首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The bioactivation of the cyanide antidote methaemoglobin former 4-aminopropiophenone (4-PAPP) was studied using rat and human microsomes. With rat liver and NADPH in single and two-compartment systems, dapsone and benzocaine were more potent methaemoglobin generators compared with 4-PAPP. In the single compartment studies, the order of potency of inhibition of 4-PAPP-mediated methaemoglobin formation was cimetidine (1.5 mM)>isoniazid (500 μM)/diethyldithiocarbamate (DDC, 1 mM)>erythromycin (500 μM). Human liver microsomal activation of 4-PAPP in the two-compartment system was partially inhibited by both DDC and cimetidine. These preliminary studies suggest that 4-PAPP may be metabolised by CYP 2C11, 2E1 and 3A in the rat and CYP 2C, 2E1 and probably 3A4 in man.  相似文献   

2.
Aside from its established use as an antileprotic and anti-inflammatory drug, dapsone is also effective in the therapy of Pneurnocystis carinii pneumonia. Unfortunately, its use is often limited by its dose-dependent toxicity, such as methaemoglobinaemia and haemolysis; the latter condition occurs most frequently in gIucose-6-dehydrogenase deficient individuals. It is also responsible for occasional life-threatening disorders such as agranulocytosis. Dapsone may undergo acetylation, but its toxicity is due to the product of its oxidative metabolism, dapsone hydroxylamine. This is generated in man by the constitutive hepatic cytochrome P450 enzyme IIIA4. Studies in the rat revealed that dapsone-dependent methaemoglobinaemia could be greatly diminished by the co-administration of metabolic inhibitors. In the isolated perfused rat liver, dapsone hydroxylamine levels and hence methaemoglobin formation fell significantly in the presence of cimetidine. In addition, the clearance of the parent drug was retarded, and perfusate concentrations of monoacetyl dapsone increased. The protective effect of cimetidine also reduced methaemoglobin formation in the whole rat during the chronic administration of dapsone. Incubation of dapsone in a two-compartment in vitro system using human tissues in the presence of cimetidine or ketoconazole resulted in a decrease in methaemoglobin formation in all the human livers tested. Although cimetidine was only effective if incubated with microsomes and NADPH prior to the addition of dapsone. Administration of cimetidine (3 × 400 mg daily) to volunteers 3 days prior to and 4 days post administration of a single dose of 100 mg dapsone caused drug concentrations to increase by almost 30%. There was a marked fall in peak methaemoglobin levels and the percentage of the dose excreted in urine as dapsone hydroxylamine N-glucuronide was reduced by almost one third. During high dose dapsone therapy it may be possible that the co-administration of cimetidine might reduce toxicity while maintaining drug efficacy.  相似文献   

3.
Administration of dapsone in combination with trimethoprim and cimetidine to male rats resulted in a marked decrease (P less than 0.05) in measured methaemoglobin levels (46.2 +/- 24% Met Hb h) compared with administration of dapsone alone (124.5 +/- 24.4% Met Hb h). The elimination half-life of dapsone (814 +/- 351 min) was more than doubled in the presence of trimethoprim and cimetidine compared with control (355 +/- 160 min, P less than 0.05). However, there were no significant differences in AUC and clearance when dapsone was administered in combination with trimethoprim and cimetidine compared with dapsone alone. Co-administration of trimethoprim with dapsone in the absence of cimetidine did not affect either methaemoglobin formation, AUCs, half-lives, or clearance values of dapsone compared with control. There was a threefold increase in the AUC of trimethoprim (6296 +/- 2249 micrograms min mL-1) in the presence of dapsone compared with trimethoprim alone (2122 +/- 552 micrograms min mL-1). There was also a corresponding decrease in the clearance of trimethoprim in the presence of dapsone compared with control (19.1 +/- 6.9 vs 60.8 +/- 21.0 mL min-1). However, there was no change in the elimination half-life of trimethoprim between the two experimental groups (273 +/- 120 vs 292 +/- 54 min). The AUC of trimethoprim increased more than threefold in the presence of cimetidine (7100 +/- 1501 micrograms min mL-1) compared with trimethoprim alone (2122 +/- 552 micrograms min mL-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
1. We have utilized a two compartment system in which two teflon chambers are separated by a semi-permeable membrane in order to investigate the role of metabolism in dapsone-induced methaemoglobinaemia. Compartment A contained a drug metabolizing system (microsomes prepared from human liver +/- NADPH), whilst compartment B contained target cells (human red cells). 2. Incubation of dapsone (1-100 microM) with human liver microsomes (2 mg protein) and NADPH (1 mM) in compartment A (final volume 500 microliters) led to a concentration-dependent increase in the methaemoglobinaemia (15.4-18.9% at 100 microM) compared with control (2.3 +/- 0.4%) detected in the red cells within compartment B. In the absence of NADPH dapsone had no effect. 3. Of the putative dapsone metabolites investigated, only dapsone-hydroxylamine caused methaemoglobin formation in the absence of NADPH (40.6 +/- 6.3% with 100 microM). However, methaemoglobin was also detected when monoacetyl-dapsone, 4-amino-4'-nitro-diphenylsulphone and 4-aminoacetyl-4'-nitro-diphenylsulphone were incubated with human liver microsomes in the presence of NADPH. 4 Dapsone-dependent methaemoglobin formation was inhibited by addition of ketoconazole (1-1000 microM) to compartment A, with IC50 values of 285 and 806 microM for the two liver microsomal samples studied. In contrast, methaemoglobin formation was not inhibited by cimetidine or a number of drugs pharmacologically-related to dapsone. The presence of glutathione or ascorbate (500 microM) did not alter the level of methaemoglobin observed.  相似文献   

5.
We have examined the ability of cimetidine to inhibit the oxidative metabolism and hence haemotoxicity of dapsone in vitro, using a two compartment system in which two Teflon chambers are separated by a semi-permeable membrane. Compartment A contained a drug metabolizing system (microsomes prepared from human or rat liver +/- NADPH), whilst compartment B contained human red cells. Preincubation (30 min) of human liver microsomes with cimetidine (0-1000 microM) and NADPH prior to the addition of dapsone (100 microM) and NADPH (1 mM) resulted in a concentration-dependent decrease in the concentrations of dapsone hydroxylamine (from 179 +/- 47 to 40 +/- 6 ng) in compartment B. This reduction of hydroxylamine metabolite was reflected in the concentration-dependent reduction in methaemoglobin measured (from 7.1 +/- 0.7 to 3.5 +/- 1.5%) in parallel experiments. Preincubation of microsomes with cimetidine in the absence of NADPH had no effect. The effect of cimetidine pretreatment on dapsone-dependent methaemoglobin was confirmed using microsomes prepared from a further three sources of human liver, as well as from rat liver.  相似文献   

6.
α-Lipoic acid, dihydrolipoic acid (DHLA), N-acetyl cysteine and ascorbate were compared with methylene blue for their ability to attenuate and/or reduce methaemoglobin formation induced by sodium nitrite, 4-aminophenol and dapsone hydroxylamine in human erythrocytes. Neither α-lipoic acid, DHLA, N-acetyl cysteine nor ascorbate had any significant effects on methaemoglobin formed by nitrite, either from pre-treatment, simultaneous addition or post 30 min addition of the agents up to the 60 min time point, although N-acetyl cysteine did reduce methaemoglobin formation at 120 min (P<0.05). In all three treatment groups at 30, 60 and 120 min, there were no significant effects mediated by DHLA or N-acetyl cysteine on 4-aminophenol (1 mM)-mediated haemoglobin oxidation. Ascorbate caused marked significant reductions in 4-aminophenol methaemoglobin in all treatment groups at 30–120 min except at 30 min in the simultaneous addition group (P<0.0001). Neither α-lipoic acid, nor N-acetyl cysteine showed any effects on hydroxylamine-mediated methaemoglobin formation at 30 and 60 in all treatment groups. In contrast, DHLA significantly reduced hydroxylamine-mediated methaemoglobin formation at all three time points after pre-incubation and simultaneous addition (P<0.001), while ascorbate was ineffective. Compared with methylene blue, which was effective in reducing methaemoglobin formation by all three toxins (P<0.01), ascorbate was only highly effective against 4-aminophenol mediated methaemoglobin, whilst the DHLA-mediated attenuation of dapsone hydroxylamine-mediated methaemoglobin formation indicates a possible clinical application in high-dose dapsone therapy.  相似文献   

7.
In the female mouse, dapsone (50–500 mg kg?1, p.o.) caused a dose-related methaemoglobinaemia which peaked at 0m?5-1 h with recovery to baseline values occurring by 4h. Cimetidine (100 mg kg?1, p.o.), a known inhibitor of several hepatic P450 isozymes administered 1 h before dapsone, prevented the methaemoglobinaemia. In-vitro, dapsone required activation by mouse hepatic microsomes to cause methaemoglobin formation in mouse erythrocytes and cytotoxicity to human mononuclear leucocytes. In both instances, the toxic effects were markedly reduced by cimetidine. Daily dosing of mice with dapsone (50 mg kg?1, p.o.) for 3 weeks induced a blood dyscrasia, characterized by a fall of platelet and white blood cell counts, which was inhibited by cimetidine (100 mg kg?1, p.o. daily). It is concluded that an active metabolite of dapsone arising from a P450-dependent pathway is involved in the genesis not only of the methaemoglobinaemia but also the blood dyscrasia arising from repeated administration of the drug in this species.  相似文献   

8.
1. The N-hydroxylation of dapsone is thought to be responsible for the methaemoglobinaemia and haemolysis associated with this drug. We wished to investigate the effect of concurrent administration of cimetidine (400 mg three times per day) on the disposition of a single dose (100 mg) of dapsone in seven healthy volunteers in order to inhibit selectively N-hydroxylation. 2. The AUC of dapsone (31.0 +/- 7.2 micrograms ml-1 h) was significantly increased (P less than 0.001) in the presence of cimetidine (43.3 +/- 8.8 micrograms ml-1 h). 3. Peak methaemoglobin levels observed after dapsone administration (2.5 +/- 0.6%) were significantly (P less than 0.05) reduced in the presence of cimetidine (0.98 +/- 0.35%). 4. The percentage of the dose excreted in urine as the glucuronide of dapsone hydroxylamine was significantly (P less than 0.05) reduced in the presence of cimetidine (34.2 +/- 9.3 vs 23.1 +/- 4.2%). 5. Concurrent cimetidine therapy might reduce some of the haematological side-effects of dapsone.  相似文献   

9.
Four novel combined dapsone and trimethoprim analogues, K-120, K-150, K-138 and DRS-506, have been compared with dapsone in their methaemoglobin forming abilities as well as their anti-inflammatory properties using rat and human tissues in vitro. All four compounds formed consistently less methaemoglobin compared with dapsone in both the rat and human microsomes. Using human microsomes from five livers, K-120 was significantly less toxic than the other analogues in three of the five livers (P < 0.01). DRS-506 and K-138 both inhibited the human neutrophil respiratory burst to a significantly greater degree compared with dapsone at 0.5 mM (P < 0.01), while K-120 and K-150 showed no significant effect at 0.5 mM. At 1 mM, DRS-506, K-120 and K-138 were more potent than dapsone (P < 0.01), although K-150 appeared to increase the neutrophil activation. All four analogues caused a significant reduction in neutrophil adhesion to human umbilical vein cells at 0.1 mM. In view of its efficacy and low toxicity, K-120 shows considerable promise for future clinical evaluation.  相似文献   

10.
The respective methaemoglobin forming and GSH depleting capabilities of monoacetyl dapsone hydroxylamine (MADDS-NHOH) and dapsone hydroxylamine (DDS-NHOH) were compared in human diabetic and non-diabetic erythrocytes in vitro with a view to select the most potent agent for future oxidative stress and antioxidant evaluation studies. Administration of both metabolites to non-diabetic erythrocytes over the 20min period of the study resulted in significantly more methaemoglobin formation at all four time points compared with the diabetic erythrocytes (P<0.0001). At all four time points, significantly more methaemoglobin was formed in response to MADDS-NHOH in non-diabetic cells compared with the effects of DDS-NHOH on diabetic erythrocytes (P<0.0001). At the 5 and 10min time points, significantly more methaemglobin was formed in non-diabetic cells in the presence of MADDS-NHOH compared with DDS-NHOH (P<0.05). At the 5min time point only, significantly more methaemoglobin was formed in the presence of MADDS-NHOH in diabetic cells compared with that of DDS-NHOH (P<0.01). However, compared with diabetic control GSH levels, the presence of DDS-NHOH caused a significant depletion in GSH at 5, 10 and 20min time points in diabetic cells (P<0.001). In addition, the presence of DDS-NHOH caused a significant reduction in GSH levels in diabetic cells in comparison with those of non-diabetics at the 5, 10 and 20min, (P<0.005). DDS-NHOH was also associated with a significant depletion of GSH levels in diabetic cells compared with those of non-diabetic control erythrocytes (P<0.0001). The presence of MADDS-NHOH in diabetic erythrocytes led to a significant reduction in GSH levels at the 20min time point compared with those of non-diabetics (P<0.001), but there were no significant differences at the 5, 10 and 15min points. Due to its greater GSH-depleting action, DDS-NHOH will be selected for future use in the oxidative stress assessment in diabetic erythrocytes.  相似文献   

11.
1. The adverse reactions associated with the administration of dapsone are believed to be caused by metabolism to its hydroxylamine. Previous reports suggest that CYP3A4 is responsible for this biotransformation [1]. 2. Data presented in this paper illustrate the involvement of more than one cytochrome P450 enzyme in dapsone hydroxylamine formation using human liver microsomes. Eadie-Hofstee plots demonstrated bi-phasic kinetics in several livers. No correlation could be established between hydroxylamine formation and CYP3A concentrations in six human livers (r = -0.47; P = 0.34). 3. Studies with low molecular weight inhibitors illustrate the importance of CYP2C9 and CYP3A in dapsone N-hydroxylation. 4. Differential sensitivity of dapsone N-hydroxylation to selective CYP inhibitors indicated that the contribution of individual CYP enzymes varies between livers. Selective inhibition ranged from 6.8 to 44.1% by 5 microM ketoconazole, and from 24.0 to 68.4% by 100 microM sulphaphenazole. The extent of inhibition, by either ketoconazole or sulphaphenazole was dependent on the CYP3A content of the liver. 5. The levels of expression of these cytochrome P450 enzymes may be an important determinant of individual susceptibility to the toxic effects of dapsone, and may influence the ability of an enzyme inhibitor to block dapsone toxicity in vivo. Because of the inability to produce complete inhibition, selective CYP inhibitors are unlikely to offer any clinical advantage over cimetidine in decreasing dapsone hydroxylamine formation in vivo.  相似文献   

12.
We have investigated the disposition of dapsone (DDS, 1 mg) in the rat isolated perfused liver in the absence and the presence of cimetidine (3 mg). After the addition of DDS alone to the liver there was a monoexponential decline of parent drug concentrations and rapid formation of DDS-NOH (within 10 min) which coincided with methaemoglobin formation (11.7 +/- 3.0%, mean +/- s.d.) which reached a maximum (22.6 +/- 9.2%) at 1 h. The appearance of monoacetyl DDS (MADDS) was not apparent until 30-45 min. Addition of cimetidine resulted in major changes in the pharmacokinetics of DDS and its metabolites. The AUC of DDS in the presence of cimetidine (1018.8 +/- 267.8 micrograms min mL-1) was almost three-fold higher than control (345.0 +/- 68.1 micrograms min mL-1, P less than 0.01). The half-life of DDS was also prolonged by cimetidine compared with control (117.0 +/- 48.2 min vs 51.2 +/- 22.9, P less than 0.05). The clearance of DDS (3.0 +/- 0.55 mL min-1) was greatly reduced in the presence of cimetidine (1.03 +/- 0.26 mL min-1 P less than 0.01). The AUC0-3h for DDS-NOH (28.3 +/- 21.2 micrograms min mL-1) was significantly reduced by cimetidine (8.1 +/- 3.40 micrograms min mL-1, P less than 0.01). In contrast, there was a marked increase in the AUC0-3h for MADDS (32.7 +/- 25.8 micrograms min mL-1) in the presence of cimetidine (166.0 +/- 26.5 micrograms min mL-1 P less than 0.01). The methaemoglobinaemia associated with DDS was reduced to below 5% by cimetidine. Hence, a shift in hepatic metabolism from bioactivation (N-hydroxylation) to detoxication (N-acetylation) caused by cimetidine, was associated with a fall in methaemoglobinaemia. These data suggest that the combination of DDS with a cytochrome P450 inhibitor might reduce the risk to benefit ratio of DDS.  相似文献   

13.
Administration of dapsone (33 mg kg-1) to intact rats resulted in a marked elevation of methaemoglobin levels in male (435.0 +/- 105.2% met Hb h) compared with female rats (59.0 +/- 17.2% met Hb h). However, the clearance of dapsone was significantly faster in males compared with females. Female rats showed very low levels of methaemoglobin which were accompanied by significantly higher blood concentrations of parent drug. Clearance of dapsone in castrated animals was less than one-third of that of the intact sham-operated males (252.2 +/- 67.2 vs 81.4 +/- 33.0 mL h-1). Likewise, clearance of dapsone in ovarectomized rats was approximately half that of intact females. There were no significant differences in the disposition of dapsone between the ovarectomized (AUC 431.0 +/- 31.7 micrograms h mL-1; t1/2, 15.62 +/- 1.8 h) and castrated (AUC, 450.6 +/- 150.9 micrograms h mL-1; t1/2, 17.6 +/- 7.9 h) animals. However, methaemoglobin levels in castrated males, although less than a third of those of intact males, significantly exceeded those of ovarectomized animals. There was no significant difference between the four groups of animals with respect to red cell sensitivity to the methaemoglobin-forming capacity of the toxic metabolite of dapsone, the hydroxylamine. Metabolic conversion of dapsone to the hydroxylamine in the presence of NADPH was 7.6 +/- 1.5% for liver microsomes from intact males and was significantly greater (P less than 0.05) than the corresponding values for liver microsomes from castrated rats (5.3 +/- 0.59%). Conversion of dapsone to dapsone-NOH by liver microsomes from intact females and ovarectomized animals was below 1% in both cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
1. N-hydroxylation is thought to be an essential step in the haemotoxicity of dapsone (DDS). To investigate both metabolism-dependent and cell-selective drug toxicity in vitro we have developed a three-compartment system in which an hepatic drug metabolizing system is contained within a central compartment separated by semipermeable membranes from compartments containing mononuclear leucocytes (MNL) and red blood cells (RBC). 2. Metabolism of dapsone (100 microM) by rat liver microsomes resulted in toxicity to RBC cells (47.3 +/- 2.1% methaemoglobin), but there was no significant toxicity toward MNL (3.7 +/- 1.3% cell death) compared with control values (1.6 +/- 0.9%). However, when RBC were replaced with buffer in the third compartment there was significantly greater (P < 0.001) white cell toxicity (17.6 +/- 0.6% cell death), demonstrating the protection of MNL by RBC. Metabolism of dapsone by human liver microsomes again resulted in RBC toxicity (12.5 +/- 3.3% methaemoglobin) but no significant MNL toxicity (2.9 +/- 0.8% cell death). Replacement of RBC resulted in a significant (P < 0.001) increase in MNL toxicity (6.5 +/- 0.7% cell death). Addition of synthetic dapsone hydroxylamine (30 microM) in the absence of a metabolizing system and with no RBC in the third compartment resulted in significant (P < 0.001) toxicity toward MNL (43.36 +/- 5.82% cell death) compared with control (1.8 +/- 1.1%). The presence of RBC in the third compartment resulted in a significant (P < 0.001) decrease in MNL toxicity (17.6 +/- 2.2% cell death), with 40.1 +/- 3.7% methaemoglobin in the RBC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The toxicity and efficacy of a series of 13 anti-tubercular sulphone esters has been evaluated using human and rat tissues. The toxicity studies involved comparison of the esters' ability to generate rat microsomally mediated NADPH-dependent methaemoglobin with that of dapsone. All the compounds formed significantly less methaemoglobin in the 1 compartment studies compared with dapsone itself. The ethyl, propyl, 3-methyl-butyl cyclopentyl esters and the carboxy parent derivative all yielded less than 5% of the methaemoglobin generated by dapsone. The 3-nitro benzoic acid ethyl and propyl esters generated 30 and 25% of dapsone's methaemoglobin formation. A similar effect was seen in the 2 compartment system, except for the butyl ester, which yielded similar haemoglobin oxidation to dapsone. The low toxicity ethyl and propyl esters, were also low in toxicity using human liver microsomes, producing less than 30% of the dapsone mediated methaemoglobin. All the compounds except the benzoic acid parent were superior to dapsone in terms of suppression of human neutrophil respiratory burst using a lucigenin-based chemiluminescence assay. The most potent derivatives were the phenyl, propyl and 3-nitro benzoic acid ethyl esters, which were between two- and threefold more potent compared with dapsone in arresting the respiratory burst. Overall, the ethyl ester showed the best combination of low toxicity in the rat and human microsomal systems and its IC(50) was approximately 40% lower than that of dapsone in neutrophil respiratory burst inhibition. These compounds indicate some promise for future development in their superior anti-inflammatory capability and lower toxicity compared with the parent sulphone, dapsone.  相似文献   

16.
Three metabolizing systems (rat, heterologously expressed CYP3A4 and human liver) were used to evaluate 12 analogues of dapsone (4,4′diaminodiphenylsulphone) in-vitro. Methaemoglobin formation in a two-compartment and cytotoxicity in a single-compartment model were studied using human erythrocytes and neutrophils, respectively, as target cells. In the two-compartment system using rat microsomes as a generating system and methaemoglobin as an end-point, the least potent methaemoglobin formers tested were the 2-methyl-4-propylamino (AXDD14), 2-hydroxy-4-4′amino (ABDD5) derivatives and a sulphone/trimethoprim derivative (K-130). Dapsone itself, a 2-methoxy-4-ethylamino (W10) and a 2-hydroxyl-4-ethylamino compound (ABDD39) were the most toxic. In the single-compartment cytotoxicity test using rat microsomes, AXDD14 was again among the least toxic, as was a 2-methyl 4-cyclopentyl derivative (AXDD17) and surprisingly ABDD39. The most cytotoxic compounds again included dapsone itself as well as two 2-trifluoromethyl derivatives. The only significant methaemoglobin formation and cytotoxicity shown with the heterologously expressed human CYP 3A4 was with AXDD14, which was extensively activated. Interestingly, metabolism of dapsone was low using the expressed CYP 3A4. In the two-compartment system using human liver microsomes, AXDD14, K-130 and ABDD5 were oxidized to a significantly lesser extent compared with dapsone and these preliminary findings indicate that future development of these compounds may be worthwhile.  相似文献   

17.
1. We have attempted to reduce dapsone-dependent methaemoglobinaemia formation in six dermatitis herpetiformis patients stabilised on dapsone by the co-administration of cimetidine. 2. In comparison with control, i.e. dapsone alone, methaemoglobinaemia due to dapsone fell by 27.3 +/- 6.7% and 26.6 +/- 5.6% the first and second weeks after commencement of cimetidine administration. The normally cyanotic appearance of the patient on the highest dose of dapsone (350 mg day-1), underwent marked improvement. 3. There was a significant increase in the trough plasma concentration of dapsone (2.8 +/- 0.8 x 10(-5)% dose ml-1) at day 21 in the presence of cimetidine compared with control (day 7, 1.9 +/- 0.6 x 10(-5)% dose ml-1, P less than 0.01). During the period of the study, dapsone-mediated control of the dermatitis herpetiformis in all six patients was unchanged. 4. Trough plasma concentrations of monoacetyl dapsone were significantly increased (P less than 0.05) at day 21 (1.9 +/- 1.0 x 10(-5)% dose ml-1) compared with day 7 (1.6 +/- 0.9 x 10(-5)% dose ml-1:control). 5. Over a 12 h period, 20.6 +/- 8.9% (day 0) of a dose of dapsone was detectable in urine as dapsone hydroxylamine. Significantly less dapsone hydroxylamine was recovered from urine at day 14 (15.0 +/- 8.4) in the presence of cimetidine, compared with day 0 (control: P less than 0.05). 6. The co-administration of cimetidine may be of value in increasing patient tolerance to dapsone, a widely used, effective, but comparatively toxic drug.  相似文献   

18.
《General pharmacology》1995,26(7):1461-1467
  • 1.1. Dapsone is a potent anti-inflammatory and anti-parasitic compound, which is metabolised by cytochrome P-450 to hydroxylamines, which in turn cause methaemoglobinaemia and haemolysis. However, during the process of methaemoglobin formation, erythrocytes are capable of detoxifying the hydroxylamine to the parent drug, which may either reach the tissues to exert a therapeutic effect or return to the liver and be re-oxidised in a form of systemic cycling. This glutathione-dependent effect, combined with the un-ionised state of the drug at physiological pH, may contribute to its efficacy.
  • 2.2. Paradoxically, other aspects of the glutathione-dependent cycling of the hydroxylamine metabolite may contribute to the major adverse reaction of the drug, agranulocytosis. Erythrocytes exposed to the metabolite and repeatedly washed may still release the hydroxylamine in sufficient concentration to kill mononuclear leucocytes in vitro. Thus, erythrocytes may be a conduit for the hydroxylamine to reach the bone marrow to covalently bind to granulocyte precursors, which may trigger an immune response in certain individuals and may lead to the potentially fatal eradication of granulocytes from the circulation.
  • 3.3. Attempts to increase patient tolerance to dapsone have been most successful using a metabolic inhibitor to reduce hepatic oxidation of the drug to the hydroxylamine. Methaemoglobin formation in the presence of cimetidine was maintained at 30% below control levels for almost 3 mo, and patients' reported side effects such as headache and lethargy were significantly reduced.
  • 4.4. As clinical application of new and safer dapsone analogues is years away, the use of cimetidine provides an immediate route to increasing patient compliance during dapsone therapy, especially in those maintained on dapsone dosages in excess of 200 mg/day.
  相似文献   

19.
The effects of oxidised alpha-lipoic acid and alpha-tocopherol were investigated on a human erythrocytic in vitro model of diabetic metabolic stress. Preincubation of non-diabetic and diabetic erythrocytes with oxidised alpha-lipoic acid or alpha-tocopherol resulted in marked increases in nitrite-mediated methaemoglobin formation. In contrast, oxidised alpha-lipoic acid resulted in considerable reductions in 4-aminophenol-mediated methaemoglobin formation in both diabetic and non-diabetic cells. alpha-Tocopherol showed an increase only in diabetic cells, at one time point. Monoacetyl dapsone hydroxylamine (MADDS-NHOH)-mediated methaemoglobin formation was reduced by oxidised alpha-lipoic acid in non-diabetic and diabetic cells at all three time points, although alpha-tocopherol had no effect with MADDS-NHOH. In diabetic cells only, alpha-tocopherol incubation caused a reduction in GSH levels compared with non-diabetic cells. As the agents showed pro- as well as anti-oxidant effects in this study, further studies are required to demonstrate potential diabetic benefit from alpha-lipoic acid adminstration.  相似文献   

20.
Eight otherwise healthy diabetic volunteers took a daily antioxidant supplement consisting of vitamin E (200 IU), vitamin C (250 mg) and α-lipoic acid (90 mg) for a period of 6 weeks. Diabetic dapsone hydroxylamine-mediated methaemoglobin formation and resistance to erythrocytic thiol depletion was compared with age and sex-matched non-diabetic subjects. At time zero, methaemoglobin formation in the non-diabetic subjects was greater at all four time points compared with that of the diabetic subjects. Resistance to glutathione depletion was initially greater in non-diabetic compared with diabetic samples. Half-way through the study (3 weeks), there were no differences between the two groups in methaemoglobin formation and thiol depletion in the diabetic samples was now lower than the non-diabetic samples at 10 and 20 min. At 6 weeks, diabetic erythrocytic thiol levels remained greater than those of non-diabetics. HbA(1c) values were significantly reduced in the diabetic subjects at 6 weeks compared with time zero values. At 10 weeks, 4 weeks after the end of supplementation, the diabetic HbA1(c) values significantly increased to the point where they were not significantly different from the time zero values. Total antioxidant status measurement (TAS) indicated that diabetic plasma antioxidant capacity was significantly improved during antioxidant supplementation. Conversion of α-lipoic acid to dihydrolipoic acid (DHLA) in vivo led to potent interference in a standard fructosamine assay kit, negating its use in this study. This report suggests that triple antioxidant therapy in diabetic volunteers attenuates the in vitro experimental oxidative stress of methaemoglobin formation and reduces haemoglobin glycation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号