首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research is about the role of categorical and coordinate spatial relations and allocentric and egocentric frames of reference in processing spatial information. To this end, we asked whether spatial information is firstly encoded with respect to a frame of reference or with respect to categorical/coordinate spatial relations. Participants had to judge whether two vertical bars appeared on the same side (categorical) or at the same distance (coordinate) with respect to the centre of a horizontal bar (allocentric) or with respect to their body midline (egocentric). The key manipulation was the timing of the instructions: one instruction (reference frame or spatial relation) was given before stimulus presentation, the other one after. If spatial processing requires egocentric/allocentric encoding before coordinate/categorical encoding, then spatial judgements should be facilitated when the frame of reference is specified in advance. In contrast, if categorical and coordinate dimensions are primary, then a facilitation should appear when the spatial relation is specified in advance. Results showed that participants were more accurate and faster when the reference frame rather than the type of spatial relation was provided before stimulus presentation. Furthermore, a selective facilitation was found for coordinate and categorical judgements after egocentric and allocentric cues, respectively. These results suggest a hierarchical structure of spatial information processing where reference frames play a primary role and selectively interact with subsequent processing of spatial relations.  相似文献   

2.
The spatial location of objects is processed in egocentric and allocentric reference frames, the early temporal dynamics of which have remained relatively unexplored. Previous experiments focused on ERP components related only to egocentric navigation. Thus, we designed a virtual reality experiment to see whether allocentric reference frame‐related ERP modulations can also be registered. Participants collected reward objects at the end of the west and east alleys of a cross maze, and their ERPs to the feedback objects were measured. Participants made turn choices from either the south or the north alley randomly in each trial. In this way, we were able to discern place and response coding of object location. Behavioral results indicated a strong preference for using the allocentric reference frame and a preference for choosing the rewarded place in the next trial, suggesting that participants developed probabilistic expectations between places and rewards. We also found that the amplitude of the P1 was sensitive to the allocentric place of the reward object, independent of its value. We did not find evidence for egocentric response learning. These results show that early ERPs are sensitive to the location of objects during navigation in an allocentric reference frame.  相似文献   

3.
Spatial priming in visual search is a well-documented phenomenon. If the target of a visual search is presented at the same location in subsequent trials, the time taken to find the target at this repeated target location is significantly reduced. Previous studies did not determine which spatial reference frame is used to code the location. At least two reference frames can be distinguished: an observer-related frame of reference (egocentric) or a scene-based frame of reference (allocentric). While past studies suggest that an allocentric reference frame is more effective, we found that an egocentric reference frame is at least as effective as an allocentric one (Ball et al. Neuropsychologia 47(6):1585–1591, 2009). Our previous study did not identify which specific egocentric reference frame was used for the priming: participants could have used a retinotopic or a body-centred frame of reference. Here, we disentangled the retinotopic and body-centred reference frames. In the retinotopic condition, the position of the target stimulus, when repeated, changed with the fixation position, whereas in the body-centred condition, the position of the target stimulus remained the same relative to the display, and thus to the body-midline, but was different relative to the fixation position. We used a conjunction search task to assess the generality of our previous findings. We found that participants relied on body-centred information and not retinotopic cues. Thus, we provide further evidence that egocentric information, and specifically body-centred information, can persist for several seconds, and that these effects are not specific to either a feature or a conjunction search paradigm.  相似文献   

4.
There is a significant overlap between the processes and neural substrates of spatial cognition and those subserving memory and learning. However, for procedural learning, which often is spatial in nature, we do not know how different forms of spatial knowledge, such as egocentric and allocentric frames of reference, are utilized nor whether these frames are differentially engaged during implicit and explicit processes. To address this issue, we trained human subjects on a movement sequence presented on a bi-dimensional (2D) geometric frame. We then systematically manipulated the geometric frame (allocentric) or the sequence of movements (egocentric) or both, and retested the subjects on their ability to transfer the sequence knowledge they had acquired in training and also determined whether the subjects had learned the sequence implicitly or explicitly. None of the subjects (implicit or explicit) showed evidence of transfer when both frames of reference were changed which suggests that spatial information is essential. Both implicit and explicit subjects transferred when the egocentric frame was maintained indicating that this representation is common to both processes. Finally, explicit subjects were also able to benefit from the allocentric frame in transfer, which suggests that explicit procedural knowledge may have two tiers comprising egocentric and allocentric representations.  相似文献   

5.
Motor imagery tasks (hand laterality judgment) are usually performed with respect to a self-body (egocentric) representation, but manipulations of stimulus features (hand orientation) can induce a shift to other's body (allocentric) reference frame. Visual perspective taking tasks are also performed in self-body perspective but a shift to an allocentric frame can be triggered by manipulations of context features (e.g., another person present in the to-be-judged scene). Combining hand laterality task and visual perspective taking, we demonstrated that both stimulus and context features can modulate motor imagery performance. In Experiment 1, participants judged laterality of a hand embedded in a human or non-human silhouette. Results showed that observing a human silhouette interfered with judgments on “egocentric hand stimuli” (right hand, fingers up). In Experiment 2, participants were explicitly required to judge laterality of a hand embedded in a human silhouette from their own (egocentric group) or from the silhouette's perspective (allocentric group). Consistent with previous results, the egocentric group was significantly faster than the allocentric group in judging fingers-up right hand stimuli. These findings showed that concurrent activation of egocentric and allocentric frames during mental transformation of body parts impairs participants’ performance due to a conflict between motor and visual mechanisms.  相似文献   

6.
The primary purpose of this study was to examine the effects of non-informative vision and visual interference upon haptic spatial processing, which supposedly derives from an interaction between an allocentric and egocentric reference frame. To this end, a haptic parallelity task served as baseline to determine the participant-dependent biasing influence of the egocentric reference frame. As expected, large systematic participant-dependent deviations from veridicality were observed. In the second experiment we probed the effect of non-informative vision on the egocentric bias. Moreover, orienting mechanisms (gazing directions) were studied with respect to the presentation of haptic information in a specific hemispace. Non-informative vision proved to have a beneficial effect on haptic spatial processing. No effect of gazing direction or hemispace was observed. In the third experiment we investigated the effect of simultaneously presented interfering visual information on the haptic bias. Interfering visual information parametrically influenced haptic performance. The interplay of reference frames that subserves haptic spatial processing was found to be related to both the effects of non-informative vision and visual interference. These results suggest that spatial representations are influenced by direct cross-modal interactions; inter-participant differences in the haptic modality resulted in differential effects of the visual modality.  相似文献   

7.
What humans haptically perceive as parallel is often far from physically parallel. These deviations from parallelity are highly significant and very systematic. There exists accumulating evidence, both psychophysical and neurophysiological, that what is haptically parallel is decided in a frame of reference intermediate to an allocentric and an egocentric one. The central question here concerns the nature of the egocentric frame of reference. In the literature, various kinds of egocentric reference frames are mentioned for haptic spatial tasks, such as hand-centered, arm-centered, and body-centered frames of reference. Thus far, it has not been possible to distinguish between body-centered, arm-centered, and hand-centered reference frames in our experiments, as hand and arm orientation always covaried with distance from the body-midline. In the current set of experiments the influence of body-centered and hand-centered reference frames could be dissociated. Subjects were asked to make a test bar haptically parallel to a reference bar in five different conditions, in which their hands were oriented straight ahead, rotated to the left, rotated to the right, rotated outward or rotated inward. If the reference frame is body-centered, the deviations should be independent of condition. If, on the other hand, the reference frame is hand-centered, the deviations should vary with condition. The results show that deviation size varies strongly with condition, exactly in the way predicted by the influence of a hand-centered egocentric frame of reference. Interestingly, this implies that subjects do not sufficiently take into account the orientation of their hands.  相似文献   

8.
Research on joint attention has addressed both the effects of gaze following and the ability to share representations. It is largely unknown, however, whether sharing attention also affects the perceptual processing of jointly attended objects. This study tested whether attending to stimuli with another person from opposite perspectives induces a tendency to adopt an allocentric rather than an egocentric reference frame. Pairs of participants performed a handedness task while individually or jointly attending to rotated hand stimuli from opposite sides. Results revealed a significant flattening of the performance rotation curve when participants attended jointly (experiment 1). The effect of joint attention was robust to manipulations of social interaction (cooperation versus competition, experiment 2), but was modulated by the extent to which an allocentric reference frame was primed (experiment 3). Thus, attending to objects together from opposite perspectives makes people adopt an allocentric rather than the default egocentric reference frame.  相似文献   

9.
Despite the clinical significance of topographical disorientation in Alzheimer’s disease, it is not clear which cognitive spatial processes are primarily impaired. Here, we argue that a deficit in “mental frame syncing” between egocentric and allocentric spatial representations causes early manifestations of topographical disorientation in AD. Specifically, patients show impairment in translating from an allocentric hippocampal representation to an egocentric parietal one for the purpose of effective spatial orientation and navigation. We suggest that a break in “mental frame syncing”, underpinned by damage to the hippocampus and retrosplenial cortex, may be a crucial cognitive marker both for early and differential diagnosis of AD. Identification of these spatial deficits could facilitate the development of early cognitive rehabilitation interventions and the possibility of identifying individuals most at risk for progression to AD during the preclinical stages.  相似文献   

10.
Research has shown that haptic spatial matching at intermanual distances over 60 cm is prone to large systematic errors. The error pattern has been explained by the use of reference frames intermediate between egocentric and allocentric coding. This study investigated haptic performance in near peripersonal space, i.e. at intermanual distances of 60 cm and less. Twelve blindfolded participants (six males and six females) were presented with two turn bars at equal distances from the midsagittal plane, 30 or 60 cm apart. Different orientations (vertical/horizontal or oblique) of the left bar had to be matched by adjusting the right bar to either a mirror symmetric (/ \) or parallel (/ /) position. The mirror symmetry task can in principle be performed accurately in both an egocentric and an allocentric reference frame, whereas the parallel task requires an allocentric representation. Results showed that parallel matching induced large systematic errors which increased with distance. Overall error was significantly smaller in the mirror task. The task difference also held for the vertical orientation at 60 cm distance, even though this orientation required the same response in both tasks, showing a marked effect of task instruction. In addition, men outperformed women on the parallel task. Finally, contrary to our expectations, systematic errors were found in the mirror task, predominantly at 30 cm distance. Based on these findings, we suggest that haptic performance in near peripersonal space might be dominated by different mechanisms than those which come into play at distances over 60 cm. Moreover, our results indicate that both inter-individual differences and task demands affect task performance in haptic spatial matching. Therefore, we conclude that the study of haptic spatial matching in near peripersonal space might reveal important additional constraints for the specification of adequate models of haptic spatial performance.  相似文献   

11.
When programming movement, one must account for gravitational acceleration. This is particularly important when catching a falling object because the task requires a precise estimate of time-to-contact. Knowledge of gravity’s effects is intimately linked to our definition of ‘up’ and ‘down’. Both directions can be described in an allocentric reference frame, based on visual and/or gravitational cues, or in an egocentric reference frame in which the body axis is taken as vertical. To test which frame humans use to predict gravity’s effect, we asked participants to intercept virtual balls approaching from above or below with artificially controlled acceleration that could be congruent or not with gravity. To dissociate between these frames, subjects were seated upright (trunk parallel to gravity) or lying down (body axis orthogonal to the gravitational axis). We report data in line with the use of an allocentric reference frame and discuss its relevance depending on available gravity-related cues.  相似文献   

12.
We review human functional neuroimaging studies that have explicitly investigated the reference frames used in different cortical regions for representing spatial locations of objects. Beyond the general distinction between “egocentric” and “allocentric” reference frames, we provide evidence for the selective involvement of the posterior parietal cortex and associated frontal regions in the specific process of egocentric localization of visual and somatosensory stimuli with respect to relevant body parts (“body referencing”). Similarly, parahippocampal and retrosplenial regions, together with specific parietal subregions such as the precuneus, are selectively involved in a specific form of allocentric representation in which object locations are encoded relative to enduring spatial features of a familiar environment (“environmental referencing”). We also present a novel functional magnetic resonance imaging study showing that these regions are selectively activated, whenever a purely perceptual spatial task involves an object which maintains a stable location in space during the whole experiment, irrespective of its perceptual features and its orienting value as a landmark. This effect can be dissociated from the consequences of an explicit memory recall of landmark locations, a process that further engages the retrosplenial cortex.  相似文献   

13.
We used a memory-saccade task to test whether the location of a target, briefly presented before a whole-body rotation in roll, is stored in egocentric or in allocentric coordinates. To make this distinction, we exploited the fact that subjects, when tilted sideways in darkness, make systematic errors when indicating the direction of gravity (an allocentric task) even though they have a veridical percept of their self-orientation in space. We hypothesized that if spatial memory is coded allocentrically, these distortions affect the coding of remembered targets and their readout after a body rotation. Alternatively, if coding is egocentric, updating for body rotation becomes essential and errors in performance should be related to the amount of intervening rotation. Subjects (n = 6) were tested making saccades to remembered world-fixed targets after passive body tilts. Initial and final tilt angle ranged between -120 degrees CCW and 120 degrees CW. The results showed that subjects made large systematic directional errors in their saccades (up to 90 degrees ). These errors did not occur in the absence of intervening body rotation, ruling out a memory degradation effect. Regression analysis showed that the errors were closely related to the amount of subjective allocentric distortion at both the initial and final tilt angle, rather than to the amount of intervening rotation. We conclude that the brain uses an allocentric reference frame, possibly gravity-based, to code visuospatial memories during whole-body tilts. This supports the notion that the brain can define information in multiple frames of reference, depending on sensory inputs and task demands.  相似文献   

14.
To produce accurate goal-directed arm movements, subjects must determine the precise location of target object. Position of extracorporeal objects can be determined using: (a) an egocentric frame of reference, in which the target is localized in relation to the position of the body; and/or (b) an allocentric system, in which target position is determined in relation to stable visual landmarks surrounding the target (Bridgeman 1989; Paillard 1991). The present experiment was based on the premise that (a) the presence of a structured visual environment enables the use of an allocentric frame of reference, and (b) the sole presence of a visual target within a homogeneous background forces the registration of the target location by an egocentric system. Normal subjects and a deafferented patient (i.e., with an impaired egocentric system) pointed to visual targets presented in both visual environments to evaluate the efficiency of the two reference systems. For normals, the visual environment conditions did not affect pointing accuracy. However, kinematic parameters were affected by the presence or absence of a structured visual surrounding. For the deafferented patient, the presence of a structured visual environment permitted a decrease in spatial errors when compared with the unstructured surrounding condition (for movements with or without visual feedback of the trajectory). Overall, results support the existence of an egocentric and an allocentric reference system capable of organizing extracorporeal space during arm movements directed toward visual targets.  相似文献   

15.
Thirty patients who had undergone either a right or left unilateral temporal lobectomy (14 RTL; 16 LTL) and 16 control participants were tested on a computerized human analogue of the Morris Water Maze. The procedure was designed to compare allocentric and egocentric spatial memory. In the allocentric condition, participants searched for a target location on the screen, guided by object cues. Between trials, participants had to walk around the screen, which disrupted egocentric memory representation. In the egocentric condition, participants remained in the same position, but the object cues were shifted between searches to prevent them from using allocentric memory. Only the RTL group was impaired on the allocentric condition, and neither the LTL nor RTL group was impaired on additional tests of spatial working memory or spatial manipulation. The results support the notion that the right anterior temporal lobe stores long-term allocentric spatial memories.  相似文献   

16.
The visual and vestibular systems begin functioning early in life. However, it is unclear whether young infants perceive the dynamic world based on the retinal coordinate (egocentric reference frame) or the environmental coordinate (allocentric reference frame) when they encounter incongruence between frames of reference due to changes in body position. In this study, we performed the habituation–dishabituation procedure to assess novelty detection in a visual display, and a change in body position was included between the habituation and dishabituation phases in order to test whether infants dishabituate to the change in stimulus on the retinal or environmental coordinate. Twenty infants aged 3–4 months were placed in the right-side-down position (RSDp) and habituated to an animated human-like character that walked horizontally in the environmental frame of reference. Subsequently, their body position was changed in the roll plane. Ten infants were repositioned to the upright position (UPp) and the rest, to the RSDp after rotation. In the test phase, the displays that were spatially identical to those shown in the habituation phase and 90° rotated displays were alternately presented, and visual preference was examined. The results revealed that infants looked longer at changes in the display on the retinal coordinate than at changes in the display on the environmental coordinate. This suggests that changes in body position from lying to upright produced incongruence of the egocentric and allocentric reference frames for perception of dynamic visual displays and that infants may rely more on the egocentric reference frame.  相似文献   

17.
Delay improves performance on a haptic spatial matching task   总被引:6,自引:6,他引:0  
Systematic deviations occur when blindfolded subjects set a test bar parallel to a reference bar in the horizontal plane using haptic information (Kappers and Koenderink 1999, Perception 28:781–795; Kappers 1999, Perception 28:1001–1012). These deviations are assumed to reflect the use of a combination of a biasing egocentric reference frame and an allocentric, more cognitive one (Kappers 2002, Acta Psychol 109:25–40). In two experiments, we have examined the effect of delay between the perception of a reference bar and the parallel setting of a test bar. In both experiments a 10-s delay improved performance. The improvement increased with a larger horizontal (left–right) distance between the bars. This improvement was interpreted as a shift from the egocentric towards the allocentric reference frame during the delay period. Electronic Publication  相似文献   

18.
The spatial location of an object can be represented in the brain with respect to different classes of reference frames, either relative to or independent of the subject's position. We used functional magnetic resonance imaging to identify regions of the healthy human brain subserving mainly egocentric or allocentric (object-based) coordinates by asking subjects to judge the location of a visual stimulus with respect to either their body or an object. A color-judgement task, matched for stimuli, difficulty, motor and oculomotor responses, was used as a control. We identified a bilateral, though mainly right-hemisphere based, fronto-parietal network involved in egocentric processing. A subset of these regions, including a much less extensive unilateral, right fronto-parietal network, was found to be active during object-based processing. The right-hemisphere lateralization and the partial superposition of the egocentric and the object-based networks is discussed in the light of neuropsychological findings in brain-damaged patients with unilateral spatial neglect and of neurophysiological studies in the monkey.  相似文献   

19.
Despite the connections of the retrosplenial cortex strongly suggesting a role in spatial memory, the lesion data to date have been equivocal. Whether subjects are impaired after retrosplenial lesions seems to depend on whether the lesions were aspirative or excitotoxic, with the latter failing to produce an impairment. A shortcoming of previous excitotoxic lesion studies is that they spared the most caudal part of the retrosplenial cortex. The present study thus used rats with extensive neurotoxic lesions of the retrosplenial cortex that encompassed the entire rostrocaudal extent of this region. These rats were consistently impaired on several tests that tax allocentric memory. In contrast, they were unimpaired on an egocentric discrimination task. Although the lesions did not appear to affect object recognition, clear deficits were found for an object-in-place discrimination. The present study not only demonstrates a role for the retrosplenial cortex in allocentric spatial memory, but also explains why previous excitotoxic lesions have failed to detect any deficits.  相似文献   

20.
Insights into the functional nature and neuroanatomy of spatial attention have come from research in neglect patients but to date many conflicting results have been reported. The novelty of the current study is that we used voxel-wise analyses based on information from segmented grey and white matter tissue combined with diffusion tensor imaging to decompose neural substrates of different neglect symptoms. Allocentric neglect was associated with damage to posterior cortical regions (posterior superior temporal sulcus, angular, middle temporal and middle occipital gyri). In contrast, egocentric neglect was associated with more anterior cortical damage (middle frontal, postcentral, supramarginal, and superior temporal gyri) and damage within subcortical structures. Damage to intraparietal sulcus (IPS) and the temporo-parietal junction (TPJ) was associated with both forms of neglect. Importantly, we showed that both disorders were associated with white matter lesions suggesting damage within long association and projection pathways such as the superior longitudinal, superior fronto-occipital, inferior longitudinal, and inferior fronto-occipital fascicule, thalamic radiation, and corona radiata. We conclude that distinct cortical regions control attention (a) across space (using an egocentric frame of reference) and (b) within objects (using an allocentric frame of reference), while common cortical regions (TPJ, IPS) and common white matter pathways support interactions across the different cortical regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号