首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonreceptor protein tyrosine kinase p56lck (Lck) serves as a fundamental regulator of thymocyte development by delivering signals from the pre-T cell receptor (pre-TCR) that permit subsequent maturation. However, considerable evidence supports the view that Lck also participates in signal transduction from the mature TCR. We have tested this conjecture by expressing a dominant-negative form of Lck under the control of a promoter element (the distal lck promoter) that directs high expression in CD4+CD8+ thymocytes, mature thymocytes, and peripheral T cells, thereby avoiding, complications that result from the well-documented ability of dominant-negative Lck to block very early events in thymocyte maturation. Here we report that expression of the catalytically inactive Lck protein at twice normal concentrations inhibits thymocyte positive selection by as much as 80%, while leaving other aspects of cell maturation intact. This effect was studied in more detail in mice simultaneously bearing the male-specific H-Y alpha/beta TCR transgene and ovalbumin-specific DO10 alpha/beta TCR transgene, where even equimolar expression of the dominant-negative Lck protein substantially vitiated the positive selection process. Although deletion of H-Y alpha/beta thymocytes proceeded normally in male mice despite the presence of catalytically inactive Lck, modest inhibition of superantigen-mediated deletion was in some cases observed. These data further implicate Lck in the propagation of all TCR-derived signals, and indicate that even very modest deficiencies in the representation of functional Lck molecules could in humans, profoundly alter the character of the peripheral TCR repertoire.  相似文献   

2.
Stimulation of the T cell antigen receptor (TCR) activates a protein tyrosine kinase and leads to the tyrosine phosphorylation of phosphoinositide-specific phospholipase C-gamma 1 (PLC gamma 1). The molecular interactions involved in this phosphorylation are not known. After stimulation of the TCR on Jurkat T cells, tyrosine-phosphorylated proteins of 36, 38, 58, and 63 kD coprecipitate with PLC gamma 1. An identical pattern of proteins precipitate with TrpE fusion proteins that contain the Src homology (SH) 2 domains of PLC gamma 1, indicating that these regions of PLC gamma 1 are responsible for binding. TCR stimulation leads to an association between the SH2 domains of PLC gamma 1 and a protein tyrosine kinase, which, by peptide mapping, is identical to p56lck. These studies establish that p56lck associates with PLC gamma 1 as a result of TCR stimulation of Jurkat cells, suggesting that p56lck plays a central role in coupling the TCR to the activation of PLC gamma 1.  相似文献   

3.
The lck gene encodes a lymphocyte-specific protein tyrosine kinase of the nonreceptor type that is implicated in signal transduction pathways emanating from the CD4 and CD8 coreceptors. Previous studies also support a role for p56lck in regulating T cell receptor beta gene rearrangements and, more generally, thymocyte development. Here we report that a mutant form of p56lck, which is incapable of interacting with CD4 or CD8, behaves indistinguishably from association-competent p56lck with respect to its ability to affect thymocyte maturation. The effects of p56lck remained specific in that the closely related src- family kinase p59hck was incapable of substituting for p56lck in arresting beta locus gene rearrangements. These data support the view that src-family kinases perform highly specialized and often nonoverlapping functions in hematopoietic cells, and that p56lck acts independently of its association with CD4 and CD8 to regulate thymocyte development.  相似文献   

4.
Binding of ligand to the alpha subunit of Fc gamma RIIIA(CD16), expressed at the natural killer (NK) cell membrane in association with homo or heterodimers of proteins of the zeta family, results in phosphorylation of several proteins on tyrosine residues. We have analyzed the role of protein tyrosine phosphorylation in the regulation of molecular events induced upon stimulation of Fc gamma RIIIA in NK cells and in T cells expressing the Fc gamma RIII alpha chain in association with endogenous zeta 2 homodimers and devoid of other (CD3, CD2) transducing molecules. Our data indicate that treatment of these cells with protein tyrosine kinase inhibitors prevents not only Fc gamma RIIIA-induced protein tyrosine phosphorylation but also phosphatidylinositol 4,5 diphosphate hydrolysis and increased intracellular Ca2+ concentration, indicating a primary role of tyrosine kinase(s) in the induction of these early activation events. Occupancy of Fc gamma RIIIA by ligand results in phospholipase C (PLC)-gamma 1 tyrosine phosphorylation in NK cells and in Fc gamma RIIIA-transfected CD3-/CD2- T cells, and induces functional activation of p56lck in Fc gamma RIIIA alpha/zeta 2-transfected T cells, suggesting the possibility that the receptor-induced PLC-gamma 1 activation occurs upon phosphorylation of its tyrosine residues mediated by this kinase and is, at least in part, responsible for the signal transduction mediated via CD16 upon ligand binding.  相似文献   

5.
As a result of interaction with epithelial cells in the thymic cortex, immature CD4(+)8(+) (double positive, DP) thymocytes express relatively few T cell receptors (TCRs) and contain diminished numbers of coreceptor-associated p56(lck) (lck) PTK molecules. As a result, TCR signal transduction in DP thymocytes is significantly impaired, despite its importance for repertoire selection. We report here that, in DP thymocytes, tyrosine phosphorylation of TCR signaling motifs (ITAMs) by lck, an early event in TCR signal transduction, is dependent upon ZAP-70 protein independent of ZAP-70's kinase activity. Furthermore, the dependence on ZAP-70 protein for ITAM phosphorylation diminishes as available lck increases. Importantly, ZAP-70's role in ITAM phosphorylation in DP thymocytes is not limited to protecting phosphorylated ITAMs from dephosphorylation. Rather, this study indicates that ZAP-70 protein augments ITAM phosphorylation in DP thymocytes and so compensates in part for the relative deficiency of coreceptor-associated lck.  相似文献   

6.
The tyrosine kinase p56lck regulates the differentiation and proliferative expansion of pre-T cells. However, nothing is known about other signaling molecules that operate with p56lck to mediate the pleiotropic changes that occur at this stage of thymocyte development. We used a genetic strategy to examine the requirement for the GTPase Rho in p56lck-mediated signals in the thymus. By generating mice double transgenic for a constitutively activated form of p56lck (p56lckF505) and the Rho inhibitor C3 transferase we were able to compare thymocyte development in mice expressing active p56lck on a wild-type or Rho background. Thymocytes expressing active p56lck show enhanced proliferation of pre-T cells resulting in increased numbers of late pre-T cells, however, this dramatic effect on pre-T cell proliferation is lost when the p56lck transgene is expressed in thymocytes lacking endogenous Rho GTPase function. Expression of active p56lck also generates double positive (DP) thymocytes with low levels of CD2 antigen expression. Again, p56lck cannot prevent expression of CD2 when expressed on a Rho background. CD4+CD8+ DP cells expressing active p56lck have been shown to lack functional α/β–T cell receptor (TCR) complexes due to p56lck-mediated inhibition of TCR gene Vβ-Dβ rearrangement. This inhibition of TCR expression by active p56lck is unimpaired in the absence of Rho function. The signaling pathways that are mediated by p56lck and control thymocyte proliferation, α/β-TCR and CD2 antigen expression can thus be distinguished by their dependency on Rho function.  相似文献   

7.
The csk gene encodes a nonreceptor protein tyrosine kinase that acts in part by regulating the activity of src-family protein tyrosine kinases. Since the src-family kinases p56lck and p59fyn play pivotal roles during lymphocyte development, it seemed plausible that p50csk might contribute to these regulatory circuits. Using a gene targeting approach, mouse embryonic stem cell lines lacking functional csk genes were generated. These csknull embryonic stem cells proved capable of contributing to many adult tissues, notably heart and brain. However, although csknull progenitors colonized the developing thymus, T and B cell differentiation were both blocked at very early stages. This represented a relatively selective interdiction of lymphocyte maturation, since csknull hematopoietic progenitors supported the development of normal-appearing MAC-1+ blood leukocytes, and the successful maturation of granulocyte/macrophage-colony-forming units from fetal liver progenitors. We conclude that p50csk regulates normal lymphocyte differentiation, but that it almost certainly does so by acting on targets other than p56lck and p59fyn.  相似文献   

8.
p56lck interacts via its src homology 2 domain with the ZAP-70 kinase   总被引:18,自引:7,他引:18       下载免费PDF全文
p56lck, a member of the src family of protein tyrosine kinases, is an essential component in T cell receptor (TCR) signal transduction. p56lck contains a src homology 2 (SH2) domain found in a number of proteins involved in intracellular signaling. SH2 domains have been implicated in protein-protein interactions by binding to sequences in target proteins containing phosphorylated tyrosine. Using an in vitro assay, we have studied specific binding of tyrosine-phosphorylated proteins to a recombinant p56lck SH2 domain. In nonactivated Jurkat cells, two tyrosine-phosphorylated proteins were detected. Stimulation with anti-CD3 monoclonal antibodies induced the binding of seven additional tyrosine-phosphorylated proteins to the SH2 domain of p56lck. We have identified the zeta-associated tyrosine kinase, ZAP-70, as one of these proteins. Evidence suggests that binding of ZAP-70 to p56lck SH2 is direct and not mediated by zeta. The significance of this interaction was further investigated in vivo. p56lck could be coprecipitated with the zeta/ZAP-70 complex and conversely, ZAP-70 was detected in p56lck immunoprecipitates of activated Jurkat cells. The physical association of p56lck and ZAP-70 during activation supports the recently proposed functional cooperation of these two tyrosine kinases in TCR signaling.  相似文献   

9.
The transmembrane receptor for immunoglobulin G immune complexes on natural killer (NK) cells and macrophages, Fc gamma RIIIA (CD16), mediates cellular activation through a tyrosine kinase-dependent pathway. We show that Fc gamma RIII crosslinking results in activation of the src-related kinase p56lck in NK cells and demonstrate a physical association of p56lck with Fc gamma RIIIA in immunoprecipitates from NK cells obtained using anti-Fc gamma RIII antibodies or immune complexes. Our studies show that the zeta chain, the signal transducing subunit of Fc gamma RIIIA and of T cell receptor, associates with p56lck and, in NK cells, is a substrate for this kinase. Such direct association of p56lck with the zeta subunit as confirmed by demonstrating the interaction in heterologous cells transfected with cDNA expressing p56lck and zeta. Our findings demonstrate both functional and physical association of p56lck with Fc gamma RIIIA, through direct interaction of the kinase with the zeta and/or the gamma signal transducer subunits of the receptor. These data suggest a possible mechanism by which activation via Fc gamma RIIIA occurs.  相似文献   

10.
We investigated the surface markers, cell-function, clonality, and the association of IL-2 receptors and a second messenger of src family of tyrosine kinase p56lck in IL-2 signal transduction of the leukemic cells of 12 patients with large granular lymphocytic leukemia (LGL leukemia). The leukemic cells of 5 patients were CD3+ and 5 of them were CD3-. In three patients with CD3- leukemia examined, one showed karyotype abnormality of 46, XY, -10, +mar and the delta gene of TCR was rearranged in one patient. The TCR of the leukemic cells of a patient MH with CD3+, CD4 and CD8 (double positive marker: DP) recognised rabbit IgG presented by macrophages. The recognition was class II restricted. We examined the expression pattern of CD8 subunits and found that DP leukemic cells commonly expressed CD8 alpha+ beta-. These results suggested that DP leukemic cells were CD4+ T cells and expressed CD8 alpha secondarily. The p75 IL-2 receptors were detected, however, the modulation of p56lck in the process of IL-2 signal transduction were not found out. There was no association between p75 and p56lck when leukemic LGL cells proliferated on stimulation with IL-2.  相似文献   

11.
During antigen recognition by T cells, CD4 and the T-cell receptor (TCR)/CD3/zeta complex are thought to interact with the same major histocompatibility complex II molecule in a stable ternary complex. Evidence has suggested that the association of CD4 with TCR/CD3/zeta requires the interaction of the protein tyrosine kinase p56lck with CD4. We have taken a biochemical approach to understand the mechanism by which p56lck and, in particular, its src homology (SH) 2 domain contributes to the association of CD4 with TCR/CD3/zeta during activation. We have previously shown that the p56lck SH2 domain binds directly to tyrosine-phosphorylated ZAP-70. Here we formally demonstrate the in vivo association of p56lck with the homologous protein tyrosine kinases Syk and ZAP-70 after CD3 stimulation of Jurkat cells. A tyrosine-phosphorylated peptide containing the sequence predicted to be optimal for binding to the SH2 domain of src family kinases specifically competes for this association, indicating that tyrosine-phosphorylated ZAP-70 and Syk bind to p56lck by an SH2- mediated interaction. We also show that the same peptide is able to compete for the activation-dependent TCR/CD4 association in Jurkat cells. Moreover, ZAP-70 and CD4 cocap only after CD3 stimulation in human T lymphoblasts. We propose that the interaction of the p56lck SH2 domain with zeta-associated tyrosine-phosphorylated ZAP-70 and/or Syk enables CD4 to associate with antigen-stimulated TCR/CD3/zeta complexes.  相似文献   

12.
CD28 is an adhesion receptor expressed as a 44-kD dimer on the surface of a major subset of human T cells. The CD28 receptor regulates the production of multiple lymphokines, including interleukin 2 (IL-2), by activation of a signal transduction pathway that is poorly understood. Here we show that ligation of CD28 by a monoclonal antibody (mAb) or by a natural ligand, B7/BB1, induces protein tyrosine phosphorylation that is distinct from T cell receptor (TCR)-induced tyrosine phosphorylation. CD28-induced protein tyrosine phosphorylation was greatly enhanced in cells that had been preactivated by ligation of the TCR, or by pretreatment with phorbol esters. Rapid and prolonged tyrosine phosphorylation of a single substrate, pp100, was induced in T cells after interaction with B7/BB1 presented on transfected Chinese hamster ovary (CHO) cells. Anti-B7 mAb inhibited B7/BB1 receptor-induced tyrosine phosphorylation, indicating that B7-CD28 interaction was required. CD28-induced tyrosine phosphorylation was independent of the TCR because it occurred in a variant of the Jurkat T cell line that does not express the TCR. Herbimycin A, a protein tyrosine kinase inhibitor, could prevent CD28-induced tyrosine phosphorylation and CD28-induced IL-2 production in normal T cells. The simultaneous crosslinking of CD28 and CD45, a tyrosine phosphatase, could prevent tyrosine phosphorylation of pp100. These results suggest that specific tyrosine phosphorylation, particularly of pp100, occurs directly as a result of CD28 ligand binding and is involved in transducing the signal delivered through CD28 by accessory cells that express the B7/BB1 receptor. Thus, this particular form of signal transduction may be relevant to lymphokine production and, potentially may provide a means to study the induction of self-tolerance, given the putative role of the costimulatory signal in the induction of T cell activation or anergy.  相似文献   

13.
CD2, a cell surface glycoprotein expressed on T cells and natural killer cells, can couple to signaling pathways that result in T cell proliferation. An Src-like protein tyrosine kinase, p56lck, coprecipitates with CD2, and perturbation of CD2 by monoclonal antibodies results in an increase in the activity of p56lck, suggesting that an interaction with p56lck contributes to CD2-mediated signaling. Herein, we investigate the mechanism by which CD2 associates with p56lck. We demonstrate that CD2 and p56lck associate when coexpressed in nonlymphoid cells, that this association requires the cytoplasmic domain of CD2, and that the SH3 domain of p56lck mediates its interactions with CD2. Using truncation mutants of CD2, we identify two regions in the cytoplasmic domain of CD2 involved in binding p56lck. Each region contains a proline-rich sequence that, in the form of a synthetic peptide, directly binds p56lck. Thus, proline-rich sequences in the cytoplasmic domain of CD2 allow this transmembrane receptor to bind to the SH3 domain of p56lck.  相似文献   

14.
Antibody-mediated CD4 crosslinking results in increased tyrosine phosphorylation and tyrosine kinase activity of the associated p56lck. Treatment with anti-CD4 and anti-Ig also induced the phosphorylation of p56lck in a CD45- mutant cell line, indicating that the increase in phosphotyrosine content of p56lck is not the result of being sequestered from CD45 protein tyrosine phosphatase (PTPase). Antibody-mediated coclustering of CD45 with CD4 inhibited the anti-CD4-induced phosphorylation of p56lck on tyrosine and the concomitant increase in in vitro kinase activity. Similar results were obtained when CD45 was coclustered with CD8 on cytotoxic T cell lines. These observations provide strong evidence that p56lck is a substrate for CD45 in vivo and provide an assay to study the regulation and specificity of CD45 PTPase activity.  相似文献   

15.
When stimulated through their antigen receptor, without costimulation, T cells enter a state of antigen-specific unresponsiveness, termed anergy. B7-mediated costimulation, signaling via CD28, is sufficient to prevent the induction of anergy. Here we show that ligation of T cell receptor (TCR) by alloantigen alone, which results in anergy, activates tyrosine phosphorylation of TCR zeta and its association with fyn. In contrast, TCR ligation in the presence of B7 costimulation, which results in productive immunity, activates tyrosine phosphorylation of TCR zeta and CD3 chains, which associate with activated lck and zeta- associated protein (ZAP) 70. Under these conditions, CD28 associates with activated lck and TCR zeta. These data suggest that the induction of anergy is an active signaling process characterized by the association of TCR zeta and fyn. In addition, CD28-mediated costimulation may prevent the induction of anergy by facilitating the effective association of TCR zeta and CD3 epsilon with the critical protein tyrosine kinase lck, and the subsequent recruitment of ZAP-70. Strategies to inhibit or activate TCR-associated, specific protein tyrosine kinase-mediated pathways may provide a basis for drug development with potential applications in the fields of transplantation, autoimmunity, and tumor immunity.  相似文献   

16.
Loss of T cell-associated signal transduction molecules has recently been implicated in immune suppression in tumor-bearing hosts. In the present study, we have examined this and related phenomenon extensively in a large number of tumor-bearing mice, analyzed individually. Splenic T cells from tumor-bearing mice were isolated and characterized with respect to the following: (a) levels of three tyrosine kinases, p56lck, p59fyn, and ZAP-70; (b) expression of CD3-zeta; (c) alloreactive responses; and (d) antigen-specific responses. Contrary to recent reports, T cells from tumor-bearing mice were observed to express normal levels of lck, fyn, ZAP-70, and CD3-zeta. Further, T cells showed healthy alloreactive and antigen-specific responses until approximately 3 wk after post tumor challenge, when the tumors constituted approximately 20% of the body weight. Alterations with respect to some parameters were observed only in mice that had been bearing larger tumors for a considerably longer period. As human tumors are unlikely to grow to such large sizes (e.g., > 20% of the total body weight), the significance of the alterations in T cell expression of lck, fyn, ZAP-70, or CD3-zeta in the immune status of cancer patients is unclear. Altogether, these results indicate that alterations in T cell signal transduction molecules do not account for the profound tumor-specific suppression observed during tumor growth.  相似文献   

17.
The Src-family and Syk/ZAP-70 family of protein tyrosine kinases (PTK) are required for T cell receptor (TCR) functions. We provide evidence that the Src-family PTK Lck is responsible for regulating the constitutive tyrosine phosphorylation of the TCR zeta subunit in murine thymocytes. Moreover, ligation of the TCR expressed on thymocytes from Lck-deficient mice largely failed to induce the phosphorylation of TCR- zeta, CD3 epsilon, or ZAP-70. In contrast, we find that the TCR-zeta subunit is weakly constitutively tyrosine phosphorylated in peripheral T cells isolated from Lck-null mice. These data suggest that Lck has a functional role in regulation of TCR signal transduction in thymocytes. In peripheral T cells, other Src-family PTKs such as Fyn may partially compensate for the absence of Lck.  相似文献   

18.
Intracellular signaling from the T cell receptor (TCR)zeta/CD3 complex is likely to be mediated by associated protein tyrosine kinases such as p59fyn(T), ZAP-70, and the CD4:p56lck and CD8:p56lck coreceptors. The nature of the signaling cascade initiated by these kinases, their specificities, and downstream targets remain to be elucidated. The TCR- zeta/CD3:p59fyn(T) complex has previously been noted to coprecipitate a 120/130-kD doublet (p120/130). This intracellular protein of unknown identity associates directly with p59fyn(T) within the receptor complex. In this study, we have shown that this interaction with p120/130 is specifically mediated by the SH2 domain (not the fyn-SH3 domain) of p59fyn(T). Further, based on the results of in vitro kinase assays, p120/130 appears to be preferentially associated with p59fyn(T) in T cells, and not with p56lck. Antibody reprecipitation studies identified p120/130 as a previously described 130-kD substrate of pp60v- src whose function and structure is unknown. TCR-zeta/CD3 induced activation of T cells augmented the tyrosine phosphorylation of p120/130 in vivo as detected by antibody and GST:fyn-SH2 fusion proteins. p120/130 represents the first identified p59fyn(T):SH2 binding substrate in T cells, and as such is likely to play a key role in the early events of T cell activation.  相似文献   

19.
Accumulating data suggest that the target cells for selection events leading to establishment of the mature T cell repertoire are the functionally immature double-positive (CD4+/CD8+) thymocytes, and that the CD4 and CD8 antigens expressed on these cells play important roles in these processes. In an attempt to define the biochemical pathways implicated in these events, we have studied the effects of engagement of accessory molecules on tyrosine protein phosphorylation. The results of our experiments demonstrate that engagement of CD4 and CD8 expressed on double-positive thymocytes is coupled with a rapid tyrosine protein phosphorylation signal. Further analyses have revealed that these two surface molecules are physically associated with the internal membrane tyrosine protein kinase p56lck in immature thymocytes, and that the catalytic function of lck expressed in double-positive thymocytes is significantly enhanced upon engagement of CD4. These data provide evidence that tyrosine-specific protein phosphorylation pathways coupled to the CD4 and CD8 T cell surface antigens are functional in immature thymocytes, and therefore, formally prove that signaling functions of CD4 and CD8 molecules are operative in immature thymocytes.  相似文献   

20.
The CD45 transmembrane glycoprotein has been shown to be a protein phosphotyrosine phosphatase and to be important in signal transduction in T and B lymphocytes. We have employed gene targeting to create a strain of transgenic mice that completely lacks expression of all isoforms of CD45. The spleens from CD45-null mice contain approximately twice the number of B cells and one fifth the number of T cells found in normal controls. The increase in B cell numbers is due to the specific expansion of two B cell subpopulations that express high levels of immunoglobulin (IgM) staining. T cell development is significantly inhibited in CD45-null animals at two distinct stages. The efficiency of the development of CD4-CD8- thymocytes into CD4+ CD8+ thymocytes is reduced by twofold, subsequently the frequency of successful maturation of the double positive population into mature, single positive thymocytes is reduced by a further four- to fivefold. In addition, we demonstrate that CD45-null thymocytes are severely impaired in their apoptotic response to cross-linking signals via T cell receptor (TCR) in fetal thymic organ culture. In contrast, apoptosis can be induced normally in CD45-null thymocytes by non-TCR- mediated signals. Since both positive and negative selection require signals through the TCR complex, these findings suggest that CD45 is an important regulator of signal transduction via the TCR complex at multiple stages of T cell development. CD45 is absolutely required for the transmission of mitogenic signals via IgM and IgD. By contrast, CD45-null B cells proliferate as well as wild-type cells to CD40- mediated signals. The proliferation of B cells in response to CD38 cross-linking is significantly reduced but not abolished by the CD45- null mutation. We conclude that CD45 is not required at any stage during the generation of mature peripheral B cells, however its loss reveals a previously unrecognized role for CD45 in the regulation of certain subpopulations of B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号