首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excessive light causes damage to photoreceptor and pigment epithelial cells, and a local edema in the outer retina. Since Müller glial cells normally mediate the osmohomeostasis in the inner retina (mainly via channel-mediated transport of potassium and water), we determined whether retinal light injury causes an alteration in the retinal localization of glial water (aquaporin-4) and potassium (Kir4.1) channels, and in the potassium conductance of Müller cells. Mice were treated with bright white light (intensity, 15,000lx) for 2h. Light treatment results in Müller cell gliosis as indicated by the enhanced staining of the glial fibrillary acidic protein and an increase in the cell membrane area reflecting cellular hypertrophy. In light-injured retinas, the immunostaining of the photoreceptor water channel aquaporin-1 disappeared along with the degeneration of the outer retina, and the outer nuclear layer contained large spherical bodies representing photoreceptor nuclei which were fused together. The immunostainings of the aquaporin-4 and Kir4.1 proteins were increased in the outer retina after light treatment. Since the amplitude of the potassium currents of Müller cells remained largely unaltered, the increase in the Kir4.1 immunostaining is supposed to be caused by a redistribution of the channel protein. The data indicate that Müller glial cells respond to excessive light with an alteration in the localization of Kir4.1 and aquaporin-4 proteins; this alteration is thought to be a response to the edema in the outer retina and may support the resolution of edema.  相似文献   

2.
Aquaporin water channels play a crucial role in the maintenance of ionic and osmotic homeostasis in the neural tissue. In the sensory retina, aquaporin-4 is expressed by Müller glial cells, predominantly in the inner retina, while aquaporin-1 is expressed mainly in the outer retina. However, it is unknown whether aquaporin-1 expression occurs in Müller cells or photoreceptor cells. By using immunohistochemical staining of retinal slices from rds mice, we show that the immunoreactivity for aquaporin-1 disappears along with the photoreceptor cell degeneration. In suspensions of dissociated retinal cells from control mice, photoreceptor cells expressed aquaporin-1 immunoreactivity while Müller cells were largely devoid of staining. The data suggest that photoreceptor cells, but not Müller cells, express aquaporin-1 in the murine retina.  相似文献   

3.
Ischemia-reperfusion of the rat retina causes gliosis of Müller cells that is associated with a decrease of their K+ conductance. By using quantitative PCR and immunohistochemical staining of retinal slices, we investigated the effect of transient ischemia-reperfusion on retinal expression of two inward-rectifying K+ (Kir) channels, Kir4.1 and Kir2.1. In control retinas, Müller cells prominently expressed both Kir4.1 and Kir2.1 proteins. At 7 days after reperfusion, the expression of Kir4.1 protein was strongly downregulated, while the Kir2.1 protein expression remained unaltered. The expression of Kir4.1 mRNA was reduced by 55% after ischemia while the expression of Kir2.1 mRNA was not altered. The data suggest that the glial expression of distinct Kir channels is differentially regulated after retinal ischemia, with deletarious consequences for K+ ion and water homeostasis.  相似文献   

4.
The abnormal retinal neurotransmission observed in Duchenne muscular dystrophy (DMD) patients and in some genotypes of mice lacking dystrophin has been attributed to altered expression of short products of the dystrophin gene. We have investigated the potential role of Dp71, the most abundant C-terminal dystrophin gene product, in retinal electrophysiology. Comparison of the scotopic electroretinograms (ERG) between Dp71-null mice and wild-type (wt) littermates revealed a normal ERG in Dp71-null mice with no significant changes of the b-wave amplitude and kinetics. Analysis of DMD gene products, utrophin and dystrophin-associated proteins (DAPs), showed that Dp71 and utrophin were localized around the blood vessels, in the ganglion cell layer (GCL), and the inner limiting membrane (ILM). Dp71 deficiency was accompanied by an increased level of utrophin and decreased level of beta-dystroglycan localized in the ILM, without any apparent effect on the other DAPs. Dp71 deficiency was also associated with an impaired clustering of two Müller glial cell proteins-the inwardly rectifying potassium channel Kir4.1 and the water pore aquaporin 4 (AQP4). Immunostaining of both proteins decreased around blood vessels and in the ILM of Dp71-null mice, suggesting that Dp71 plays a role in the clustering and/or stabilization of the two proteins. AQP4 and Kir4.1 may also be involved in the regulation of the ischemic process. We found that a transient ischemia resulted in a greater damage in the GCL of mice lacking Dp71 than in wt mice. This finding points at a crucial role played by Dp71 in retinal function.  相似文献   

5.
Astrocytes show an enrichment of aquaporin-4 (AQP4) in those parts of the plasma membrane that are apposed to pial or perivascular basal laminae. This observation begged the following questions: 1, What are the molecular mechanisms that are responsible for the site specific anchoring of AQP4? 2, What are the physiological and pathophysiological roles of the AQP4 pools at these specialized membrane domains? Recent studies suggest that the site specific anchoring depends on the dystrophin complex. Further, alpha-syntrophin (a member of the dystrophin complex) is required to maintain a polarized expression of AQP4 in the perivascular membranes. Hence transgenic mice deficient in alpha-syntrophin provided a model where the perivascular pool of AQP4 could be removed for assessment of its functional roles. Data suggest that the perivascular pool of AQP4 plays a role in edema formation and that this pool (through its serial coupling with the AQP4 pools in other astrocyte membranes) is involved in K(+) siphoning. In the cerebral cortex, the astrocyte membrane domain contacting the pial basal lamina differs from the perivascular membrane domain in regard to the mechanisms for AQP anchoring. Thus deletion of alpha-syntrophin causes only a 50% loss of AQP4 from the former membrane (compared with a 90% loss in the latter), pointing to the existence of additional anchoring proteins. We will also discuss the subcellular distribution and anchoring of AQP4 in the other cell types that express this protein: endothelial cells, ependymal cells, and the specialized astrocytes of the osmosensitive organs.  相似文献   

6.
The expression of the glycine receptor (GlyR) alpha1, alpha2 and beta subunits and glycine transporter (GlyT) on Müller cells was studied in bullfrog retina using double immunofluorescence labeling and confocal scanning microscopy. Double labeling of glial fibrillary acidic protein (GFAP), a specific marker for Müller cells, and the GlyR subunits showed that almost all Müller cells moderately expressed GlyR alpha1 and weakly GlyR beta, whereas no immunoreactivity for GlyR alpha2 was observed. The labeling for GlyR alpha1 and GlyR beta appeared in somata, major processes, endfeet and branchlets of the Müller cells. Müller cells were also GlyT1-labeled. Consistent with previous electrophysiological results, these findings suggest that Müller cells may be involved in modulation of glycinergic transmission by reciprocal interactions with retinal neurons through GlyR and GlyT.  相似文献   

7.
Using light microscopy and immunocytochemistry, we investigated the morphological changes of retinal tissues and the reaction of Müller cells in the ischemic rat retina induced by increasing intraocular pressure. At early stages (from 1 h to 24 h after reperfusion), cells in the ganglion cell layer and in the inner nuclear layer showed some degenerative changes, but at later stages (from 72 h to 4 weeks) marked degenerative changes occurred in the outer nuclear layer (ONL). At 4 weeks after reperfusion, the ONL was reduced to 1 or 2 cell layers. Immunoreactivity for glial fibrillary acidic protein (GFAP) appeared in the endfeet and distal processes of Müller cells as of 1 h after reperfusion. GFAP immunoreactivity in Müller cells increased up to 2 weeks and then decreased at 4 weeks after reperfusion. Our findings suggest that Müller cells are involved in the pathophysiology of retinal ischemia through the expression of GFAP. The degree of GFAP expression in Müller cells closely correlated with that of the degeneration of retinal neurons.  相似文献   

8.
The Müller cell membranes of the rabbit retina were investigated by means of freeze-fracturing. Orthogonal arrays of particles (OAP) were found almost exclusively where the Müller cell endfoot had direct contact with the vitreous body. In the center of the retina where the Müller cells are long and thin, the density of OAP was about 170/microns2. In the periphery where the Müller cells are shorter and thicker, the density of OAP was about 20/microns2. In this area, only half of the Müller cell endfeet were equipped with OAP. The results are discussed with respect to electrophysiological studies on the role of various K+ channels in glial cells. It is proposed that OAP might possibly represent specialized 'maxi'-K+ channels which are involved in K+ spatial buffering of the extracellular space.  相似文献   

9.
Dysfunctional insulin signalling is a causative factor in type-2 diabetes. While insulin signal transduction has been well investigated in many tissues, less is known in retinal tissues. We have previously reported that toll-like receptor 4 (TLR4) is involved in retinal damage in diabetes. We used TLR4 retinal Müller cell-specific knockout mice and Müller cells in culture to investigate the effects of loss of TLR4 on Müller cell insulin signal transduction. Loss of TLR4 in the mouse retinal Müller cells led to increased insulin receptor and Akt phosphorylation, with reduced insulin receptor substrate 1 (IRS-1) phosphorylation on serine 307, which was associated with reduced cleavage of caspase 3. In retinal Müller cells grown in high glucose, insulin signal transduction was impaired, but these responses were reduced with cells were transfected with TLR4 siRNA. Taken together, the data suggest that TLR4 regulates insulin signal transduction in retinal Müller cells.  相似文献   

10.
《Neuroscience》1999,95(1):9-21
Topographically localized over-expression of the human Bcl-2 protein in retinal glial Müller cells of a transgenic mice (line 71) leads to early postnatal apoptotic Müller cell death and retinal degeneration. Morphological, immunohistological and confocal laser microscopic examination of transgenic and wild-type retinas were achieved on paraffin retinal sections, postnatally. Apoptosis occurs two to three days earlier in the internal nuclear layer of transgenic retinae, than in wild-type littermates. In parallel there was a progressive disappearance of transgenic Hu-Bcl-2 over-expression, as well as of the Müller cell markers, cellular retinaldehyde-binding protein and glutamine synthetase. This phenomenon led to retinal dysplasia, photoreceptor apoptosis and then retinal degeneration and proliferation of the retinal pigment epithelium. The optic nerve, however, remains intact. Two complementary observations confirm the pro-apoptotic action of Bcl-2 over-expression in Müller cells: (i) in the peri-papillary and peripheral regions where the transgene Bcl-2 is not expressed, cellular retinaldehyde-binding protein or glutamine synthetase immunostaining persist and Müller glia do not die; and (ii) the retina conserves a normal organisation in these two regions inspite of total retinal degeneration elsewhere.We conclude that retinal dysplasia and degeneration are linked to primary Müller cell disruption. Besides its generally accepted anti-apoptotic function, over-expression of Bcl-2 also exerts a pro-apoptotic action, at least in immature Müller glia. One may suppose that Bcl-2 translocation resulting in its over-expression in retinal Müller cells could be a putative mechanism for early retinal degeneration.  相似文献   

11.
In a previous study we found the morphometrical data of rabbit retinal Müller (radial glial) cells to vary greatly with their localization in various parts of the retina. The long cells of the central retina have thinner vitreal processes and smaller endfeet than the short cells of the retinal periphery. This configuration should impair the spatial buffering capacity of the central Müller cells for excess K+ ions. To test this hypothesis, we developed a simple modified model for the calculation of K+ clearance by spatial buffering, diffusion through the extracellular space, and co-operation of both processes. K+ clearance processes were demonstrated to depend greatly on the retinal geometry and Müller cell morphology in different parts of the retina. The efficiency of spatial buffering exhibited an obvious optimum for Müller cells of intermediate length, and decreased very steeply in longer cells. Some conclusions are drawn with respect to retinal physiology. In particular, it is suggested that very long and slender radial glia is unable to perform sufficient K+ clearance preventing long-lasting extracellular [K+] elevations after neuronal activity. Such [K+] elevations could depolarize these glial cells so as to enforce their mitotic division. This mechanism might lead to the perinatal transformation of embryonic radial glia into adult multipolar glia when neuronal activity commences in CNS tissues thicker than the maximal effective length of radial glial cells.  相似文献   

12.
Extracellular levels of glutamate are thought to be increased in glaucoma and thus contribute to retinal damage. An increase in glutamate concentration or duration in the extracellular retinal space is expected to impact glutathione content in Müller cells since glutamate is the rate-limiting constituent in glutathione synthesis. We have investigated whether glutathione content is changed in retinal Müller cells of monkeys with experimental glaucoma using immunocytochemistry and image analysis. Müller cells in glaucomatous retinas showed significantly greater immunoreactivity (27-57%) for glutathione than those in fellow control retinas, increasing with the duration of elevated intraocular pressure (IOP). This pattern of labeling was prominent in all four monkeys studied. The presence of more glutathione in Müller cells of glaucomatous retinas is consistent with an increase in extracellular glutamate and an increase in transport and metabolism of glutamate.  相似文献   

13.
Reactive changes in astrocytes and Müller cells in the retina of adult rats subjected to hypoxia were investigated. Along with this, the integrity of the blood-retinal barrier (BRB) was assessed using fluorescent and electron-dense tracers. In hypoxic rats, mRNA and protein expression of glial fibrillary acidic protein (GFAP) and aquaporin-4 (AQ4) were significantly increased. AQ4 immunoreactive cells were identified as astrocytes and Müller cells by double immunofluorescence labelling. Another alteration in the hypoxic retina was marked reduction in melatonin content compared to controls. In this connection, administration of exogenous melatonin reduced the tissue concentration of vascular endothelial growth factor (VEGF) and nitric oxide (NO); both were elevated in hypoxic rats. A major structural change in the hypoxic retina was swelling of astrocyte and Müller cell processes but this was noticeably attenuated after melatonin administration. Following an intraperitoneal or intravenous injection of rhodamine isothiocyanate (RhIC) or horseradish peroxidase (HRP), leakage of both tracers was observed in the retina in hypoxic rats but not in the controls, indicating that the functional integrity of the BRB is compromised in hypoxia/reoxygenation. It is suggested that enhanced tissue concentration of VEGF and NO production in the hypoxic retina contribute to increased permeability of the retinal blood vessels. The concurrent up-regulation of AQ4, a water-transporting protein, in astrocytes and Müller cells in hypoxia suggests its involvement in oedema formation. Since melatonin effectively reduced the vascular permeability in the retina of hypoxic rats, as evidenced by reduced leakage of RhIC, we suggest that its administration may be of potential benefit in the management of retinal oedema associated with retinal hypoxia.  相似文献   

14.
One of the most important physiological roles of brain astrocytes is the maintenance of extracellular K+ concentration by adjusting the K+ influx and K+ efflux. The inwardly rectifying K+ channel Kir4.1 has been identified as an important member of K+ channels and is highly concentrated in glial endfeet membranes. Aquaporin (AQP) 4 is another abundantly expressed molecule in astrocyte endfeet membranes. We examined the ultrastructural localization of Kir4.1, AQP4, α1-syntrophin, and β-spectrin molecules to understand the functional role(s) of Kir4.1 and AQP4. Immunogold electron microscopy of these molecules showed that the signals of these molecules were present along the plasma membranes of astrocyte endfeet. Double immunogold electron microscopy showed frequent co-localization in the combination of molecules of Kir4.1 and AQP4, Kir4.1 and α1-syntrophin, and AQP4 and α1-syntrophin, but not those of AQP4 and β-spectrin. Our results support biochemical evidence that both Kir4.1 and AQP4 are associated with α1-syntrophin by way of postsynaptic density-95, Drosophila disc large protein, and the Zona occludens protein I protein-interaction domain. Co-localization of AQP4 and Kir4.1 may indicate that water flux mediated by AQP4 is associated with K+ siphoning.  相似文献   

15.
Aquaporins (AQP) are channels in the cell membrane that mainly facilitate a passive transport of water. In the eye, AQPs are expressed in the ciliary body and retina and may contribute to the pathogenesis of glaucoma and optic neuropathy. We investigated the expression of AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9 in human glaucoma eyes compared with normal eyes. Nine glaucoma eyes were examined. Of these, three eyes were diagnosed with primary open angle glaucoma; three eyes had neovascular glaucoma; and three eyes had chronic angle‐closure glaucoma. Six eyes with normal intraocular pressure and without glaucoma were used as control. Immunohistochemistry was performed using antibodies against AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9. For each specimen, optical densities of immunoprecipitates were measured using Photoshop and the staining intensities were calculated. Immunostaining showed labelling of AQP7 and AQP9 in the nonpigmented ciliary epithelium and the staining intensities were significantly decreased in glaucoma eyes (p = 0.003; p = 0.018). AQP7 expression in the Müller cell endfeet was increased (p = 0.046), and AQP9 labelling of the retinal ganglion cells (RGC) showed decreased intensity (p = 0.037). No difference in AQP1, AQP4 and AQP9 expression was found in the optic nerve fibres. This study is the first investigating AQPs in human glaucoma eyes. We found a reduced expression of AQP9 in the retinal ganglion cells of glaucoma eyes. Glaucoma also induced increased AQP7 expression in the Müller cell endfeet. In the ciliary body of glaucoma eyes, the expression of AQP7 and AQP9 was reduced. Therefore, the expression of AQPs seems to play a role in glaucoma.  相似文献   

16.
The presence of glial fibrillary acidic protein (GFA)-positive Müller glia and retinal astrocytes were studied immunohistochemically in normal rat retina. Using GFA antiserum both Müller glia and separate star-shaped cells were observed in spread-preparations as well as cryostat sections. The retinal astrocytes were also visualized using two different monoclonal GFA antibodies. These cells were found to be located in the nerve fiber and ganglion cell layers. In contrast, Müller glia were not normally visualized with any of the monoclonal GFA antibodies but could be stained 4 days after an optic nerve crush. Our results demonstrate that normal rat Müller glia expresses GFA-like immunoreactivity.  相似文献   

17.
Müller cells have been shown to have a dual effect in vitro on autoimmune T helper lymphocytes. In a coculture system, Müller cells have a primary inhibitory effect on the proliferation of T lymphocytes. In conditions where their inhibitory action is suppressed, Müller cells can, however, stimulate T cells. In the present study we evaluated the in vivo effect of Müller cells on actively induced experimental autoimmune uveoretinitis (EAU). Ten millimoles of L-alpha-aminoadipic acid (L-AAA), a specific gliotoxic agent, was injected into the vitreous of one eye of Wistar-Furth (WF) rats (a low EAU responder) on the day of immunization. Control rats were injected similarly with phosphate-buffered saline alone. The rats were immunized with S-antigen in CFA or in CFA alone. The results demonstrate that the incidence of EAU increases twofold in the eyes receiving an intravitreal injection of L-AAA in comparison to the contralateral eyes not receiving an injection. No such difference in EAU incidence was observed in control animals. Some rats that had been immunized with CFA alone after an intravitreal injection of L-AAA demonstrated a small amount of retinal perivascular inflammatory cell infiltrate but did not develop typical EAU lesions. The retinal vasculature was normal on examination by fluorescein angiography after injection of L-AAA. These data suggest that Müller cells can influence the course of uveoretinitis through their interaction with T cells.  相似文献   

18.
Becoming glial in the neural retina.   总被引:3,自引:0,他引:3  
During development of the vertebrate neural retina, multipotent stem cells give rise to retinal neurons as well as to Müller cells, the principal glial population in the retina. Recent studies have shed light upon the extracellular and intracellular signaling pathways that regulate Müller glial cell genesis. Emerging evidence demonstrates that activation of the Notch signaling pathway can play a role in regulating Müller cell development as well as gliogenesis in other parts of the central nervous system. Cyclin dependent kinase (CDK) inhibitors of the Cip/Kip subfamily are cell cycle regulators that can regulate progenitor proliferation during retinal development, but also regulate the proliferation of Müller glia when they become activated in response to stress or injury. Surprisingly this class of proteins can also promote the development of Müller glia. In this review we discuss the role of both Notch and the CDK inhibitors in regulating Müller cell development.  相似文献   

19.
In order to ascertain whether the alterations of the blood-brain barrier (BBB) seen in adult dystrophic mdx-mice [Glia 42 (2003) 235], a human model of Duchenne muscular dystrophy (DMD), are developmentally established and correlated with other dystrophin isoforms which are localized at the glial-vascular interface, we used immunocytochemistry to investigate the expression of dystrophin isoforms (Dp71) during BBB development in mdx fetuses and in adult mice. Parallelly, we used Western blot, immunocytochemistry and immunogold electron microscopy to analyze the expression of the zonula occludens (ZO-1), aquaporin-4 (AQP4) and glial fibrillary acidic (GFAP) proteins as endothelial and glial markers, and we evaluated the integrity of the mdx BBB by means of intravascular injection of horseradish peroxidase (HRP). The results show reduced dystrophin isoforms (Dp71) in the mdx mouse compared with the control, starting from early embryonic life. Endothelial ZO-1 expression was reduced, and the tight junctions were altered and unlabeled. AQP4 and GFAP glial proteins in mdx mice also showed modifications in developmental expression, the glial vascular processes being only lightly AQP4- and GFAP-labeled compared with the controls. Confocal microscopy and HRP assays confirmed the alteration in vessel glial investment, GFAP perivascular endfoot reactivity being strongly reduced and BBB permeability increasing. These results demonstrate that a reduction in dystrophin isoforms (Dp71) at glial endfeet leads to an altered development of the BBB, whose no-closure might contribute to the neurological dysfunctions associated with DMD.  相似文献   

20.

Purpose

Microglia and Müller cells are prominent participants in retinal responses to injury and disease that shape eventual tissue adaptation or damage. This investigation examined how microglia and Müller cells interact with each other following initial microglial activation.

Methods

Mouse Müller cells were cultured alone, or co-cultured with activated or unactivated retinal microglia, and their morphological, molecular, and functional responses were evaluated. Müller cell-feedback signaling to microglia was studied using Müller cell-conditioned media. Corroborative in vivo analyses of retinal microglia-Müller cell interactions in the mouse retina were also performed.

Results

Our results demonstrate that Müller cells exposed to activated microglia, relative to those cultured alone or with unactivated microglia, exhibit marked alterations in cell morphology and gene expression that differed from those seen in chronic gliosis. These Müller cells demonstrated in vitro (1) an upregulation of growth factors such as GDNF and LIF, and provide neuroprotection to photoreceptor cells, (2) increased pro-inflammatory factor production, which in turn increased microglial activation in a positive feedback loop, and (3) upregulated chemokine and adhesion protein expression, which allowed Müller cells to attract and adhere to microglia. In vivo activation of microglia by intravitreal injection of lipopolysaccharide (LPS) also induced increased Müller cell-microglia adhesion, indicating that activated microglia may translocate intraretinally in a radial direction using Müller cell processes as an adhesive scaffold.

Conclusion

Our findings demonstrate that activated microglia are able to influence Müller cells directly, and initiate a program of bidirectional microglia-Müller cell signaling that can mediate adaptive responses within the retina following injury. In the acute aftermath following initial microglia activation, Müller cell responses may serve to augment initial inflammatory responses across retinal lamina and to guide the intraretinal mobilization of migratory microglia using chemotactic cues and adhesive cell contacts. Understanding adaptive microglia-Müller cell interactions in injury responses can help discover therapeutic cellular targets for intervention in retinal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号