首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tilapia lake virus (TiLV) is a newly emerged pathogen responsible for high mortality and economic losses in the global tilapia industry. Early and accurate diagnosis is an important priority for TiLV disease control. In order to evaluate the methodology in the molecular diagnosis of TiLV, we compared newly developed quantitative real-time PCR (qPCR) and real-time recombinase polymerase amplification (real-time RPA) assays regarding their sensitivities, specificities and detection effect on clinical samples. Real-time RPA amplified the target pathogen in less than 30 min at 39 °C with a detection limit of 620 copies, while qPCR required about 60 min with a detection limit of 62 copies. Both assays were specific for TiLV and there were no cross-reactions observed with other common fish pathogens. The assays were validated using 35 tissue samples from clinically infected and 60 from artificially infected animals. The sensitivities for the real-time RPA and qPCR assays were 93.33 and 100%, respectively, and the specificity was 100% for both. Both methods have their advantages and can play their roles in different situations. The qPCR is more suitable for quantitative analysis and accurate detection of TiLV in a diagnostic laboratory, whereas real-time RPA is more suitable for the diagnosis of clinical diseases and preliminary screening for TiLV infection in poorly equipped laboratories as well as in fish farms.  相似文献   

3.
Vibrio vulnificus (V. vulnificus) is a Gram-negative bacterium living in warm and salty water. This marine bacterium could produce hemolysin (VVH), which often causes serious gastroenteritis or septicemia when people contact to seawater or seafood containing V. vulnificus. Timely diagnosis is regard as essential to disease surveillance. In this paper, we aimed at developing a quick and sensitive method for the detection of Vibrio vulnificus using real time recombinase polymerase amplification (real time RPA). Specific primers and an exo probe were designed on the basis of the vvhA gene sequence available in GenBank. Target DNA could be amplified and labeled with specific fluorophore within 20 min at 38 °C. The method exhibited a high specificity, only detecting Vibrio vulnificus and not showing cross-reaction with other bacteria. The sensitivity of this method was 2 pg per reaction (20 μL) for DNA, or 200 copies per reaction (20 μL) for standard plasmid. The detection limit (LOD) stated as the target level that would be detected 95% of the time and estimated was 1.58 × 102 copies by fit of the probit to the results of 8 replicates in different concentration. For quantitative analysis of the real time RPA, the second order polynomial regression was adopted in our study. The results showed the correlation coefficients were raised above 0.98, which suggested this model might be a better choice for the quantitative analysis of real time RPA compared to the routine linear regression model. For artificially contaminated plasma samples, Vibrio vulnificus could be detected within 16 min by real time RPA at concentration as low as 1.2 × 102 CFU/mL or 2.4 CFU per reaction (20 μL). Thus, the real time RPA method established in this study shows great potential for detecting Vibrio vulnificus in the research laboratory and disease diagnosis.  相似文献   

4.
The similar clinical characteristics of canine circovirus (CaCV) and canine astrovirus (CaAstV) infections and high frequency of co-infection make diagnosis difficult. In this study, a duplex SYBR Green I-based real-time polymerase chain reaction (PCR) assay was established for the rapid, simultaneous detection of CaCV and CaAstV. Two pairs of specific primers were designed based on the Rep gene of CaCV and the Cap gene of CaAstV. By using the real-time PCR assay method, the two viruses can be distinguished by the difference in melting temperatures, 79 °C and 86 °C for CaCV and CaAstV, respectively. This assay had high specificity, showing no cross-reaction with other common canine viruses, as well as high sensitivity, with minimum detection limits of 9.25 × 101 copies/μL and 6.15 × 101 copies/μL for CaCV and CaAstV, respectively. Based on the mean coefficient of variation, the method had good reproducibility and reliability. In a clinical test of 57 fecal samples, the rates of positive detection by real-time PCR were 14.04% (8/57) and 12.28% (7/57) for CaCV and CaAstV, respectively, and the rate of co-infection was 8.77% (5/57). In conclusion, the newly established duplex SYBR Green I-based real-time PCR assay is sensitive, specific, reliable, and rapid and is an effective tool for the detection of co-infections with CaCV and CaAstV.  相似文献   

5.
6.
Elizabethkingia miricola, a Gram-negative bacillus, is emerging as a life-threatening pathogen in both humans and animals. However, no specific and rapid diagnostic method exists to detect E. miricola. Here, we established a real-time PCR assay for the rapid, sensitive, and specific detection of E. miricola with a wide dynamic range of 108 copies/μL to 102 copies/μL. The detection limit of the real-time assay was 145 copies/μL, which was 100 times more sensitive than conventional PCR. All clinical isolates E. miricola from different host species yield very close Tm (80.25 ± 0.25 °C). Additionally, no cross-reaction or false positives were observed in the assay for non-target bacterial species. The performance of this assay was primarily assessed by testing frog tissue samples. Overall, our study provided a real-time PCR assay, which is a rapid, sensitive, and specific diagnostic method that could be used for early diagnosis and epidemiological investigation of E. miricola.  相似文献   

7.
Shigella spp are exquisitely fastidious Gram negative organisms that frequently get missed in the detection by traditional culture methods. For this reason, this work has adapted a classical PCR for detection of Shigella in food and stool specimens to real-time PCR using the SYBR Green format. This method follows a melting curve analysis to be more rapid and provide both qualitative and quantitative data about the targeted pathogen.A total of 117 stool samples with diarrhea and 102 food samples were analyzed in Public Health Regional Laboratory of Nabeul by traditional culture methods and real-time PCR. To validate the real-time PCR assay, an experiment was conducted with both spiked and naturally contaminated stool samples. All Shigella strains tested were ipaH positive and all non-Shigella strains yielded no amplification products. The melting temperature (Tm = 81.5 ± 0.5 °C) was consistently specific for the amplicon. Correlation coefficients of standard curves constructed using the quantification cycle (Cq) versus copy numbers of Shigella showed good linearity (R2 = 0.995; slope = 2.952) and the minimum level of detection was 1.5 × 103 CFU/g feces. All food samples analyzed were negative for Shigella by standard culture methods, whereas ipaH was detected in 8.8% culture negative food products. Moreover, the ipaH specific PCR system increased the detection rate over that by culture alone from 1.7% to 11.1% among patients with diarrhea.The data presented here shows that the SYBR Green I was suitable for use in the real-time PCR assay, which provided a specific, sensitive and efficient method for the detection and quantification of Shigella spp in food and stool samples.  相似文献   

8.
Beak atrophy and dwarfism syndrome (BADS) is commonly caused by co-infection with duck circovirus (DuCV) and novel goose parvovirus (NGPV). Therefore, concurrent detection of both viruses is important for monitoring and limiting BADS, although such a diagnostic test has not been reported. In this study, we developed a duplex, SYBR Green I-based real-time polymerase chain reaction (PCR) assay to enable the simultaneous detection of DuCV and NGPV. The assay readily distinguished between the two viruses, based on their different melting temperatures (Tm), where the Tm for DuCV was 80 °C and that for NGPV was 84.5 °C. Other non-target duck viruses that were tested did not show melting peaks. The detection limit of the duplex assay was 101 copies/μL for both viruses. This method exhibited high repeatability and reproducibility, and both the inter-assay and intra-assay variation coefficients were <1.6%. Thirty-one fecal samples were collected for clinical testing using real-time PCR analysis, and the results were confirmed using sequencing. The rate of co-infection was 6.5%, which was consistent with the sequencing results. This duplex real-time PCR assay offers advantages over other tests, such as rapid, sensitive, specific, and reliable detection of both viruses in a single sample, which enables the quantitative detection of DuCV and NGPV in clinical samples. Using this test may be instrumental in reducing the incidence of BADS and the associated economic losses in the duck and goose industries.  相似文献   

9.
10.
The duplex real-time PCR assay based on SYBR Green І was developed for detection of porcine epidemic diarrhea virus (PEDV) and porcine bocavirus (PBoV) 3/4/5 genotypes simultaneously. Two pairs of specific primers were designed targeting the N gene sequence of PEDV and VP1 gene sequence of PBoV3/4/5. PEDV and PBoV3/4/5 could be distinguished by their different melting temperatures (Tm) in one sample. The Tm value of PEDV was 83.5 °C, and the Tm value of PBoV3/4/5 was 78.5 °C, while other swine pathogens showed no specific melting peaks. The detection limits of this assay were 10 copies/μL for both PEDV and PBoV3/4/5. A total of sixty-three intestinal tissue samples were collected from piglets suffering from diarrhea, and the viral nucleic acids detected and identified by the real-time PCR assay and conventional PCR assay. The duplex real-time PCR detection results showed that the prevalence of PEDV and PBoV3/4/5 was 85.7% and 46%, respectively, and the co-infection rate of the two viruses was 28.6%. These results indicated that this duplex real-time PCR assay was a sensitive, specific and reproducible method for differentiating PEDV and PBoV3/4/5 or their co-infection.  相似文献   

11.
Bovine brucellosis, predominantly caused by Brucella abortus is one of the most neglected zoonotic diseases causing severe economic losses in the dairy industry. The early and precise diagnosis of the disease is required to reduce the transmission of infection in humans as well as animals. In the current study, a rapid and novel isothermal amplification-based polymerase spiral reaction (PSR) was developed for the specific detection of Brucella abortus by targeting the BruAb2_0168 gene. The assay could be conducted at 65 °C in a water bath and results can be obtained after 60 min. The detection limit of the PSR assay was found to be 1.33 fg. The sensitivity of the assay was found to be 104 fold higher than conventional PCR and equivalent to real-time PCR (RT-PCR). The assay didn't exhibit cross-reaction with selected pathogenic non-Brucella bacteria and Brucella spp. other than B. abortus. Forty clinical samples were also tested using this novel assay and it was able to detect 25 samples as positive, however, conventional PCR could detect the targeted organism in 22 samples only.To the extent of our knowledge, this is the first report towards the development of a PSR assay for specific detection of B. abortus. The assay can be used as a quick, sensitive and accurate test for the diagnosis of bovine brucellosis in the field setting. Relatively one of the paradigm-shifting aspects of this assay would be it does not require any expensive equipment and the results can be easily visualized by the unaided eye, therefore making PSR a valuable diagnostic tool in field conditions.  相似文献   

12.
We sought to establish normal values for the diameters of the main (MPA), right (RPA), and left (LPA) pulmonary arteries and for the angles describing the geometry of the pulmonary artery bifurcation in children by using contrast-enhanced magnetic resonance angiography (CE-MRA). CE-MRA was performed in 69 children without cardiovascular disease. The median age was 10 ± 4.9 years (range 2–20), weight 37.4 ± 18.5 kg (10–82), body surface area (BSA) 1.18 ± 0.4 m2 (0.48–2.07). The pulmonary artery diameters and angles were measured at standardized sites and projections. Regression analysis of diameters and angles in relation to BSA demonstrated linear relationship between the cross-sectional diameters of the pulmonary arteries and the square root of BSA (BSA0.5). Normalized mean diameters were for the MPA 17.6 ± 5.1 mm/m2, origin of RPA 13.1 ± 2.9 mm/m2, origin of LPA 14.2 ± 2.9 mm/m2. The MPA showed a mean antero-posterior inclination of 33° ± 8° and a lateral leftward angulation of 18° ± 5°. The mean angle of the bifurcation was 99.5° ± 10.3°. Both side branches showed a supero-inferior course of the proximal segments, steeper for the RPA (7.7° ± 6.5°) than for the LPA (2.1° ± 7.8°). Normative curves in relation to BSA are presented for all measurements. This study provides normative values by CE-MRA for the main pulmonary artery and its side branches in children during somatic growth. These data can be used for identifying pulmonary arteries anomalies in children, and evaluate the need and the modality for treatment.  相似文献   

13.
14.
Dickeya solani, one of the most significant bacterial pathogens, infects potato plants, resulting in severe economic damage. In this study, a lateral flow assay (LFA) combined with isothermal DNA amplification was developed for rapid, specific, and sensitive diagnosis of the potato blackleg disease caused by D. solani. Recombinase polymerase amplification (RPA) was chosen for this purpose. Five primer pairs specific to different regions of the D. solani genome were designed and screened. A primer pair providing correct recognition of the target sequence was aligned with the SOL-C region specific to D. solani and flanked by fluorescein (forward primer) and biotin (reverse primer). Lateral flow test strips were constructed to detect DNA amplicons. The RPA-LFA demonstrated a detection limit equal to 14,000 D. solani colony-forming units per gram of potato tuber. This assay provided sensitivity corresponding to the polymerase chain reaction (PCR) but was implemented at a fixed temperature (39 °C) over 30 min. No unspecific reactions with Pectobacterium, Clavibacter, and other Dickeya species were observed. Detection of latent infection of D. solani in the potato tubers by the developed RPA-LFA was verified by PCR. The obtained results confirmed that RPA-LFA has great potential for highly sensitive detection of latent infection.  相似文献   

15.
Shrimp hemocyte iridescent virus (SHIV), which was first identified in white leg shrimp (Litopenaeus vannamei) in China in 2014, can cause extensive shrimp mortality and major economic losses in the shrimp farming industry in China. In this study, a novel real-time isothermal recombinase polymerase amplification (RPA) assay was developed using a TwistAmp exo kit for SHIV detection. First, five primers and a probe were designed for the major capsid protein gene (GenBank: KY681039.1) according to the TwistDx manual; next, the optimal primers were selected by a comparison experiment. The primers and probe were specific for SHIV and did not react with shrimp white spot syndrome virus (WSSV), shrimp infectious hypodermal and hematopoietic necrosis virus (IHHNV), shrimp enterocytozoon hepatopenaei (EHP), and macrobrachium rosenbergii nodavirus (MrNV) samples, as well as pathogens of acute hepatopancreatic necrosis disease (AHPND). The RPA assay reached a detection limit of 11 copies per reaction according to probit regression analysis. In addition, RPA assay detected the positive plasmid samples at concentration of 1000 copies/μL within 16.04 ± 0.72 min at a single low operation temperature (39 °C). The results proved that the proposed RPA method was an accurate, sensitive, affordable, and rapid detection tool that can be suitably applied for the diagnosis of SHIV in field conditions and in resource-poor settings.  相似文献   

16.
17.
18.
Two pairs of primers were designed to bind conserved genomic regions of goose parvovirus (GPV) and goose astrovirus (GAstV) to establish a simple, sensitive, and highly specific duplex quantitative PCR (qPCR) method to simultaneously detect the two viruses. The duplex qPCR can distinguish GPV (melting point: 82.1 °C) and GAstV (melting point: 79.8 °C) by the peaks of their individual melting curves. Mixed testing with other waterfowl viruses produced no nonspecific peaks. The established standard curves showed good linear relationships (R2 > 0.997) and the limits of detection (LOD) for GPV and GAstV were 5.74 × 101 and 6.58 × 101 copies/μL, respectively. Both intra- and inter-assay coefficients of variation were <2%, indicating that the method has good repeatability. Twenty tissue samples from diseased geese were examined with the duplex qPCR assay and conventional PCR. Duplex qPCR showed positive rates of 25% for GPV and 45% for GAstV, and the positive rate for GPV and GAstV coinfection was 15%, slightly higher than the results for conventional PCR. These results indicated that this duplex qPCR method is highly sensitive, specific, and reproducible, and is suitable for epidemiological studies to effectively control the transmission of GPV and GAstV.  相似文献   

19.
In the present study, a specific and reliable duplex SYBR green I-based quantitative real-time polymerase chain reaction assay was established to detect pseudorabies virus (PRV) and porcine circovirus 3 (PCV3) simultaneously. Viral genomes of PRV and PCV3 in one specimen were identified by their different melting temperatures with melting peaks at 87 °C and 81 °C for PRV and PCV3 respectively, whilst other non-targeted swine pathogens exhibited no fluorescent signals. The assay displayed a high degree of linearity (R2 > 0.997), and the limits of detection were 37.8 copies/μL, 30.6 copies/μL and 60 copies/μL for PRV, PCV3 and the mixture of two recombinant plasmids, respectively. It had good repeatability and reproducibility, and the coefficients of variation in intra-batch and inter-batch assays were all less than 2.0%. In this research, the duplex assay was further evaluated using 117 clinical tissue specimens from diseased pigs in the field. The results revealed the infection rates of PRV and PCV3 were 23.08% (27/117) and 55.56% (65/117) respectively, and PRV and PCV3 co-infection rate was 14.53% (17/117). The assay could be utilized as a diagnostic tool with specificity, sensitivity, and reliability for molecular epidemiological surveillance of PRV and PCV3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号