The results show that using a novel process, pDNA can be stabilized and encapsulated in PLGA microspheres to protect pDNA from enzymatic degradation.  相似文献   

6.
Woo  Byung H.  Jiang  Ge  Jo  Yeong W.  DeLuca  Patrick P. 《Pharmaceutical research》2001,18(11):1600-1606
Purpose. To prepare and characterize a novel composite microsphere system based on poly(D,L-lactide-co-glycolide) (PLGA) and poly(acryloyl hydroxyethyl starch) (acHES) hydrogel for controlled protein delivery. Methods. Model proteins, bovine serum albumin, and horseradish peroxidase were encapsulated in the acHES hydrogel, and then the protein-containing acHES hydrogel particles were fabricated in the PLGA matrix by a solvent extraction or evaporation method. The protein-loaded PLGA-acHES composite microspheres were characterized for protein loading efficiency, particle size, and in vitro protein release. Protein stability was examined by size-exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and monitoring the enzymatic activity. Results. Scanning electron microscopy showed discrete PLGA microspheres containing many acHES particles. The composite microspheres were spherical and smooth in size range of 39-93 m. The drug loading efficiency ranged from 51 to 101%. The composite microspheres showed more favorable in vitro release than conventional PLGA microspheres. The composite microspheres showed 20% less initial with a gradual sustained release compared to high burst (60%) followed by a very slow release with the conventional PLGA microspheres. The composite microspheres also stabilized encapsulated proteins from the loss of activity during the microsphere preparation and release. Proteins extracted from the composite microspheres showed good stability without protein degradation products and structural integrity changes in the size-exclusion chromatography and SDS-PAGE analyses. Horseradish peroxidase extracted from microspheres retained more than 81% enzymatic activity. Conclusion. The PLGA-acHES composite microsphere system could be useful for the controlled delivery of protein drugs.  相似文献   

7.
Purpose. The purpose of this study was to investigate the potential of poly(lactide-co-glycolide) (PLGA) microspheres to stabilize and deliver the analogue of camptothecin, 10-hydroxycamptothecin (10-HCPT). Methods. 10-HCPT was encapsulated in PLGA 50:50 microspheres by using an oil-in-water emulsion-solvent evaporation method. The influence of encapsulation conditions (i.e., polymer molecular weight (Mw), polymer concentration, and carrier solvent composition) on the release of 10-HCPT from microspheres at 37°C under perfect sink conditions was examined. Analysis of the drug stability in the microspheres was performed by two methods:i) by extraction of 10-HCPT from microspheres and ii). by sampling release media before lactone— carboxylate conversion could take place. Results. Microspheres made, of low Mw polymer (inherent viscosity 0.15 dl/g) exhibited more continuous drug release than those prepared from polymers of higher Mw (i.v. = 0.58 and 1.07 dl/g). In addition, a high polymer concentration and the presence of cosolvent in the carrier solution to dissolve 10-HCPT were both necessary in the microsphere preparation in order to eliminate a large initial burst of the released 10-HCPT. An optimal microsphere formulation released 10-HCPT slowly and continuously for over two months with a relatively small initial burst of the released drug. Both analytical methods used to assess the stability of 10-HCPT revealed that the unreleased camptothecin analogue in the microspheres remained in its active lactone form (>95%) over the entire 2-month duration of study. Conclusions. PLGA carriers such as those described here may be clinically useful to stabilize and deliver camptothecins for the treatment of cancer.  相似文献   

8.
考察了不同型号聚乳酸-羟基乙酸共聚物(PLGA)作为水溶性药物奥曲肽微球载体对载药量、包封率和体外释放行为的影响.结果表明,PLGA中丙交酯含量降低,载药量和包封率降低,而突释量增大.PLGA型号相同时,黏度较大的PLGA微球载药量和包封率较高,突释量较小.采用PLGA与聚乳酸(PLA)混合材料制备的微球比单用PLGA材料微球的突释量小、载药量和包封率高、缓释效果好.  相似文献   

9.
Cleland  Jeffrey L.  Mac  Anne  Boyd  Brooks  Yang  Janet  Duenas  Eileen T.  Yeung  Douglas  Brooks  Dennis  Hsu  Chung  Chu  Herman  Mukku  Venkat  Jones  Andrew J. S. 《Pharmaceutical research》1997,14(4):420-425
Purpose. The development of a sustained release formulation for recombinant human growth hormone (rhGH) as well as other proteins requires that the protein be stable at physiological conditions during its in vivo lifetime. Poly(lactic-co-glycolic acid) (PLGA) microspheres may provide an excellent sustained release formulation for proteins, if protein stability can be maintained. Methods. rhGH was encapsulated in PLGA microspheres using a double emulsion process. Protein released from the microspheres was assessed by several chromatrographic assays, circular dichroism, and a cell-based bioassay. The rates of aggregation, oxidation, diketopiperazine formation, and deamidation were then determined for rhGH released from PLGA microspheres and rhGH in solution (control) during incubation in isotonic buffer, pH 7.4 and 37°C. Results. rhGH PLGA formulations were produced with a low initial burst (<20%) and a continuous release of rhGH for 30 days. rhGH was released initially from PLGA microspheres in its native form as measured by several assays. In isotonic buffer, pH 7.4 and 37°C, the rates of rhGH oxidation, diketopiperazine formation, and deamidation in the PLGA microspheres were equivalent to the rhGH in solution, but aggregation (dimer formation) occured at a slightly faster rate for protein released from the PLGA microspheres. This difference in aggregation rate was likely due to the high protein concentration used in the encapsulation process. The rhGH released was biologically active throughout the incubation at these conditions which are equivalent to physiological ionic strength and pH. Conclusions. rhGH was successfully encapsulated and released in its fully bioactive form from PLGA microspheres over 30 days. The chemical degradation rates of rhGH were not affected by the PLGA microspheres, indicating that the internal environment of the microspheres was similar to the bulk solution. After administration, the microspheres should become fully hydrated in the subcutaneous space and should experience similar isotonic conditions and pH. Therefore, if a protein formulation provides stability in isotonic buffer, pH 7.4 and 37°C, it should allow for a safe and efficacious sustained release dosage form in PLGA microspheres.  相似文献   

10.
PLGA nanospheres are considered to be promising drug carrier in the treatment of cancer. Inclusion complex of bendamustine (BM) with epichlorohydrin beta cyclodextrin polymer was prepared by freeze-drying method. Phase solubility study revealed formation of AL type complex with stability constant (Ks?=?645?M?1). This inclusion complex was encapsulated into PLGA nanospheres using solid-in-oil-in-water (S/O/W) technique. The particle size and zeta potential of PLGA nanospheres loaded with cyclodextrin-complexed BM were about 151.4?±?2.53?nm and???31.9?±?(?3.08)?mV. In-vitro release study represented biphasic release pattern with 20% burst effect and sustained slow release. DSC studies indicated that inclusion complex incorporated in PLGA nanospheres was not in a crystalline state but existed in an amorphous or molecular state. The cytotoxicity experiment was studied in Z-138 cells and IC50 value was found to be 4.3?±?0.11?µM. Cell viability studies revealed that the PLGA nanospheres loaded with complex exerts a more pronounced effect on the cancer cells as compared to the free drug. In conclusion, PLGA nanospheres loaded with inclusion complex of BM led to sustained drug delivery. The nanospheres were stable after 3 months of storage conditions with slight change in their particle size, zeta potential and entrapment efficiency.  相似文献   

11.
5-Fluorouracil (5-FU), a hydrosoluble anti-neoplastic drug, was encapsulated in microspheres of poly(D,L-lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) polymers using the spray-drying technique, in order to obtain small size microspheres with a significant drug entrapment efficiency. Drug-loaded microspheres included between 47?±?11 and 67?±?12?µg 5-FU?mg?1 microspheres and the percentage of entrapment efficiency was between 52?±?12 and 74?±?13. Microspheres were of small size (average diameter: 0.9?±?0.4–1.4?±?0.8?µm microspheres without drug; 1.1?±?0.5–1.7?±?0.9?µm 5-FU-loaded microspheres) and their surface was smooth and slightly porous, some hollows or deformations were observed in microspheres prepared from polymers with larger Tg. A fractionation process of the raw polymer during the formation of microspheres was observed as an increase of the average molecular weight and also of Tg of the polymer of the microspheres. The presence of 5-FU did not modify the Tg values of the microspheres. Significant interactions between the drug and each one of the polymers did not take place and total release of the included drug was observed in all cases. The time needed for the total drug release (28–129?h) was in the order PLA?>?PLGA 75/25?>?PLGA 50/50. A burst effect (17–20%) was observed during the first hour and then a period of constant release rate (3.52?±?0.82–1.46?±?0.26?µg 5-FU?h?1 per milligram of microspheres) up to 8 or 13?h, depending on the polymer, was obtained.  相似文献   

12.
In this paper, ibuprofen was encapsulated into microspheres by oil-in-water (o/w) emulsion solvent evaporation method. Biodegradable polymers with certain compositions and characteristics such as polylactide (PLA), poly(?-caprolactone) (PCL) and their block copolymer were used to prepare the microspheres. The results indicate that, under the same processing conditions, the drug entrapment efficiency was similar (~80%) for microspheres prepared with PLA and P(LA-b-CL) (78.7/21.3 by mole), but it was only 25.4% for PCL microspheres. The in vitro drug release rate decreased in the order of PCL, P(LA-b-CL) (78.7/21.3 by mole) and PLA microspheres. PCL microspheres showed more serious burst release during the first day (almost 80%) than P(LA-b-CL) (50%) and PLA microspheres (18%). The complete ibuprofen release duration from the last two kinds of microspheres exceeded 1 month. Characterization of the microspheres by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and polarized optical microscope (POM) revealed that ibuprofen was amorphous in PCL microspheres and partially crystalline in P(LA-b-CL) and PLA microspheres. The different release behaviour of ibuprofen from the three kinds of microspheres could be attributed to the different crystallinity of the studied polymers and drug dispersion state in polymer matrices. All the above results suggest that the copolymer with a certain ratio of lactide to ?-caprolactone could have potential applications for long-term ibuprofen release.  相似文献   

13.
Purpose. This study describes the preparation and characterization of a controlled release formulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) encapsulated in poly(glycolide-co-D,L-lactide) (PLGA) and poly(D,L-lactide) (PLA) microspheres. Methods. GM-CSF was encapsulated in PLGA/PLA microspheres by a novel silicone oil based phase separation process. Several different blends of PLGA and low molecular weight PLA were used to prepare the microspheres. The microspheres and the encapsulated GM-CSF were extensively characterized both in vitroand in vivo. Results. Steady release of GM-CSF was achieved over a period of about one week without significant 'burst' of protein from the microspheres. Analysis of microsphere degradation kinetics by gel permeation chromatography (GPC) indicated that low molecular weight PLA enhanced the degradation of the PLGA and thereby affected release kinetics. GM-CSF released from the microspheres was found to be biologically active and physically intact by bioassay and chromato-graphic analysis. Analysis of serum from mice receiving huGM-CSF indicated that the GM-CSF was biologically active and that a concentration of greater than 10 ng/mL was maintained for a period lasting at least nine days. MuGM-CSF was not detected followingin vivo administration of muGM-CSF microspheres. The tissues of mice receiving muGM-CSF microspheres were characterized by infiltration of neutrophils, and macrophages which were in significant excess of those found in mice administered with placebo controls (i.e. microspheres without GM-CSF). Conclusions. This study demonstrates the influence of formulation parameters on the encapsulation of GM-CSF in PLGA/PLA microspheres and its controlled release in biologically active form. The intense local tissue reaction in mice to muGM-CSF microspheres demonstrates the importance of the mode of delivery on the pharmacologic activity of GM-CSF.  相似文献   

14.
Purpose The aim of the study is to investigate the effect of polymer blending on entrapment and release of ganciclovir (GCV) from poly(d,l-lactide-co-glycolide) (PLGA) microspheres using a set of empirical equations. Methods Two grades of PLGA, PLGA 7525 [d,l-lactide:glycolide(75:25), MW 90,000–126,000 Da] and Resomer RG 502H [d,l-lactide:glycolide(50:50), MW 8000 Da], were employed in the preparation of PLGA microspheres. Five sets of microsphere batches were prepared with two pure polymers and their 1:3, 1:1, and 3:1 blends. Drug entrapment, surface morphology, particle size analysis, drug release, and differential scanning calorimetric studies were performed. In vitro drug-release data were fitted to a set of empirical sigmoidal equations by nonlinear regression analysis that could effectively predict various parameters that characterize both diffusion and degradation cum diffusion-controlled release phases of GCV. Results Entrapment efficiencies of GCV ranged from 47 to 73%. Higher amounts of GCV were entrapped in polymer blend microspheres relative to individual polymers. Triphasic GCV release profiles were observed, which consisted of both diffusion and degradation cum diffusion-controlled phases. In vitro GCV release was shortest for Resomer RG 502H microsphere (10 days) and longest for PLGA 7525 microspheres (90 days). Upon blending, the duration of release gradually decreased as the content of Resomer RG 502H in the matrix was raised. Equations effectively estimated the drug-release rate constants during both the phases with high R2 values (>0.990). GCV release was slower from the blend microsphere during the initial diffusion phase. Majority of entrapped drug (70–95%) was released during the matrix degradation cum diffusion phase. Conclusions Drug entrapment and release parameters estimated by the equations indicate more efficient matrix packing between PLGA 7525 and Resomer RG 502H in polymer-blended microspheres. The overall duration of drug release diminishes with rising content of Resomer RG 502H in the matrix. Differential scanning calorimetry studies indicate stronger binding between the polymers in the PLGA 7525/Resomer RG 502H∷ 3:1 blend. Polymer blending can effectively alter drug-release rates of controlled delivery systems in the absence of any additives.  相似文献   

15.
Etoposide-loaded biodegradable microspheres of poly lactic-co-glycolide (PLGA) 50:50, PLGA 75:25, and polycaprolactone (PCL) were prepared by simple o/w emulsification solvent evaparation method and characterized by size analysis and microscopy. The influence of drug to polymer ratio on the entrapment of etoposide was studied. Of all the three types of microspheres, polycaprolactone microspheres (PCL MS) showed the highest entrapment efficiency (94.64%), followed by PLGA 75:25 microspheres (PLGA 75:25 MS) (88.64%) and PLGA 50:50 microspheres (PLGA 50:50 MS) (79.19%). The drug to polymer ratio of 1:20 gave the highest entrapment efficiency for all the three types of microspheres. The in vitro release of etoposide from the three microsphere formulations were studied in phosphate buffer pH 7.4 (pH 7.4 PB) containing 0.1% Tween 80. The microspheres showed an initial burst release, which was highest from the PLGA 50:50 MS and least from the PCL MS. PCL MS microspheres showed the lower and slow drug release than the remaining formulations. The release of etoposide from all the three microsphere formulations followed Higuchi's diffusion pattern. The microspheres in the dissolution medium for 28 days appeared irregular in shape and slightly fragmented.  相似文献   

16.
Abstract

The objective of this study was to produce biodegradable poly(lactide-co-glycolide) (PLGA; 50/50) microspheres by an oil-in-oil (o/o) solvent evaporation method to prolong the in vitro release of ovalbumin (OVA) as a model protein. The effects, on loading efficiency, microsphere yield, morphology and drug release, of two dispersing agents, aluminum tristearate and Span 80, in mineral oil were examined. PLGA 50/50 microspheres containing OVA powder (sieved through a 53 μm mesh) were prepared using an o/o solvent evaporation method. When aluminum tristearate was employed as a dispersing agent, the loading efficiency and yield of OVA had maximum values of 89 and 72% at 0·15% (w/v) aluminum tristearate, respectively. Morphology studies suggested that the obtained microspheres were spherical, and had a smooth surface. The diameters of the microspheres ranged between 100 and 200 μm. The loading efficiency, or yield, for microspheres decreased significantly above or below 0·15% (w/v) aluminum tristearate, and microspheres wkh irregular shapes were observed. The minimum sedimentation volume ratio (F) was obtained at a dispersity of carbon black particles in ethanol containing 0·15% (w/v) aluminum tristearate by a sedimentation study, and the cloudy supernatant suggested a defiocculated suspension. However, on the contrary, when Span 80 was added into the mineral oil as a dispersing agent, the concentration of Span 80 had little or no effect on the characteristics of the prepared microspheres. Drug loadings (60–70%) were obtained within the Span 80 concentrations employed in the present study (0·05–1·0% (w/v)). The yields were also in the same levels. The microspheres prepared in mineral oil containing Span 80 had an average diameter less than 50 μm in all cases. Sustained-release characteristics were demonstrated for PLGA microspheres prepared in mineral oil containing aluminum tristearate as a dispersing agent, even though a burst release at the initial phase was observed. This initial burst release from PLGA microspheres was reduced to some extent by micronization of the OVA powder using a planetary-type ball mill. However, PLGA microspheres prepared in mineral oil containing Span 80 as a dispersing agent, exhibited a large initial burst release. This burst release seems to be due to the smaller size of microspheres and the OVA powder adhering to the surface of PLGA microspheres (confirmed by scanning electron microscope (SEM) study).  相似文献   

17.
PLGA微球控释系统的突释及其控制   总被引:10,自引:0,他引:10  
王峰  涂家生  张钧寿  卢晶 《药学进展》2003,27(3):142-146
针对目前限制PLGA微球控释系统临床应用的突释问题,重点介绍了近年来国内外有关的研究进展,包括突释现象、突释原因、影响因素和控制突释的方法和技术。  相似文献   

18.
Abstract

The objective of this study is to develop a new textile-based drug delivery system containing naproxen (NAP) microparticles and to evaluate the potential of the system as the carrier of NAP for topical delivery. Microparticles were prepared by spray-drying using an aqueous ethyl cellulose dispersion. The drug content and entrapment efficiency, particle size and distribution, particle morphology and in vitro drug release characteristics of microparticles were optimized for the application of microparticles onto the textile fabrics. Microparticles had spherical shape in the range of 10–15?μm and a narrow particle size distribution. NAP encapsulated in microparticles was in the amorphous or partially crystalline nature. Microparticles were tightly fixed onto the textile fabrics. In vitro drug release exhibited biphasic release profile with an initial burst followed by a very slow release. Skin permeation profiles were observed to follow near zero-order release kinetics.  相似文献   

19.
利培酮长效注射微球的制备及体外释放的研究   总被引:1,自引:0,他引:1  
孔蕾 《中国药师》2009,12(12):1713-1715
目的:制备利培酮长效注射微球并考察其体外释放行为。方法:使用乳酸-羟基乙酸共聚物(PLGA)为材料,采用乳化-溶剂挥发法制备利培酮微球,观察微球的形态及粒径,测定微球的载药量和包封率,考察微球的体外释放情况。结果:利培酮微球表面圆整,粒径集中在40~80μm之间。微球的包封率较高,达到80%以上,以低分子量PLGA(50:50)制备的微球,体外突释很高达到40%以上;以高分子量PLGA(75:25)制备的微球,在高载药量时突释较小,可持续释放达3周以上。结论:以高分子量PLGA制备的高载药量的利培酮微球,体外突释较小可缓释达3周以上。  相似文献   

20.
Purpose. The efficiency of encapsulation of water-soluble drugs in biodegradable polymer is often low and occasionally these microcapsules are associated with high burst effect. The primary objective of this study is to develop a novel microencapsulation technique with high efficiency of encapsulation and low burst effect. Method. Pentamidine was used as a model drug in this study. Pentamidine/polyvinyl alcohol (PVA) hydrogel was prepared by freeze-thaw technique. Pentamidine loaded hydrogel was later microencapsulated in poly(lactide-co-glycolide) (PLGA) using solvent evaporation technique. The microcapsules were evaluated for the efficiency of encapsulation, particle size, surface morphology, thermal characteristic, and drug release. Results. Scanning Electron Microscope (SEM) studies revealed that the microcapsules were porous. The microcapsules were uniform in size and shape with the median size of the microcapsules ranging between 27 and 94 m. The samples containing 10% PLGA showed nearly three times increase in drug loading (18-53%) by increasing the hydrogel content from 0-6%. The overall drug release from the microencapsulated hydrogel, containing 3% and 6% PVA, respectively, was significantly lower than the control batches. Conclusions. The use of a crosslinked hydrogel such as PVA can significantly increase the drug loading of highly water-soluble drugs. In addition, incorporation of the PVA hydrogel significantly reduced the burst effect and overall dissolution of pentamidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号