首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
背景:保留瓣下结构可引起瓣膜下游血流受阻,目前有关保留瓣下结构不同人工瓣膜下游血流受阻情况的定量研究尚不深入。 目的:比较保留相同瓣下结构、不同类型人工瓣膜下游血流动力学性能的优劣。 方法:按常规二尖瓣置换方法,在全麻气管插管体外循环下建立标准的猪二尖瓣置换模型。按未保留瓣下结构、保留后瓣瓣下结构以及保留全瓣瓣下结构3种术式处理猪的二尖瓣及其瓣下结构,置换的瓣膜类型为单叶机械瓣膜、双叶机械瓣膜和生物瓣膜。采用多普勒超声结合计算机图像分析技术,对猪保留相同瓣下结构的不同类型的人工瓣膜下游湍流剪应力进行体内定量实验。 结果与结论:未保留瓣下结构的单叶双叶机械人工瓣膜下游血流动力学性能相当,均较生物瓣膜差。保留相同瓣下结构的不同类型人工瓣膜置换后其下游的血流动力学性能以生物瓣膜最佳,双叶机械瓣膜次之,单叶瓣膜最差。  相似文献   

2.
Our group is currently developing a pneumatic ventricular assist device (PVAD). In this study, in order to select the optimal bileaflet valve for our PVAD, three kinds of bileaflet valve were installed and the flow was visualized downstream of the outlet valve using the particle image velocimetry (PIV) method. To carry out flow visualization inside the blood pump and near the valve, we designed a model pump that had the same configuration as our PVAD. The three bileaflet valves tested were a 21-mm ATS valve, a 21-mm St. Jude valve, and a 21-mm Sorin Bicarbon valve. The mechanical heart valves were mounted at the aortic position of the model pump and the flow was visualized by using the PIV method. The maximum flow velocity was measured at three distances (0, 10, and 30 mm) from the valve plane. The maximum flow velocity of the Sorin Bicarbon valve was less than that of the other two valves; however, it decreased slightly with increasing distance it the X-Y plane in all three valves. Although different bileaflet valves are very similar in design, the geometry of the leaflet is an important factor when selecting a mechanical heart valve for use in an artificial heart.  相似文献   

3.
Prosthetic heart valves (PHVs) have been used to replace diseased native valves for more than five decades. Among these, mechanical PHVs are the most frequently implanted. Unfortunately, these devices still do not achieve ideal behavior and lead to many complications, many of which are related to fluid mechanics. The fluid dynamics of mechanical PHVs are particularly complex and the fine-scale characteristics of such flows call for very accurate experimental techniques. Adequate temporal resolution can be reached by applying time-resolved PIV, a high-resolution dynamic technique which is able to capture detailed chronological changes in the velocity field. The aim of this experimental study is to investigate the evolution of the flow field in a detailed time domain of a commercial bileaflet PHV in a mock-loop mimicking unsteady conditions, by means of time-resolved 2D Particle Image Velocimetry (PIV). The investigated flow field corresponded to the region immediately downstream of the valve plane. Spatial resolution as in "standard" PIV analysis of prosthetic valve fluid dynamics was used. The combination of a Nd:YLF high-repetition-rate double-cavity laser with a high frame rate CMOS camera allowed a detailed, highly temporally resolved acquisition (up to 10000 fps depending on the resolution) of the flow downstream of the PHV. Features that were observed include the non-homogeneity and unsteadiness of the phenomenon and the presence of large-scale vortices within the field, especially in the wake of the valve leaflets. Furthermore, we observed that highly temporally cycle-resolved analysis allowed the different behaviors exhibited by the bileaflet valve at closure to be captured in different acquired cardiac cycles. By accurately capturing hemodynamically relevant time scales of motion, time-resolved PIV characterization can realistically be expected to help designers in improving PHV performance and in furnishing comprehensive validation with experimental data on fluid dynamics numeric modelling.  相似文献   

4.
Bileaflet mechanical heart valves (BMHV) are widely used to replace diseased heart valves. Implantation of BMHV, however, has been linked with major complications, which are generally considered to be caused by mechanically induced damage of blood cells resulting from the non-physiological hemodynamics environment induced by BMHV, including regions of recirculating flow and elevated Reynolds (turbulence) shear stress levels. In this article, we analyze the results of 2D high-resolution velocity measurements and full 3D numerical simulation for pulsatile flow through a BMHV mounted in a model axisymmetric aorta to investigate the mechanical environment experienced by blood elements under physiologic conditions. We show that the so-called Reynolds shear stresses neither directly contribute to the mechanical load on blood cells nor is a proper measurement of the mechanical load experienced by blood cells. We also show that the overall levels of the viscous stresses, which comprise the actual flow environment experienced by cells, are apparently too low to induce damage to red blood cells, but could potentially damage platelets. The maximum instantaneous viscous shear stress observed throughout a cardiac cycle is <15 N/m2. Our analysis is restricted to the flow downstream of the valve leaflets and thus does not address other areas within the BMHV where potentially hemodynamically hazardous levels of viscous stresses could still occur (such as in the hinge gaps and leakage jets).  相似文献   

5.
It is possible that mechanical heart valves mounted in an artificial heart close much faster than those used for clinical valve replacement, resulting in the formation of cavitation bubbles. In this study, the mechanism for mechanical heart cavitation was investigated using the Medtronic Hall monoleaflet valve and the Sorin Bicarbon bileaflet valve mounted at the mitral position in an electrohydraulic total artificial heart. The valve-closing velocity was measured with a charge-coupled device (CCD) laser displacement sensor, and images of mechanical heart valve cavitation were recorded using a high-speed video camera. The valve-closing velocity of the Sorin Bicarbon bileaflet valve was lower than that of the Medtronic Hall monoleaflet valve. Most of the cavitation bubbles generated by the monoleaflet valve were observed near the valve stop; with the Sorin Bicarbon bileaflet valve, cavitation bubbles were concentrated along the leaflet tip. The cavitation density increased as the valve-closing velocity and the valve stop area increased. These results strongly indicate that squeeze flow holds the key to cavitation in the mechanical heart valve. From the perspective of squeeze flow, bileaflet valves with a low valve-closing velocity and a small valve stop area may cause less blood cell damage than monoleaflet valves.  相似文献   

6.
Since the first successful implantation of a prosthetic heart valve four decades ago, over 50 different designs have been developed including both mechanical and bioprosthetic valves. Today, the most widely implanted design is the mechanical bileaflet, with over 170,000 implants worldwide each year. Several different mechanical valves are currently available and many of them have good bulk forward flow hemodynamics, with lower transvalvular pressure drops, larger effective orifice areas, and fewer regions of forward flow stasis than their earlier-generation counterparts such as the ball-and-cage and tilting-disc valves. However, mechanical valve implants suffer from complications resulting from thrombus deposition and patients implanted with these valves need to be under long-term anti-coagulant therapy. In general, blood thinners are not needed with bioprosthetic implants, but tissue valves suffer from structural failure with, an average life-time of 10–12 years, before replacement is needed. Flow-induced stresses on the formed elements in blood have been implicated in thrombus initiation within the mechanical valve prostheses. Regions of stress concentration on the leaflets during the complex motion of the leaflets have been implicated with structural failure of the leaflets with bioprosthetic valves. In vivo and in vitro experimental studies have yielded valuable information on the relationship between hemodynamic stresses and the problems associated with the implants. More recently, Computational Fluid Dynamics (CFD) has emerged as a promising tool, which, alongside experimentation, can yield insights of unprecedented detail into the hemodynamics of prosthetic heart valves. For CFD to realize its full potential, however, it must rely on numerical techniques that can handle the enormous geometrical complexities of prosthetic devices with spatial and temporal resolution sufficiently high to accurately capture all hemodynamically relevant scales of motion. Such algorithms do not exist today and their development should be a major research priority. For CFD to further gain the confidence of valve designers and medical practitioners it must also undergo comprehensive validation with experimental data. Such validation requires the use of high-resolution flow measuring tools and techniques and the integration of experimental studies with CFD modeling.  相似文献   

7.
The closing velocity of the leaflets of mechanical heart valves is excessively rapid and can cause the cavitation phenomenon. Cavitation bubbles collapse and produce high pressure which then damages red blood cells and platelets. The closure mechanism of the trileaflet valve uses the vortices in the aortic sinus to help close the leaflets, which differs from that of the monoleaflet or bileaflet mechanical heart valves which mainly depends on the reverse flow. We used the commercial software program Fluent to run numerical simulations of the St. Jude Medical bileaflet valve and a new trileaflet mechanical heart valve. The results of these numerical simulations were validated with flow field experiments. The closing velocity of the trileaflet valve was clearly slower than that of the St. Jude Medical bileaflet valve, which would effectively reduce the occurrence of cavitation. The findings of this study are expected to advance the development of the trileaflet valve.  相似文献   

8.
背景:体外机械型人工心脏瓣膜(机械瓣)性能的评价涉及心输出量、反流量、有效瓣口面积、跨瓣压差,以及应力场、流场和成穴现象等。 目的:对3种机械瓣的瓣阀开启状态进行可视性观察和评价。 方法:用脉动流模拟循环装置系统,维持系统整个状态不变,在模拟心搏出量4 L/min、模拟心率75次/min和收缩时间占其循环周期46.2%的条件下,分别将久灵双叶瓣、Carbomedics双叶瓣和C-L侧倾碟瓣置于主动脉瓣位,将高速摄像机置于模拟循环装置动脉腔的正上方,观察10个连续模拟心动周期中瓣阀开启状态。利用自编图像处理软件包,捕获瓣阀开启角度最大的1幅图像,作为计算该只瓣膜在1个心动周期中最大开放面积和开启角度的基准。 结果与结论:脉动流下,25 mm CarboMedics瓣、25 mm和23 mm久灵双叶瓣在开放到最大位时,可见瓣阀抖动现象,27 mm C-L侧倾碟瓣未见瓣阀抖动。用不同的计算方法测量上述瓣膜的瓣口面积显示,由厂家提供的瓣口实际面积最大,用Green公式计算的瓣膜开放面积次之,用Gorin公式计算的有效瓣口面积最小。根据三角形定理计算的瓣阀开放角度,久灵双叶瓣和CarboMedics瓣的两个瓣阀的开放角度不一致,并均小于瓣膜固有的开放角度;C-L侧倾碟瓣的开放角度也未达其固有的开放角度。提示机械型人工心脏瓣膜双叶瓣的瓣阀开放不同步,瓣阀有抖动现象;瓣阀在脉动周期中呈不完全性开启。  相似文献   

9.
Point-wise velocity measurements have been traditionally acquired to estimate blood damage potential induced by prosthetic heart valves with emphasis on peak values of velocity magnitude and Reynolds stresses. However, the inherently Lagrangian nature of platelet activation and hemolysis makes such measurements of limited predictive value. This study provides a refined fluid mechanical analysis, including blood element paths and stress exposure times, of the hinge flows of a CarboMedics bileaflet mechanical heart valve placed under both mitral and aortic conditions and a St Jude Medical bileaflet valve placed under aortic conditions. The hinge area was partitioned into characteristic regions based on dominant flow structures and spatio-temporal averaging was performed on the measured velocities and Reynolds shear stresses to estimate the average bulk stresses acting on blood elements transiting through the hinge. A first-order estimate of viscous stress levels and exposure times were computed. Both forward and leakage flow phases were characterized in each partition by dynamic flows dependent on subtle leaflet movements and transvalvular pressure fluctuations. Blood elements trapped in recirculation regions may experience exposure times as long as the entire forward flow phase duration. Most calculated stresses were below the accepted blood damage threshold. Estimates of the stress levels indicate that the flow conditions within the boundary layers near the hinge and leaflet walls may be more detrimental to blood cells than bulk flow conditions, while recirculation regions may promote thrombus buildup.  相似文献   

10.
Velocity profiles and Reynolds stresses downstream of heart valve prostheses are vital parameters in the study of hemolysis and thrombus formation associated with these valves. These parameters have previously been evaluated using single-point measurement techniques such as laser Doppler anemometry (LDA). The purpose of this study is to map the velocity vector fields and Reynolds stresses downstream of a porcine bioprosthetic heart valve in the aortic root region with particle image velocimetry (PIV) techniques in vitro under steady flow conditions. PIV is essentially a multipoint measurement technique that allows full-field measurement of instantaneous velocity vectors in a flow field, thus allowing us to map the entire velocity or stress field over the aortic root (where single-point measurements are difficult). Coupled with flow visualization techniques, the hydrodynamic consequences of introducing a porcine bioprosthetic heart valve into the aortic root was examined, and compared with data obtained from an empty aortic root and an aortic root with the valve mounting ring alone. From our velocity and stress mappings, we found that the valve mounting ring effectively diminishes the central orifice area, giving rise to a higher central axial flow with strong recirculating regions and a corresponding large pressure drop. This in turn produces an intermixing zone between the central jet and recirculating region further downstream from the valve, which contributes to the high-stress zone measured. The development of the flow is further restricted by the valve stents, giving rise to stagnation regions and wakes. High-velocity gradients were also measured at the interface of the jet and recirculating region in the sinus cavity. The overall view of the velocity and stress mappings helps to identify regions of flow disturbances that otherwise may be lost with single-point measuring systems. Although the PIV measurements may lack the accuracy of single-point measuring systems, the overall view of the flow in the aortic root region compensates for the shortcoming.  相似文献   

11.
In the present study, twelve explanted mechanical heart valves (MHVs)with pyrolitic carbon tilting disc and 14 bileaflet MHVs were analyzed to investigate the effects of material properties on valve performance and patients' general health conditions. Optical and scanning electron microscopy was used to investigate material imperfections, wear patterns or damages to housing and occluder components. All analyzed tilting disc valves exhibited wear effects, particularly due to abrasion and impact to both disc and housing. Wear of pyrolitic carbon disc and housing did not influence their in vivo performance. In the bileaflet MHVs, breakaway of the pyrolitic carbon coating sometimes caused malfunctioning and required surgical retrieval of the valve. In all cases, occurrence of clinical symptoms was more likely when wear effects were located in critical areas. The study supports a correlation between the properties of the MHVs material and patients' symptoms.  相似文献   

12.
Bileaflet heart valves show the best fluid dynamic behaviour among mechanical valves and, as a consequence, give the best clinical results. A new bileaflet heart valve has been designed whose main characteristics are the kind of leaflet movement, low profile, fluid dynamics and material. Two flat leaflets move freely inside a very low profile housing ring. The movement is described by the rolling without sliding of the leaflet surface around a cylindrical surface on the inner wall of the housing. The opening angle is 85 degrees. Both the leaflets and the housing are machined from a solid piece of titanium and then covered with carbon by ion beam techniques. The design phase and the first fluid dynamic evaluation were done by numerical methods.  相似文献   

13.
The characteristics of mechanical bileaflet valves, the leaflets of which open at the outside first, differ significantly from those of natural valves, whose leaflets open at the center first, and this fact affects the flow field down-stream of the valves. The direction of jet-type flows, which is influenced by this difference in valve features, and the existence of the sinus of Valsalva both affect the flow field inside the aorta in different ways, depending on the valve design. There may also be an influence on the coronary circulation, the entrance to which resides inside the sinus of Valsalva. A dynamic particle image velocimetry (PIV) study was conducted to analyze the influence of the design of prosthetic heart valves on the aortic flow field. Three contemporary bileaflet prostheses, the St. Jude Medical (SJM) valve, the On-X valve (with straight leaflets), and the MIRA valve (with curved leaflets), were tested inside a simulated aorta under pulsatile flow conditions. A dynamic PIV system was employed to analyze the aortic flow field resulting from the different valve designs. The two newer valves, the On-X and the MIRA valves, open more quickly than the SJM valve and provide a wider opening area when the valve is fully open. The SJM valve's outer orifices deflect the flow during the accelerating flow phase, whereas the newer designs deflect the flow less. The flow through the central orifice of the SJM valve has a lower velocity compared to the newer designs; the newer designs tend to have a strong flow through all orifices. The On-X valve generates a simple jet-type flow, whereas the MIRA valve (with circumferentially curved leaflets) generates a strong but three-dimensionally diffuse flow, resulting in a more complex flow field downstream of the aortic valve. The clinically more adapted 180 degrees orientation seems to provide a less diffuse flow than the 90 degrees orientation does. The small differences in leaflet design in the bileaflet valves generate noticeable differences in the aortic flow; the newer valves show strong flows through all orifices.  相似文献   

14.
Until now, we have estimated cavitation for mechanical heart valves (MHV) mounted in an electrohydraulic total artificial heart (EHTAH) with tap water as a working fluid. However, tap water at room temperature is not a proper substitute for blood at 37 degrees C. We therefore investigated MHV cavitation using a glycerin solution that was identical in viscosity and vapor pressure to blood at body temperature. In this study, six different kinds of monoleaflet and bileaflet valves were mounted in the mitral position in an EHTAH, and we investigated the mechanisms for MHV cavitation. The valve closing velocity, pressure drop measurements, and a high-speed video camera were used to investigate the mechanism for MHV cavitation and to select the best MHV for our EHTAH. The closing velocity of the bileaflet valves was slower than that of the monoleaflet valves. Cavitation bubbles were concentrated on the edge of the valve stop and along the leaflet tip. It was established that squeeze flow holds the key to MHV cavitation in our study. Cavitation intensity increased with an increase in the valve closing velocity and the valve stop area. With regard to squeeze flow, the Bj?rk-Shiley valve, because it is associated with slow squeeze flow, and the bileaflet valve with low valve closing velocity and small valve stop areas are better able to prevent blood cell damage than the monoleaflet valves.  相似文献   

15.
The aim of this study was to investigate the flow fields of blood flowing through the curved bileaflet mechanical heart valve. A numerical analysis was carried out with the fluid-structure interaction between the blood flow and the motion of leaflets in two different types of blood vessels (type A, with sinus blood vessel, and type B, without sinus blood vessel). When the leaflet was fully opened, a fluttering phenomenon was detected in association with the blood flow, and recirculation flows were observed in the sinus region of the blood vessel for type A. During the closing phase, regurgitation was formed between the ring and the edge of the each leaflet for both types. When the leaflet came into contact with the valve ring at the end of the closing phase, rebound of the leaflet occurred. In consideration of the entire domain, the pressure drop occurs mainly in the valve region. The present results showed tendencies similar to those obtained by previous experiments for blood flow and contribute to the development of the curved bileaflet mechanical heart valve prostheses.  相似文献   

16.
Design limitations of current mechanical heart valves cause blood flow to separate at the leaflet edges and annular valve base, forming downstream vortex mixing and high turbulent shear stresses. The closing behavior of a bileaflet valve is associated with reverse flow and may lead to cavitation phenomenon. The new trileaflet (TRI) design opens similar to a physiologic valve with central flow and closes primarily due to the vortices in the aortic sinus. In this study, we measured the St. Jude Medical 27 mm and the TRI 27 mm valves in the aortic position of a pulsatile circulatory mock loop under physiologic conditions with digital particle image velocimetry (DPIV). Our results showed the major principal Reynolds shear stresses were <100 N/m2 for both valves, and turbulent viscous shear stresses were smaller than 15 N/m2. The TRI valve closed more slowly than the St. Jude Medical valve. As the magnitudes of the shear stresses were similar, the closing velocity of the valves should be considered as an important factor and might reduce the risks of thrombosis and thromboembolism.  相似文献   

17.
To assess the influence of mimic cardiac rate on hydrodynamics of the different mechanical prosthetic cardiac valves. Methods. US-made CarboMedics bileaflet valve and China-made Jiuling bileaflet valve and C-L tilting disc valve have been tested in a pulsatile flow simulator in the aortic position. The testing condition was set at the mimic cardiac rate of 55 beats/min,75 beats/min,100beats/min and a constant mimic cardiac output of 4L/min. The mean pressure differences (△P),leakage volumes (LEV) and closing volumes(CLV) across each valve,and the effective orifice areas(EOA) have been analyzed. Results.Within the range of physiology,the AP,LEV and CLV were falling as the increasing of mimic cardiac rate,and the extent of variance was larger. The EOA was increasing with the increase of the mimic cardiac rate. It is a different response as the altering of the cardiac rate for the different type of the mechanical prosthetic cardiac valves.Conclusions.The change of the mimic cardiac rate can affect the hydrodynamics of the mechanical prosthetic cardiac valves. The hydrodynamics of the bileaflet valve prosthesis is better than the tilting disc valve.  相似文献   

18.
INTRODUCTION   Implantation of heart valve substitute has become the standard treatment forend-stage valvular heart disease since the1 960 s.There are two different types ofmechanical heart valve in widespread use at present,the tilting disc valve and t…  相似文献   

19.
The in vitro hemodynamic characteristics of a variety of mechanical and tissue heart valve designs used during the past two decades were investigated in the aortic position under pulsatile flow conditions. The following valve designs were studied: Starr-Edwards ball and cage (model 1260), Bj?rk-Shiley tilting disc (convexo-concave model), Medtronic-Hall tilting disc, St. Jude Medical bileaflet, Carpentier-Edwards porcine and pericardial (models 2625, 2650 and 2900), Hancock porcine (models 250 and 410) and Ionescu-Shiley standard pericardial. The Starr-Edward ball and cage, Bj?rk-Shiley tilting disc, Carpentier-Edwards porcine (model 2625) and Ionescu-Shiley standard pericardial valves were designed prior to 1975, while the Medtronic-Hall tilting disc, St. Jude Medical bileaflet, Hancock porcine (model 250), Hancock II porcine (model 410), Carpentier-Edwards porcine (model 2650) and Carpentier-Edwards pericardial (model 2900) valves were designed after 1975. The pressure drop results indicated that the valves designed prior to 1975 had performance indices of 0.30 to 0.45, whereas the valves designed after 1975 had performance indices of 0.40 to 0.70. The regurgitant volumes were higher for the mechanical designs (5.0 to 11.0 cm3/beat) compared to the tissue bioprostheses (1.0 to 5.0 cm3/beat). Two-dimensional laser Doppler anemometry studies indicated that the valves designed after 1975 tended to create more centralized flow fields, with reduced levels of turbulent shear stresses. However, none of the current valve designs is ideal: they all create areas of stasis and/or regions of low velocity reverse flow; and regions of elevated turbulent shear stresses that are capable of causing sub-lethal and/or lethal damage to the formed elements of blood.  相似文献   

20.
Recently, cavitation on the surface of mechanical heart valves has been studied as a cause of fractures occurring in implanted mechanical heart valves. The cause of cavitation in mechanical heart valves was investigated using the 25 mm Medtronic Hall valve and the 23 mm Omnicarbon valve. Closing of these valves in the mitral position was simulated in an electrohydraulic totally artificial heart. Tests were conducted under physiologic pressures at heart rates from 60 to 100 beats per minute with cardiac outputs from 4.8 to 7.7 L/min. The disk closing motion was measured by a laser displacement sensor. A high-speed video camera was used to observe the cavitation bubbles in the mechanical heart valves. The maximum closing velocity of the Omnicarbon valve was faster than that of the Medtronic Hall valve. In both valves, the closing velocity of the leaflet, used as the cavitation threshold, was approximately 1.3-1.5 m/s. In the case of the Medtronic Hall valve, cavitation bubbles were generated by the squeeze flow and by the effects of the venturi and the water hammer. With the Omnicarbon valve, the cavitation bubbles were generated by the squeeze flow and the water hammer. The mechanism leading to the development of cavitation bubbles depended on the valve closing velocity and the valve stop geometry. Most of the cavitation bubbles were observed around the valve stop and were generated by the squeeze flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号