首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have expressed α & β isoforms of mammalian striated muscle tropomyosin (Tm) and α-Tm carrying the D175N or E180G cardiomyopathy mutations. In each case the Tm carries an Ala-Ser N-terminal extension to mimic the acetylation of the native Tm. We show that these Ala-Ser modified proteins are good analogues of the native Tm in the assays used here. We go on to use an in vitro kinetic approach to define the assembly of actin filaments with the Tm isoforms with either a cardiac or a skeletal muscle troponin (cTn, skTn). With skTn the calcium sensitivity of the actin filament is the same for α & β-Tm and there is little change with the mutant Tms. For cTn switching from α to β-Tm causes an increase of calcium sensitivity of 0.2 pCa units. D175N is very similar to the wild type α-Tm and E180G shows a small increase in calcium sensitivity of about 0.1 pCa unit. The formation of the switched-off blocked-state of the actin filament is independent of the Tm isoform but does differ for cardiac versus skeletal Tn. The in vitro assays developed here provide a novel, simple and efficient method for assaying the behaviour of expressed thin filament proteins.  相似文献   

2.
Filamin A produces isotropic cross-linked three-dimensional orthogonal networks with actin filaments in the cortex and at the leading edge of cells. Filamin A also links the actin cytoskeleton to the plasma membrane via its association with various kinds of membrane proteins. Recent new findings strongly support that filamin A plays important roles in the mechanical stability of plasma membrane and cortex, formation of cell shape, mechanical responses of cells, and cell locomotion. To elucidate the mechanical properties of the actin/filamin A network and the complex of membrane protein–filamin A–actin cytoskeleton, the mechanical properties of single human filamin A (hsFLNa) molecules in aqueous solution were investigated using atomic force microscopy. Ig-fold domains of filamin A can be unfolded by the critical external force (50–220 pN), and this unfolding is reversible, i.e., the refolding of the unfolded chain of the filamin A occurs when the external force is removed. Due to this reversible unfolding of Ig-fold domains, filamin A molecule can be stretched to several times the length of its native state. Based on this new feature of filamin A as the ‘large-extensible linker’, we describe our hypothesis for the mechanical role of filamin A in the actin cytoskeletons in cells and discuss its biological implications. In this review, function of filamin A in actin cytoskeleton, mechanical properties of single filamin A proteins, and the hypothesis for the mechanical role of filamin A in the actin cytoskeletons are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
 By using the patch-clamp technique we have shown that, in hypotonic extracellular solutions, the mouse neuroblastoma cells Neuro2A (N2A) develop ionic currents mediated by a chloride-selective channel which is also permeable to other anions in accordance with the permeability sequence: I>Br>Cl>gluconate>glutamate. The currents persist for several hours when Mg-ATP is present in the recording pipette but occur only transiently in the absence of Mg-ATP. Typical blockers of anions channels such as La3+ and Zn2+ do not affect the hypotonicity-activated channel; conversely, the stilbene sulfonate-derivatives, 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS) and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), reversibly inhibit the channel in a voltage-dependent manner. Also intact cells exposed to hyposmotic solutions activate volume-regulation mechanisms which decrease the transient volume increase that develops immediately after the application of the hyposmotic challenge. Since N2A neurons have been used as an expression system of exogenous channels, the presence of osmolarity-regulated channels in these cells is an important aspect that deserves the attention of researchers who may wish to express and study the properties of transport proteins in this cell line. Received: 29 January 1998 / Accepted: 7 August 1998  相似文献   

4.
The endoplasmic reticulum (ER) is an intracellular organelle involved in biosynthesis and the secretory pathway. This organelle has many resident proteins including biosynthetic enzymes and secretory proteins. Recent studies have suggested that dysfunction of the ER or secretory pathway is involved in the pathogenesis of various human diseases. Some stresses acting on the ER, which are designated ER stress, induce the accumulation of unfolded/misfolded proteins in the ER, leading to cell death. Misfolded proteins are retained until they form their native conformation or returned to the cytosol for degradation by the proteasome. Among the ER-resident proteins, molecular chaperones prevent aggregation of proteins within the ER, and orchestrate the ER quality control systems. We have reported the roles of novel stress proteins, namely 150-kDa oxygen-regulated protein, 94-kDa glucose-regulated protein and RA410. These proteins are induced significantly by hypoxia or oxidative stress and have cytoprotective effects under these conditions. These findings suggest that hypoxia and oxidative stress target the ER and secretory pathway, resulting in ER stress, and that these proteins exert cytoprotective effects in various diseases associated with ER stress.  相似文献   

5.
6.
We describe and solve a two-state kinetic model for the forced unfolding of proteins. The protein oligomer is modeled as a heterogeneous, freely jointed chain with two possible values of Kuhn length and contour length representing its folded and unfolded configurations. We obtain analytical solutions for the force–extension response of the protein oligomer for different types of loading conditions. We fit the analytical solutions for constant-velocity pulling to the force–extension data for ubiquitin and fibrinogen and obtain model parameters, such as Kuhn lengths and kinetic coefficients, for both proteins. We then predict their response under a linearly increasing force and find that our solutions for ubiquitin are consistent with a different set of experiments. Our calculations suggest that the refolding rate of proteins at low forces is several orders larger than the unfolding rate, and neglecting it can lead to lower predictions for the unfolding force, especially at high stretching velocities. By accounting for the refolding of proteins we obtain a critical force below which equilibrium is biased in favor of the folded state. Our calculations also suggest new methods to determine the distance of the transition state from the energy wells representing the folded and unfolded states of a protein.  相似文献   

7.
Development of vaccine strategies against human papillomavirus (HPV), which causes cervical cancer, is a priority. We investigated the use of virus-like particles (VLPs) of the most prevalent type, HPV-16, as carriers of foreign proteins. Green fluorescent protein (GFP) was fused to the N or C terminus of both L1 and L2, with L2 chimeras being co-expressed with native L1. Purified chimaeric VLPs were comparable in size (∼55 nm) to native HPV VLPs. Conformation-specific monoclonal antibodies (Mabs) bound to the VLPs, thereby indicating that they possibly retain their antigenicity. In addition, all of the VLPs encapsidated DNA in the range of 6–8 kb. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Summary.  Rabbit hemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV) are caliciviruses that produce severe symptoms and are lethal to rabbits and hares. The folding of the capsid protein was studied by determination of the antigenic pattern of chimeric capsid proteins, composed of regions from RHDV and EBHSV capsid proteins. The anti-RHDV monoclonal antibody (MAb) E3, which is known to bind an external conformational epitope, recognized the RHDV C-terminal region. The anti-RHDV MAb A47, which binds a buried epitope, recognized the RHDV N-terminal region. Using a pGEX expression library, we more precisely mapped the MAb A47 epitope on a 31 residues length peptide, between residue 129 and 160 of the VP60, confirming its location in the N-terminal part of the protein. These results demonstrate that the C-terminal part of the protein is accessible to the exterior whereas the N-terminal domain of the protein constitutes the internal shell domain of the particle. With the aim of using virus-like particles (VLPs) of RHDV as epitope carriers or DNA transfer vectors, we produced in the baculovirus system three proteins, ΔN1, ΔN2 and ΔN3, truncated at the N terminus. The ΔN1 protein assembled into VLPs, demonstrating that the first 42 amino acid residues are not essential for capsid assembly. In contrast, ΔN2, from which the first 75 residues were missing, was unable to form VLPs. The small particles obtained with the ΔN3 protein lacking residues 31 to 93, located in the immunodominant region of the RHDV capsid protein, indicate that up to 62 amino acid residues can be eliminated without preventing assembly. Received September 6, 2001; accepted March 13, 2002 Published online June 21, 2002  相似文献   

9.
Transient global brain ischemia results in an immediate inhibition of protein translation upon reperfusion. During early brain reperfusion protein synthesis is inhibited by alpha subunit of eukaryotic initiation factor 2 (eIF2α) phosphorylation by the PKR-like endoplasmic reticulum kinase (PERK). Normally, PERK is held in an inactive, monomeric state by the binding of the endoplasmic reticulum (ER) chaperone GRP78 to the lumenal end of PERK. The prevailing view is that ER stress leads to the accumulation of unfolded proteins in the ER lumen. GRP78 dissociates from PERK to bind these accumulated unfolded proteins, leading to PERK activation, phosphorylation of eIF2α, and inhibition of translation. To determine if an increase in unfolded nascent proteins following transient brain ischemia contributes to PERK activation, protein synthesis was blocked by intracerebral injection of anisomycin prior to induction of ischemia. Anisomycin inhibited protein synthesis by over 99% and reduced newly synthesized proteins in the ER to ∼20% of controls. With an ER nearly devoid of newly synthesized proteins, PERK was still activated and was able to phosphorylate eIF2α in CA1 neurons during reperfusion. These data strongly argue that PERK activation is independent of the large increase in unfolded nascent proteins within the ER following transient global brain ischemia.  相似文献   

10.
Perturbation of a protein away from its native state by mechanical stress is a physiological process immanent to many cells. The mechanical stability and conformational diversity of proteins under force therefore are important parameters in nature. Molecular-level investigations of “mechanical proteins” have enjoyed major breakthroughs over the last decade, a development to which atomic force microscopy (AFM) force spectroscopy has been instrumental. The giant muscle protein titin continues to be a paradigm model in this field. In this paper, we review how single-molecule mechanical measurements of titin using AFM have served to elucidate key aspects of protein unfolding–refolding and mechanisms by which biomolecular elasticity is attained. We outline recent work combining protein engineering and AFM force spectroscopy to establish the mechanical behavior of titin domains using molecular “fingerprinting.” Furthermore, we summarize AFM force–extension data demonstrating different mechanical stabilities of distinct molecular-spring elements in titin, compare AFM force–extension to novel force-ramp/force-clamp studies, and elaborate on exciting new results showing that AFM force clamp captures the unfolding and refolding trajectory of single mechanical proteins. Along the way, we discuss the physiological implications of the findings, not least with respect to muscle mechanics. These studies help us understand how proteins respond to forces in cells and how mechanosensing and mechanosignaling events may proceed in vivo.  相似文献   

11.
The deposition of amyloid β-protein (Aβ) in cerebral vasculature, known as cerebral amyloid angiopathy (CAA), is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β precursor protein transgenic mice harboring two CAA Aβ mutations (Dutch E693Q and Iowa D694N) that mimic the prevalent cerebral microvascular Aβ deposition observed in those patients, and the Swedish mutations (K670N/M671L) to increase Aβ production. In these Tg-SwDI mice, we have reported predominant fibrillar Aβ along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular Aβ in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular Aβ. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus) as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus), C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular Aβ deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular Aβ deposition that is observed in patients with familial CAA.  相似文献   

12.
Kinase-related protein (KRP) and caldesmon are abundant myosin-binding proteins of smooth muscle. KRP induces the assembly of unphosphorylated smooth muscle myosin filaments in the presence of ATP by promoting the unfolded state of myosin. Based upon electron microscopy data, it was suggested that caldesmon also possessed a KRP-like activity (Katayama et al., 1995, J Biol Chem 270: 3919–3925). However, the nature of its activity remains obscure since caldesmon does not affect the equilibrium between the folded and unfolded state of myosin. Therefore, to gain some insight into this problem we compared the effects of KRP and caldesmon, separately, and together on myosin filaments using turbidity measurements, protein sedimentation and electron microscopy. Turbidity assays demonstrated that KRP reduced myosin filament aggregation, while caldesmon had no effect. Additionally, neither caldesmon nor its N-terminal myosin binding domain (N152) induced myosin polymerization at subthreshold Mg2+ concentrations in the presence of ATP, whereas the filament promoting action of KRP was enhanced by Mg2+. Moreover, the amino-terminal myosin binding fragment of caldesmon, like the whole protein, antagonizes Mg2+-induced myosin filament formation. In electron microscopy experiments, caldesmon shortened myosin filaments in the presence of Mg2+ and KRP, but N152 failed to change their appearance from control. Therefore, the primary distinction between caldesmon and KRP appears to be that caldesmon interacts with myosin to limit filament extension, while KRP induces filament propagation into defined polymers. Transfection of tagged-KRP into fibroblasts and overlay of fibroblast cytoskeletons with Cy3KRP demonstrated that KRP colocalizes with myosin structures in vivo. We propose a new model that through their independent binding to myosin and differential effects on myosin dynamics, caldesmon and KRP can, in concert, control the length and polymerization state of myosin filaments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Biochemical mechanisms of insecticide resistance of thermal exposed and unexposed Culex quinquefasciatus strains are evaluated, which were not studied earlier. The activity of α- and β-carboxylesterases and acetylcholinesterase of malathion susceptible and resistant strains were compared after thermal treatment. Three-day-old adult females were used for the malathion susceptibility test and biochemical assays, and males were used only for the susceptibility test. Thermal exposure brought about increase in resistance levels from 85% to 90% in males and 91% to 96.6% in females of resistant strain. The resistance status of the susceptibility strain was unchanged after thermal exposure. The activities of α- and β-carboxylesterase of susceptible mosquitoes were within 800 and 700 U/mg protein, respectively. The α-carboxylesterase activity of the thermal exposed malathion-resistant population was significantly (t test, P < 0.05) higher than the unexposed resistant population, and the reverse was recorded in β-carboxylesterase. The α-carboxylesterase activity of susceptible population was lower than the resistant population. The activity of α-carboxylesterase was higher than the β-carboxylesterase in both the strains. Among the malathion resistant C. quinquefasciatus population, 2.3% population exhibited 30–40% inhibition which increased to 5.8% after the thermal exposure. Thermal exposure of mosquitoes increased the activity of both α-carboxylesterases and acetylcholinesterase but decreased the activity of β-carboxylesterase.  相似文献   

14.
 Cardiovascular effects of inflammatory interleukins (IL) have been suggested to be mediated by the renin-angiotensin system in vivo. To address the direct cellular effect of IL, we examined the influence of IL-1β on renin secretion and renin mRNA in cultures of mouse juxtaglomerular granular (JG) cells and in the mouse tumor cell line As4.1, which expresses renin mRNA. Renin mRNA levels and secretion of active renin were not significantly changed by IL-1β in native JG cells. Activation of adenylyl cyclase by forskolin increased renin secretion and renin mRNA levels three- and fivefold, respectively. These stimulatory responses to forskolin were not altered by IL-1β. In contrast to native JG cells, renin mRNA abundance was markedly suppressed by IL-1β in As4.1 cells, whereas secretion of active renin and the stability of renin mRNA were not changed. In As4.1 cells forskolin did not change renin secretion or renin mRNA abundance in the absence or in the presence of IL-1β. These findings suggest that IL-1β has no direct influence on renin secretion and renin mRNA abundance at the level of native JG cells. Received: 15 December 1997 / Received after revision: 25 April 1998 / Accepted: 27 May 1998  相似文献   

15.
Summary During motionless standing an increased hydrostatic pressure leads to increased transcapillary fluid filtration into the interstitial space of the tissues of the lower extremities. The resulting changes in calf volume were measured using a mercury-in-silastic strain gauge. Following a change in body posture from lying to standing or sitting a two-stage change in calf volume was observed. A fast initial filling of the capacitance vessels was followed by a slow but continuous increase in calf volume during motionless standing and sitting with the legs dependent passively. The mean rates of this slow increase were about 0.17%·min−1 during standing and 0.12%·min−1 during sitting, respectively. During cycle ergometer exercise the plethysmographic recordings were highly influenced by movement artifacts. These artifacts, however, were removed from the recordings by low-pass filtering. As a result the slow volume changes, i.e. changes of the extravascular fluid were selected from the recorded signal. Contrary to the increases during standing and sitting the calf volumes of all 30 subjects decreased during cycle ergometer exercise. The mean decrease during 18 min of cycling (2–20 min) was −1.6% at 50 W work load and −1.9% at 100 W, respectively. This difference was statistically significant (p≤0.01). The factors which may counteract the development of an interstitial edema, even during quiet standing and sitting, are discussed in detail. During cycling, however, three factors are most likely to contribute to the observed reduction in calf volume: (1) The decrease in venous pressure, which in turn reduces the effective filtration pressure. (2) An increased lymph flow, which removes fluid and osmotically active colloid proteins from the interstitial space. (3) An increase in muscle tissue pressure, which counteracts the intravascular pressure during the muscle contraction thus playing an important role as an edema-preventing factor, which has not been considered to date.  相似文献   

16.
Cell volume controls many functions and is itself regulated. To study cell volume regulations, the mean volume of C6-BU-1 rat glioma cells was electronically measured under isotonic and anisotonic conditions. Two isotonic solutions were used containing either normal (solution 1) or low (solution 2) NaCl. Anisotonicity was induced by changing NaCl or sucrose concentrations in solutions 1 and 2, respectively. The cells behaved like perfect osmometers when the tonicity was increased. In contrast, just after hypotonic challenges, the cell volume was smaller than that predicted by a perfect osmometer. This deviation reveals a new mechanism, which we call the volume increase limitation (VIL). When hypotonicity was induced by decreasing NaCl, a classical slow regulatory volume decrease (RVD) was also observed in addition to VIL. The cells expressed aquaporin-1 sensitive to HgCl2 and decreased by siRNA, which both reduced fast volume changes. In this study, we show that: (1) RVD is proportional to the change in external Cl concentration and is inhibited by Cl channel and K+–Cl cotransporter blockers; (2) cell swelling due to the influx of H2O through aquaporins shows rectification with decreasing osmolarity and is sensitive to the internal Na+ concentration; (3) VIL is linearly related with hypotonicity and is abolished in solutions 1 and 2 by the Na+ ionophore monensin and in solution 1 by the Na+–K+ ATPase inhibitor ouabain. These results suggest that VIL is triggered by the decrease in internal Na+ caused by hyponatrema and cell swelling. In addition to RVD, VIL should protect cells during hyposmotic stress.  相似文献   

17.
The virus-like particle (VLP) assembled from capsid subunits of the dragon grouper nervous necrosis virus (DGNNV) is very similar to its native T = 3 virion. In order to investigate the effects of four cysteine residues in the capsid polypeptide on the assembly/dissociation pathways of DGNNV virions, we recombinantly cloned mutant VLPs by mutating each cysteine to destroy the specific disulfide linkage as compared with thiol reduction to destroy all S–S bonds. The mutant VLPs of C187A and C331A mutations were similar to wild-type VLPs (WT-VLPs); hence, the effects of Cys187 and Cys331 on the particle formation and thermostability were presumably negligible. Electron microscopy showed that either C115A or C201A mutation disrupted de novo VLP formation significantly. As shown in micrographs and thermal decay curves, β-mercaptoethanol-treated WT-VLPs remained intact, merely resulting in lower tolerance to thermal disruption than native WT-VLPs. This thiol reduction broke disulfide linkages inside the pre-fabricated VLPs, but it did not disrupt the appearance of icosahedrons. Small dissociated capsomers from EGTA-treated VLPs were able to reassemble back to icosahedrons in the presence of calcium ions, but additional treatment with β-mercaptoethanol during EGTA dissociation resulted in inability of the capsomers to reassemble into the icosahedral form. These results indicated that Cys115 and Cys201 were essential for capsid formation of DGNNV icosahedron structure in de novo assembly and reassembly pathways, as well as for the thermal stability of pre-fabricated particles.  相似文献   

18.
Calpains are intracellular Ca2+-requiring ‘modulator proteases’, which modulate cellular functions by limited and specific proteolysis. p94/calpain3, a skeletal-muscle specific calpain, has been one of the representative calpain species which indicates physiological importance of calpain proteolytic system; a defect of proteolytic activity of p94 causes limb girdle muscular dystrophy type2A (LGMD2A, also called ‘calpainopathy’). Immunohistochemical studies on myofibrils showed that p94 localizes at the Z- and N2-line regions of sarcomeres. It was also identified by the yeast two hybrid studies that p94 binds to the N2A and M-line regions of connectin. Furthermore, genetic studies indicate that p94 is indispensable for skeletal muscles, although its precise functions are still unclear. Interestingly, connectin provides sarcomere not only with elasticity but also with binding sites to various multi-functional proteins such as muscle ankyrin repeat proteins (MARPs), muscle RING finger proteins (MURFs), titin-capping protein (T-cap/telethonin), sarcomeric-α-actinin, p94 etc. Binding sites for these proteins are not randomly placed along connectin but rather accumulated in the Z-, N2-, and/or M-line regions, indicating the existence of ‘signal complexes’ unique to each regions. The concept of these complexes are strongly supported by the facts that mutations of connectin or its binding proteins in these regions severely perturb muscle functions, as in the case of LGMD2A caused by mutations in the p94 gene. Therefore, it is hypothesized that the ‘signal complexes’ in the Z-, N2-, and M-lines modulate muscle cell homeostasis by transducing signals of external stimulations/stresses to trigger appropriate response at various different cellular events such as protein modification and gene expressions. In this article, we performed detailed immunohistochemical analyses of p94 on isolated single myofibers. Together with recent findings about p94, it is suggested that sarcomeric localization of p94, especially its M-line localization, is affected by the combination of cellular contexts such as contractile status of myofibrils, fiber type compositions, sarcomeric maturation, and the composition of the ‘signal complexes’ in each region.  相似文献   

19.
 Proteins are usually identified by their molecular weights, and atomic force microscopy (AFM) produces images of single molecules in three dimensions. We have used AFM to measure the molecular volumes of a number of proteins and to determine any correlation with their known molecular weights. We used native proteins (the TATA-binding protein Tbp, a fusion protein of glutathione-S-transferase and the renal potassium channel protein ROMK1, the immunoglobulins IgG and IgM, and the vasodilator-stimulated phosphoprotein VASP) and also denatured proteins (the red blood cell proteins actin, Band 3 and spectrin separated by SDS-gel electrophoresis and isolated from nitrocellulose). Proteins studied had molecular weights between 38 and 900 kDa and were imaged attached to a mica substrate. We found that molecular weight increased with an increasing molecular volume (correlation coefficient = 0.994). Thus, the molecular volumes measured with AFM compare well with the calculated volumes of the individual proteins. The degree of resolution achieved (lateral 5 nm, vertical 0.2 nm) depended upon the firm attachment of the proteins to the mica. This was aided by coating the mica with suitable detergent and by imaging using the AFM tapping mode which minimizes any lateral force applied to the protein. We conclude that single (native and denatured) proteins can be imaged by AFM in three dimensions and identified by their specific molecular volumes. This new approach permits detection of the number of monomers of a homomultimeric protein and study of single proteins under physiological conditions at the molecular level. Received: 14 February 1997 / Received after revision: 8 September 1997 / Accepted: 8 September 1997  相似文献   

20.
Summary.  Porcine reproductive and respiratory syndrome virus (PRRSV) belongs to the recently recognized Arteriviridae family within the genus Arterivirus, order Nidovirales, which also includes equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV). Mature viral particles are composed of an envelope 50–72 nm in diameter, with an isometric core about 20–30 nm enclosing a linear positive-stranded RNA genome of approximately 15 kb. The virions are assembled by the budding of preformed nucleocapsids into the lumen of the smooth endoplasmic reticulum and/or Golgi apparatus. The mature virions are then released by exocytosis. The viral genome contains eight open reading frames (ORFs) which are transcribed in cells as a nested set of subgenomic mRNAs. The ORF1a and ORF1b situated at the 5′end of the genome represent nearly 75% of the viral genome and code for proteins with apparent replicase and polymerase activities. The major structural proteins consist of a 25 kDa envelope glycoprotein (GP5), an 18–19 kDa unglycosylated membrane protein (M), and a 15 kDa nucleocapsid (N) protein, encoded by ORFs 5, 6 and 7, respectively. The N protein is the more abundant protein of the virion and is highly antigenic, which therefore makes it a suitable candidate for the detection of virus-specific antibodies and diagnosis of the disease. Four to five domains of antigenic importance have been identified for the N protein, a common conformational antigenic site for European and North American strains being localized in the central region of the protein. In cells and virions, both M and GP5 occur in heterodimeric complexes linked by disulfide bonds. The expression products of ORFs 2 and 4 are also incorporated into virus particles as additional minor membrane-associated glycoproteins designated as GP2 and GP4, with Mr of 29 and 31 kDa, respectively. The structural nature of the ORF3 product, a highly glycosylated protein with an apparent Mr of 42 kDa, is still being debated, in view of the apparently conflicting data on its presence in virus particles. Nonetheless, the GP3 of North American and European strains has been shown to be antigenic, providing protection for piglets against PRRSV infection in the absence of a noticeable neutralizing humoral response. Pigs exposed to the native form of GP5 by means of DNA immunization develop specific neutralizing and protecting antibodies. The GP5 is involved in antigenic variability, apoptosis, and possibly antibody-dependent enhancement phenomena. The GP4 also possesses antigenic determinants that trigger the immune system to produce neutralizing antibodies. Each of the PRRSV structural proteins carries common and type-specific antigenic determinants that permit the ability to differentiate between European and North American strains. The potential use of the PRRSV structural proteins in subunit recombinant-type vaccines is also discussed. Received August 30, 1999/Accepted September 29, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号