首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many studies show consistently that repetitive transcranial magnetic stimulation (rTMS) with a frequency of 1 Hz and an intensity above the resting motor threshold (RMT) performed for several minutes over the primary motor cortex (M1) leads to a depression of cortical excitability. Furthermore, most studies concur on a facilitation of the non-stimulated contralateral M1. Little is known, however, about the physiological mechanisms underlying these effects. In 11 healthy volunteers, we stimulated the left M1 for 15 min with 1 Hz-rTMS of 115% RMT. Before, immediately after, and 30 min after the rTMS train, we examined short-interval intracortical inhibition (SICI; interstimulus interval (ISI) of 2 and 4 ms), intracortical facilitation (ICF; ISI 10 ms), and short-interval intracortical facilitation (SICF; ISI 1.5 ms) with established paired-pulse protocols. Mean unconditioned motor evoked potential (MEP) amplitudes and RMT were also measured. Two sessions were run at least 1 week apart, in one excitability of the stimulated M1 was tested, in the other one excitability of the non-stimulated M1. rTMS led to the expected reduction of MEP amplitude of the stimulated M1, which was significant only immediately after the rTMS train. rTMS increased MEP amplitude of the non-stimulated M1, which lasted for at least 30 min. RMT, SICI, ICF and SICF did not show any significant change in either M1, except for a long lasting increase of SICF in the non-stimulated M1. In conclusion, the MEP increase in the non-stimulated M1 lasted longer than the MEP decrease in the stimulated M1. Only the long-lasting MEP increase was associated with a specific change in intracortical excitability (increase in SICF). Modulation of motor cortical inhibition did not play a role in explaining the rTMS induced changes in MEP amplitude.  相似文献   

2.
In nine healthy humans we modulated corticospinal excitability by using conditioning-test paired-pulse transcranial magnetic stimulation in a repetitive mode (rTMS), and we compared its effect to conventional single-pulse rTMS. We applied 80 single pulses or 80 paired pulses to the motor cortex at frequencies ranging from 0.17 to 5 Hz. The conditioning-test intervals were 2, 5, or 10 ms. Motor evoked potential (MEP) amplitudes from the abductor digiti minimi (ADM) as target muscle and extensor carpi radialis (ECR) indicated the excitability changes during and after rTMS. During paired-pulse rTMS at a facilitatory conditioning-test interval of 10 ms, we observed a facilitation of MEPs at 1, 2, and 5 Hz. A similar facilitation was found during single-pulse rTMS, when stimulus intensity was adjusted to evoke MEPs of comparable size. Using an inhibitory conditioning-test interval of 2 ms, paired-pulse rTMS at frequencies of 1 and 2 Hz caused no change in MEP size during the train. However, paired-pulse rTMS at 5 Hz caused a strong enhancement of MEP size, indicating a loss of paired-pulse inhibition during the rTMS train. Since no facilitatory effect was observed during single-pulse rTMS with an adjusted stimulus intensity, the MEP enhancement during 5 Hz rTMS was specific for "inhibitory" paired-pulse rTMS. After 5 Hz rTMS MEPs were facilitated for 1 min, and this effect was not substantially different between paired-pulse rTMS and single-pulse rTMS. The correlation between ADM and ECR was most pronounced at 5 Hz rTMS. We conclude that paired-pulse rTMS is a suitable tool to study changes in corticospinal excitability during the course of rTMS. In addition, our data suggest that short trains of paired-pulse rTMS are not superior to single-pulse rTMS in inducing lasting inhibition or facilitation. Electronic Publication  相似文献   

3.
Ten healthy subjects and two patients who had an electrode implanted into the cervical epidural space underwent repetitive transcranial magnetic stimulation (rTMS; 50 stimuli at 5 Hz at active motor threshold intensity) of the hand motor area. We evaluated intracortical inhibition before and after rTMS. In healthy subjects, we also evaluated threshold and amplitude of motor evoked potentials (MEPs), duration of cortical silent period and short-latency intracortical facilitation. rTMS led to a short-lasting reduction in the amount of intracortical inhibition in control subjects with a high interindividual variability. There was no significant effect on other measures of motor cortex excitability. Direct recordings of descending corticospinal volleys from the patients were consistent with the idea that the effect of rTMS on intracortical inhibition occurred at the cortical level. Since the level of intracortical inhibition can be influenced by drugs that act on GABAergic systems, this may mean that low-intensity repetitive magnetic stimulation at 5 Hz can selectively modify the excitability of GABAergic networks in the human motor cortex. Electronic Publication  相似文献   

4.
Paired transcranial magnetic stimulation has greatly advanced our understanding of the mechanisms which control excitability in human motor cortex. While it is clear that paired-pulse excitability depends on the exact interstimulus interval (ISI) between the first (S1) and second stimulus (S2), relatively little is known about the effects of the intensities of S1 and S2, and the effects of manipulating neurotransmission through the GABAA receptor. When recording the motor evoked potential (MEP) from the resting abductor digiti minimi (ADM) muscle, using a fixed ISI of 1.5 ms, and expressing the interaction between S1 and S2 as MEPS1+S2/(MEPS1+ MEPS2), then a systematic variation of the intensities of S1 and S2 revealed short-interval intracortical facilitation (SICF) if S1 and S2 were approximately equal to MEP threshold (RMT), or if S1 > RMT and S2 < RMT. In contrast, short-interval intracortical inhibition (SICI) occurred if S1 < RMT and S2 > RMT. Contraction of the ADM left SICI unchanged but reduced SICF. The GABAA receptor agonist diazepam increased SICI and reduced SICF in the resting ADM while diazepam had no effect during ADM contraction. Surface EMG and single motor unit recordings revealed that during ADM contraction SICI onset was at the I3-wave latency of S2, whereas SICF typically 'jumped up' by one I-wave and started with the I2-wave latency of S2. Findings suggest that SICI is mediated through a low-threshold GABAA receptor-dependent inhibitory pathway and summation of IPSP from S1 and EPSP from S2 at the corticospinal neurone. In contrast, SICF originates through non-synaptic facilitation at the initial axon segment of interneurones along a high-threshold excitatory pathway.  相似文献   

5.
To investigate whether priming stimulation influences the responses of intracortical inhibitory and facilitatory motor circuits to a subsequent plasticity-inducing inhibitory theta burst TMS paradigm. Using standard transcranial magnetic stimulation (TMS) procedures, MEP amplitude, short-interval intracortical inhibition (SICI), and short-interval intracortical facilitation (SICF) were assessed at baseline and 5, 20 and 30 min following continuous theta burst stimulation (cTBS), intermittent TBS (iTBS), and iTBS-primed cTBS. SICI was assessed using paired-pulse TMS at inter-stimulus intervals (ISI) of 3 ms (SICI(3)) and the latency corresponding to the latency at which SICF was minimal in each individual. SICF was assessed at ISIs corresponding to Peak 1, Trough 1, Peak 2, and Peak 3 of each individual's SICF curve. When applied alone cTBS inhibited and iTBS facilitated MEP amplitudes. iTBS-primed cTBS resulted in greater MEP inhibition than cTBS alone. There were no changes in SICF and only marginal changes in SICI following any intervention. Synapses mediating MEP generation undergo modification following iTBS-primed cTBS, possibly through mechanisms related to metaplasticity or synaptic depotentiation. A lack of substantial changes in SICI and SICF under all experimental conditions suggests that the tested rTMS paradigms may be non-optimal for inducing robust modulation of the neural elements mediating SICI and SICF across subjects. Priming stimulation may provide an approach which facilitate neuroplastic change within the human motor cortex at least in circuits responsible for MEP generation.  相似文献   

6.
Repetitive transcranial magnetic stimulation (rTMS) has long lasting effects on cortical excitability at the site of stimulation, on interconnected sites at a distance and on the connections between them. In the present experiments we have used the technique of transcallosal inhibition between the motor cortices to examine all three effects in the same protocol. Ten healthy subjects received 900 rTMS stimuli at 1 Hz from a figure of eight coil over the left motor hand area. The intensity of rTMS was above the threshold for inducing short latency interhemispherical inhibition with a single stimulus (equivalent to 115–120 % resting motor threshold). Before and after the rTMS we evaluated: (1) in the left hemisphere, the amplitude of motor-evoked potentials (MEPs), and contralateral and ipsilateral cortical silent periods (CSP, ISP); (2) in the right hemisphere, MEP, CSP, ISP and short-interval intracortical inhibition and intracortical facilitation (SICI/ICF), and (3) interhemispherical inhibition (IHI) from the left-to-right hemisphere using a paired-pulse method. There were two main effects after rTMS to the left hemisphere: first, the amplitude of MEPs from the right hemisphere increased; second, there was a reduction in the IHI from the left-to-right hemisphere at interstimulus intervals of 7 and 10 ms but not at longer intervals (15–75 ms). Control experiments showed that these effects were not due to afferent inputs produced by the muscle twitches induced during the rTMS. The data are compatible with the notion that rTMS to the left hemisphere leads to reduced interhemispherical inhibition of the right hemisphere and a consequent increase in corticospinal excitability in that hemisphere.  相似文献   

7.
Transcranial magnetic stimulation (TMS) can produce effects not only at the site of stimulation but also at distant sites to which it projects. Here we examined the connection between supplementary motor area (SMA) and the hand area of the primary motor cortex (M1Hand) by testing whether prolonged repetitive TMS (rTMS) over the SMA can produce changes in excitability of the M1Hand after the end of the stimulus train. We evaluated motor-evoked potentials (MEPs) and the cortical silent period (CSP) evoked by a single-pulse TMS, short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) produced by a paired-pulse TMS, and forearm flexor H reflexes before and after 750 pulses of 5 Hz rTMS over SMA at an intensity of 110% active motor threshold (AMT) for the first dorsal interosseous (FDI) muscle. The amplitude of MEPs recorded from the right FDI muscle at rest as well as during voluntary contraction increased for at least 10 min after the end of rTMS, although the duration of the CSP, SICI and ICF did not change. There was no effect on H reflexes in the flexor carpi radialis muscle, even though the amplitude of the MEP obtained from the same muscle increased after rTMS. The effects on MEPs depended on the intensity of rTMS and were spatially specific to the SMA proper. We suggest that 5 Hz rTMS over SMA can induce a short-lasting facilitation in excitability of the M1Hand compatible with the anatomical connections between SMA and the M1Hand.  相似文献   

8.
The paired-pulse transcranial magnetic stimulation (TMS) paradigm is increasingly employed to examine intracortical inhibitory processes in different motor tasks. Short-interval intracortical inhibition (SICI) has been shown to vary with the size of the MEP elicited by the test TMS pulse. This suggests that factors that alter MEP size, such as changes in cortical excitability, may confound the interpretation of SICI. However, the effect of excitability on SICI has not been systematically investigated. The present study examined SICI in 11 volunteers. The effect of test TMS intensities ranging from 90 to 150% resting motor threshold (RMT) on SICI was examined in three excitability states in the right first dorsal interosseous muscle: rest, isometric abduction of the left index finger (Contra) and isometric abduction of the right index finger (Active). For all excitability states SICI was not observed when test TMS intensity was less than 110% resting motor threshold. This was true even for the Active condition in which 90 and 100% test TMS intensities elicited large and consistent MEPs. For all conditions moderately suprathreshold test TMS intensities (110–120% RMT) yielded the greatest measure of SICI; increasing test TMS intensities resulted in a progressive reduction in the estimate of SICI. These results suggest that estimates of SICI are systematically affected by the intensity of the test TMS pulse, regardless of excitability state. The results suggest that SICI should be examined using a constant test TMS intensity regardless of changes in cortical excitability and test MEP size.  相似文献   

9.
Clinical observations and data from animal experiments point to a physiological facilitatory influence of the deep cerebellar structures on the motor system through the cerebello-thalamo-cortical pathways. The aim of the present study was to explore the long-term effects of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over the cerebellum on short intracortical inhibition (SICI) and facilitation (ICF) of the motor cortex in normal subjects. Eight healthy subjects (mean age 26.9 ± 3.1) underwent 1 Hz frequency rTMS delivered on the right cerebellar hemisphere. Before and after cerebellar rTMS, SICI and ICF were assessed in the motor cortex contralateral to the stimulated cerebellar hemisphere by means of a paired pulse paradigm with a conditioning subthreshold stimulus set to 80% of the motor threshold (MT) followed by a testing stimulus at 120% of MT intensity. Five different interstimulus intervals (ISIs) were used to assess SICI (2 and 4 ms) and ICF (7, 10 and 15 ms). Amplitude of the responses was expressed as the percentage of motor evoked potential (MEP) to test stimulus alone. Results showed a significant decrease of ICF at 10 ms ISI that persisted up to 20 min after cerebellar rTMS. This was the only significant modulatory effect of cerebellar stimulation on intracortical motor excitability A suppressive effect of the low-frequency TMS on Purkinje cells could be supposed, even if, the lack of effects on other facilitatory ISIs, stands for more complex modulatory effects of rTMS over cerebellum. The study is a further demonstration that rTMS over the cerebellum induces a long-lasting modulatory effect on the excitability of the interconnected motor area.  相似文献   

10.
Repetitive transcranial magnetic stimulation (rTMS) delivered at various intensities and frequencies excites cortical motor areas. Trains of stimuli (at 5 Hz frequency, and suprathreshold intensity) progressively increase the size of muscle evoked potentials (MEPs) and the duration of the cortical silent period (CSP) in normal subjects. The aim of this study was to evaluate the effect of the antiepileptic drugs carbamazepine, gabapentin, and topiramate on cortical excitability variables tested with rTMS. We tested the changes in motor threshold, MEP size and CSP duration evoked by focal rTMS in 23 patients with neuropathic pain before and after a 1-week course of treatment with carbamazepine, gabapentin, topiramate and placebo. None of the three antiepileptic drugs changed the resting or active magnetic and electrical motor threshold. Antiepileptic treatment, but not placebo, abolished the normal rTMS-induced facilitation of MEPs, but left the progressive lengthening of the CSP during the rTMS train unchanged. Our results suggest that carbamazepine, gabapentin and topiramate modulate intracortical excitability by acting selectively on excitatory interneurons.  相似文献   

11.
Manipulation of afferent input is capable of inducing reorganisation of the motor cortex. For example, following 1 h of paired electrical stimulation to the motor point of two hand muscles (associative stimulation) the excitability of the corticospinal projection to the stimulated muscles is increased. Here we investigated the mechanisms responsible for such change using transcranial magnetic stimulation (TMS). Cortical excitability changes were investigated by measuring motor evoked potentials (MEPs), intracortical inhibition (ICI), intracortical facilitation (ICF), and short-interval intracortical facilitation (SICF). Following 1 h of associative stimulation MEP amplitudes in the stimulated muscles significantly increased. Additionally, there was a significant increase in ICF and of SICF at interstimulus intervals in the range of 2.3–3.3 ms. There was no significant change in ICI. These findings confirm previous observations that a 1-h period of associative stimulation can increase the excitability of the cortical projection to stimulated muscles. Additionally, these results suggest that the observed modifications of excitability are due to changes in intracortical excitatory circuits.  相似文献   

12.
The mechanisms responsible for changes in brain function during normal sleep are poorly understood. In this study, we aimed to investigate the effects of sleep on human corticospinal excitability by estimating resting motor threshold (RMT), and latency and amplitude of motor-evoked potentials (MEPs) after delivering transcranial magnetic stimulation (TMS) in ten healthy subjects. We also aimed to study short-interval intracortical inhibition (SICI) during sleep with paired-pulse TMS (pp-TMS). Ten healthy volunteers were studied. They were monitored immediately before, during and after a 3-h sleep (from 1 p.m. to 4 p.m., immediately after the mid-day meal). EEG was continuously recorded during sleep and the various sleep stages were identified off line. Every 10 min, subjects received ten single stimuli (to estimate RMT, MEP latency and amplitude) and six paired stimuli (to estimate SICI). MEP amplitude decreased and latency and RMT increased during the various sleep stages and returned to baseline values on awakening. Post hoc comparisons showed a significant difference in pp-TMS MEP amplitudes between the sleep and all the other conditions. The changes in TMS evoked variables during the different sleep stages indicate that during nonrapid eye movement sleep, cortical pyramidal neuron excitability (as measured by RMT, MEP latency and amplitude) progressively diminishes and the efficiency of the intracortical GABA-ergic network (as assessed by three pp-TMS) increases. On awakening, these sleep-induced changes in corticospinal excitability return rapidly to values observed during wakefulness.  相似文献   

13.
Evidence by functional imaging studies suggests the role of left DLPFC in the inhibitory control of nociceptive transmission system. Pain exerts an inhibitory modulation on motor cortex, reducing MEP amplitude, while the effect of pain on motor intracortical excitability has not been studied so far. In the present study, we explored in healthy subjects the effect of capsaicin-induced pain and the modulatory influences of left DLPFC stimulation on motor corticospinal and intracortical excitability. Capsaicin was applied on the dorsal surface of the right hand, and measures of motor corticospinal excitability (test-MEP) and short intracortical inhibition (SICI) and facilitation (ICF) were obtained by paired-pulse TMS on left motor cortex. Evaluations were made before and at different times after capsaicin application in two separate sessions: without and with high-frequency rTMS of left DLPF cortex, delivered 10 min. after capsaicin application. We performed also two control experiments to explore: 1: the effects of Left DLPFC rTMS on capsaicin-induced pain; 2: the modulatory influence of left DLPFC rTMS on motor cortex without capsaicin application. Capsaicin-induced pain significantly reduced test MEP amplitude and decreased SICI leaving ICF unchanged. Left DLPFC rTMS, together with the analgesic effect, was able to revert the effects of capsaicin-induced pain on motor cortex restoring normal MEP and SICI levels. These data support the notion that that tonic pain exerts modulatory influence on motor intracortical excitability; the activation of left DLPFC by hf rTMS could have analgesic effects, reverting also the motor cortex excitability changes induced by pain stimulation.  相似文献   

14.
We previously showed paradoxical facilitatory effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) on striate and extrastriate cortex of patients suffering migraine with aura. In this study we evaluated the effects of 1 Hz rTMS on the excitability of inhibitory and facilitatory circuits of motor cortex to explore whether the abnormal pattern of excitability extends beyond the sensory cortex also involving motor areas in migraine with aura. Nine patients affected by migraine with aura and eight healthy controls entered into the study. The hot spot for activation of the right abductor pollicis brevis (APB) was checked by means of a figure-of-eight coil and motor threshold (MT) recorded on this point. Nine hundred magnetic stimuli at 1 Hz frequency and 90% MT intensity were delivered at the hot spot. Before and after rTMS, intracortical inhibitory and facilitatory circuit excitability was assessed by means of a paired pulse paradigm (conditioning stimulus 80% MT and test stimulus 120% MT) with two different interstimulus intervals: 2 ms (inhibitory) and 10 ms (facilitatory). Amplitude of the responses was expressed as the percentage of motor evoked potential (MEP) to test stimulus alone. Results showed that in basal condition migraineurs present significantly reduced levels of intracortical inhibition (ICI) compared to controls. More importantly, opposite results were obtained in migraineurs with respect to controls when 1 Hz rTMS was applied. Specifically, whereas intracortical facilitation (ICF) significantly decreased in controls, it significantly increased in migraineurs. ICI levels were not significantly affected by low-frequency stimulation. Our results showed that motor as well as sensory cortex of migraine patients present an abnormal modulation of cortical excitability, where a relevant role is likely played by the inefficiency of inhibitory circuits.  相似文献   

15.
It has been suggested that the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) are mediated through changes in cortical inhibition (CI). However, in healthy human subjects the effects of rTMS on CI have been inconsistent. Therefore, this study sought to improve on the methodological limitations of previous studies by exploring several different rTMS-stimulus conditions on inhibition in the human motor cortex. In the first experiment, 12 healthy control subjects were randomly assigned to receive regular 1, 10 or 20 Hz rTMS in a counterbalanced order with sessions separated by at least 1 week. In the second experiment, 10 of these 12 subjects received priming rTMS (600 stimuli at 6 Hz followed by 600 stimuli at 1 Hz). Cortical inhibition was indexed using short-interval intracortical inhibition (SICI) and cortical silent period (CSP). Corticospinal excitability was indexed using motor threshold and MEP amplitude. We found no significant overall change in SICI, although there was a significant correlation between changes in SICI with baseline SICI. Subjects with greater SICI at baseline tended to have reduction in SICI post-rTMS, whereas subjects with less SICI tended to have increase in SICI post-rTMS. There was also a significant lengthening of the CSP with higher stimulation frequencies compared to lower stimulation frequencies. These findings suggest that rTMS increases CI, particularly in subjects with reduced baseline inhibition, a finding consistent with the concept of homeostatic plasticity. Baseline physiological characteristics may be further explored as a method to select patients who may benefit from rTMS treatment.  相似文献   

16.
Cortical excitability can be modulated by manipulation of afferent input. We investigated the influence of peripheral mixed nerve stimulation on the excitability of the motor cortex. Motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the right abductor pollicis brevis (APB), extensor carpi radialis (ECR) and first dorsal interosseous (FDI) muscles were evaluated using paired-pulse transcranial magnetic stimulation (TMS) before and after high-frequency peripheral mixed nerve stimulation (150Hz, 30min) over the right median nerve at the wrist. The MEP amplitude and SICI of the APB muscle decreased transiently 0-10min after the intervention, whereas the ICF did not change. High-frequency peripheral mixed nerve stimulation reduced the excitability of the motor cortex. The decrement in the SICI, which reflects the function of GABA(A)ergic inhibitory interneurons, might compensate for the reduced motor cortical excitability after high-frequency peripheral mixed nerve stimulation.  相似文献   

17.
Repetitive transcranial magnetic stimulation (rTMS) delivered in short trains at 5 Hz frequency and suprathreshold intensity over the primary motor cortex (M1) in healthy subjects facilitates the motor-evoked potential (MEP) amplitude by increasing cortical excitability through mechanisms resembling short-term synaptic plasticity. In this study, to investigate whether rTES acts through similar mechanisms we compared the effects of rTMS and repetitive transcranial electrical stimulation (rTES) (10 stimuli-trains, 5 Hz frequency, suprathreshold intensity) delivered over the M1 on the MEP amplitude. Four healthy subjects were studied in two separate sessions in a relaxed condition. rTMS and anodal rTES were delivered in trains to the left M1 over the motor area for evoking a MEP in the right first dorsal interosseous muscle. Changes in MEP size and latency during the course of the rTMS and rTES trains were compared. The possible effects of muscle activation on MEP amplitude were evaluated, and the possible effects of cutaneous trigeminal fibre activation on corticospinal excitability were excluded in a control experiment testing the MEP amplitude before and after supraorbital nerve repetitive electrical stimulation. Repeated measures analysis of variance (ANOVA) showed that rTES and rTMS trains elicited similar amplitude first MEPs and a similar magnitude MEP amplitude facilitation during the trains. rTES elicited a first MEP with a shorter latency than rTMS, without significant changes during the course of the train of stimuli. The MEP elicited by single-pulse TES delivered during muscle contraction had a smaller amplitude than the last MEP in the rTES trains. Repetitive supraorbital nerve stimulation left the conditioned MEP unchanged. Our results suggest that 5 Hz-rTES delivered in short trains increases cortical excitability and does so by acting on the excitatory interneurones probably through mechanisms similar to those underlying the rTMS-induced MEP facilitation.  相似文献   

18.
We investigated the changes in intracortical neuronal circuits of the hand motor cortex following sensory stimulation of the fingers in 11 healthy subjects. Motor evoked potentials (MEPs) were recorded from intrinsic hand muscles (right first dorsal interosseous and abductor digiti minimi muscles). Electrical stimulation was applied to a digit near (homotopic) or distant (heterotopic stimulation) from each muscle. The right index or little finger was stimulated electrically, followed by single- or paired-pulse transcranial magnetic stimulation (TMS) at an interval of 25, 200, 600, 1,000 or 1,400 ms. Paired-pulse TMS was applied with interstimuli intervals of 2 ms or 12 ms and was expected to stimulate inhibitory or facilitatory intracortical circuits, respectively. MEPs induced by single-pulse TMS were significantly suppressed 200, 600, and 1,000 ms after heterotopic and homotopic stimuli. Intracortical facilitation was significantly enhanced only after homotopic stimuli and such enhancement was maximal 200 ms after digit stimulation. Intracortical inhibition was slightly weakened after homotopic stimulation but this effect did not reach statistical significance (P=0.25). Our results show that sensory feedback can modify intracortical and corticospinal motor excitability and that intracortical facilitation can be enhanced in a topographic-specific way especially at long latencies. These findings suggest that indirect pathways, probably through somatosensory cortex and other areas, enhance intracortical motor excitability in a somatotopically organized manner. Electronic Publication  相似文献   

19.
In uninjured humans, it is well established that voluntary contraction of muscles on one side of the body can facilitate transmission in the contralateral corticospinal pathway. This crossed facilitatory effect may favor interlimb coordination and motor performance. Whether this aspect of corticospinal function is preserved after chronic spinal cord injury (SCI) is unknown. Here, using transcranial magnetic stimulation, we show in patients with chronic cervical SCI (C(5)-C(8)) that the size of motor evoked potentials (MEPs) in a resting intrinsic hand muscle remained unchanged during increasing levels of voluntary contraction with a contralateral distal or proximal arm muscle. In contrast, MEP size in a resting hand muscle was increased during the same motor tasks in healthy control subjects. The magnitude of voluntary electromyography was negatively correlated with MEP size after chronic cervical SCI and positively correlated in healthy control subjects. To examine the mechanisms contributing to MEP crossed facilitation we examined short-interval intracortical inhibition (SICI), interhemispheric inhibition (IHI), and motoneuronal behavior by testing F waves and cervicomedullary MEPs (CMEPs). During strong voluntary contractions SICI was unchanged after cervical SCI and decreased in healthy control subjects compared with rest. F-wave amplitude and persistence and CMEP size remained unchanged after cervical SCI and increased in healthy control subjects compared with rest. In addition, during strong voluntary contractions IHI was unchanged in cervical SCI compared with rest. Our results indicate that GABAergic intracortical circuits, interhemispheric glutamatergic projections between motor cortices, and excitability of index finger motoneurons are neural mechanisms underlying, at least in part, the lack of crossed corticospinal facilitation observed after SCI. Our data point to the spinal motoneurons as a critical site for modulating corticospinal transmission after chronic cervical SCI.  相似文献   

20.
Repetitive transcranial magnetic stimulation (rTMS) delivered at various intensities and frequencies excites cortical motor areas. Trains of stimuli (at 5-Hz frequency, and suprathreshold intensity) progressively increase the size of motor evoked potentials (MEPs) and the duration of the cortical silent period (CSP) in normal subjects. Because antiepileptic drugs, acting mainly on sodium channels, depress MEP facilitation during rTMS, we suggested that rTMS trains facilitate the MEP size by inducing synaptic potentiation primarily involving voltage-gated sodium channels. The aim of this study was to evaluate the effect of lidocaine—a drug that acts selectively on sodium channels—on the rTMS-induced changes in cortical excitability. We tested the changes in motor threshold, MEP size, CSP duration evoked by focal rTMS and the M-wave amplitude in healthy subjects before and after lidocaine infusion. Lidocaine abolished the normal rTMS-induced facilitation of MEPs but left the other rTMS variables and the M-wave unchanged. Our results suggest that the MEP facilitation related to rTMS-induced synaptic potentiation results from an increase in cortical excitatory interneuron excitability that involves voltage-gated sodium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号