首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transplantation of mesenchymal stem cells (MSCs) has been proposed to exert beneficial effects on peripheral nerve regeneration after a peripheral nerve injury, but the functional recovery in the denervated limb is still limited. In this study, we used low‐level laser therapy (LLLT) as an adjunct therapy for MSC transplantation on the functional recovery of crushed sciatic nerve in rats. Peripheral nerve injury was induced in 48 Sprague–Dawley rats by crushing the unilateral sciatic nerve, using a vessel clamp. The animals with crushed injury were randomly divided into four groups: control group, with no treatment; MSC group, treated with MSC alone; LLLT group, treated with LLLT alone; and MSCLLLT group, treated with a combination of MSC and LLLT. The sciatic function index (SFI), vertical activity of locomotion (VA) and ankle angle (AA) of rats were examined for functional assessments after treatment. Electrophysiological, morphological and S100 immunohistochemical studies were also conducted. The MSCLLLT group showed a greater recovery in SFI, VA and AA, with significant difference from MSC, LLLT and control groups (p < 0.05). Moreover, markedly enhanced electrophysiological function and expression of S100 immunoreactivity, as well as fewer inflammatory cells and less vacuole formation were also demonstrated after nerve crush injury in the MSCLLLT group when compared with the groups receiving a single treatment (p < 0.05). MSC transplantation combined with LLLT could achieve better results in functional recovery than a conventional treatment of MSC or LLLT alone. LLLT has a synergistic effect in providing greater functional recovery with MSC transplantation after nerve crush injury. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Effective therapeutic strategies for treating chronic spinal cord injury (SCI) are currently unavailable. Scar tissue in the lesion area is a main inhibitory factor for axonal regeneration and repair of chronic SCI. In this study, scar tissue was surgically resected from adult rats with 12 week chronic SCI and then collagen scaffold (NeuroRegen Scaffold; NRS) and human umbilical cord‐derived mesenchymal stem cells (hUC‐MSCs) were implanted into the resected cavity to repair chronic SCI. The results demonstrated that the locomotor function of rats was not affected by surgical scar resection, indicating its safety in treating chronic SCI. Implanting NRS and hUC‐MSCs promoted locomotion in rats and improved cortical motor‐ and somatosensory‐evoked potentials. Furthermore, implanting NRS and hUC‐MSCs promoted neurofilament‐ and β‐tubulin‐III‐positive neural regeneration and remyelination, elicited β‐tubulin‐III‐positive neuron production in the lesion area and blocked astrocyte growth outside the lesion area. In conclusion, implanting NRS in combination with hUC‐MSCs provided a beneficial microenvironment for neural regeneration, showing significant therapeutic effects for chronic SCI.  相似文献   

3.
Treatment of peripheral nerve injuries has evolved over the past several decades to include the use of sophisticated new materials endowed with trophic and topographical cues that are essential for in vivo nerve fibre regeneration. In this research, we explored the use of an advanced design strategy for peripheral nerve repair, using biological and semi‐synthetic hydrogels that enable controlled environmental stimuli to regenerate neurons and glial cells in a rat sciatic nerve resection model. The provisional nerve growth conduits were composed of either natural fibrin or adducts of synthetic polyethylene glycol and fibrinogen or gelatin. A photo‐patterning technique was further applied to these 3D hydrogel biomaterials, in the form of laser‐ablated microchannels, to provide contact guidance for unidirectional growth following sciatic nerve injury. We tested the regeneration capacity of subcritical nerve gap injuries in rats treated with photo‐patterned materials and compared these with injuries treated with unpatterned hydrogels, either stiff or compliant. Among the factors tested were shear modulus, biological composition, and micropatterning of the materials. The microchannel guidance patterns, combined with appropriately matched degradation and stiffness properties of the material, proved most essential for the uniform tissue propagation during the nerve regeneration process.  相似文献   

4.
The treatment of lengthy peripheral nerve defect is challenging in the field of nerve regeneration. Our previous studies have shown that low‐intensity pulsed ultrasound (LIPUS) could promote the proliferation, cell viability, and neural differentiation of induced pluripotent stem cells‐derived neural crest stem cells (iPSCs‐NCSCs) and improve the regeneration of damaged peripheral nerve. In this study, the mechanical signal transduction pathway of LIPUS promoting iPSCs‐NCSCs proliferation and differentiation was further explored, and the effects of LIPUS combined with iPSCs‐NCSCs, perfluorotributylamine (PFTBA), and growth differentiation factor 5 (GDF5) on the repair of peripheral nerve injury were evaluated. Results showed LIPUS may regulate the proliferation and differentiation of iPSCs‐NCSCs through FAK‐ERK1/2 signal pathway. PFTBA could supply sufficient oxygen to promote the viability of iPSCs‐NCSCs under 5% hypoxia culture condition and provide a favourable microenvironment for nerve regeneration. The addition of GDF5 could promote the neural differentiation of iPSCs‐NCSCs in vitro. LIPUS treatment of allogeneic decellularized nerve conduit containing iPSCs‐NCSCs, PFTBA, and GDF5 has very good effect on the repair of sciatic nerve injury. Taken together, these results provide functional evidence that LIPUS might be a useful tool to explore alternative approaches in the field of nerve regeneration.  相似文献   

5.
Local hypoxia in the early stages of peripheral nerve injury is a challenge for axonal regeneration. To address this issue, perfluorotributylamine (PFTBA)‐based oxygen carrying fibrin hydrogel was prepared and injected into Schwann cell (SC)‐seeded collagen‐chitosan conduits to increase oxygen supply to SCs within the conduits. The conduit containing PFTBA‐SC gel was then applied to bridge a 15‐mm sciatic nerve defect in rats. It was observed that most of the GFP‐labeled SCs initially seeded in the PFTBA hydrogel remained alive for approximately 28 days after their in vivo implantation. The number of SCs was significantly higher in the PFTBA‐SC scaffold than that in the SC scaffold without PFTBA. In addition, nerve regeneration and functional recovery were examined after nerve injury repair. We found that the PFTBA‐SC scaffold was capable of promoting axonal regeneration and remyelination of the regenerated axons. Further studies showed the PFTBA‐SC scaffold was able to accelerate the recovery of motor and sensory function of the regenerating nerves. Electrophysiological analysis showed area under the curve of compound muscle action potential and nerve conduction velocity were also improved, and gastrocnemius muscle atrophy was partially reversed by PFTBA‐SC scaffold. Furthermore, microvessel density analysis showed PFTBA‐SC composites were beneficial for microvascular growth, which provided sustained oxygen for regenerating nerve in the later stages of nerve regeneration. In conclusion, enhanced survival of SCs by PFTBA is capable of promoting sciatic nerve regeneration and functional recovery, which provides a new avenue for achieving better functional recovery in the treatment of peripheral nerve injuries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
目的观察用结合碱性成纤维细胞生长因子(bFGF)的壳聚糖导管促进周围神经损伤再生的情况。方法实验组10只成年Wistar大鼠造成10 mm坐骨神经缺损后,以结合bFGF的壳聚糖导管作桥梁桥接神经两断端,以假手术组和单纯损伤组(造成10 mm坐骨神经缺损后,不加以任何干预措施)各10只大鼠为对照。术后3个月,通过大体观察、形态学及电生理检查观察损伤神经的再生情况。结果术后3个月,实验组大鼠新生的神经纤维已通过缺损部位,手术局部未出现明显的炎症反应,各项指标明显优于单纯损伤组。结论结合bFGF的壳聚糖导管对缺损的坐骨神经修复具有良好的桥梁作用和促进神经生长的作用。  相似文献   

7.
The DLTIDDSYWYRI motif (Ln2‐P3) of human laminin‐2 has been reported to promote PC12 cell attachment through syndecan‐1; however, the in vivo effects of Ln2‐P3 have not been studied. In Schwann cells differentiated from skin‐derived precursors, the peptide was effective in promoting cell attachment and spreading in vitro. To examine the effects of Ln2‐P3 in peripheral nerve regeneration in vivo, we developed a dual‐component poly(p‐dioxanone) (PPD)/poly(lactic‐co‐glycolic acid) (PLGA) artificial nerve graft. The novel graft was coated with scrambled peptide or Ln2‐P3 and used to bridge a 10 mm defect in rat sciatic nerves. The dual‐component nerve grafts provided tensile strength comparable to that of a real rat nerve trunk. The Ln2‐P3‐treated grafts promoted early‐stage peripheral nerve regeneration by enhancing the nerve regeneration rate and significantly increased the myelinated fibre density compared with scrambled peptide‐treated controls. These findings indicate that Ln2‐P3, combined with tissue‐engineering scaffolds, has potential biomedical applications in peripheral nerve injury repair. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Peripheral nerve damage is a common clinical complication of traumatic injury occurring after accident, tumorous outgrowth, or surgical side effects. Although the new methods and biomaterials have been improved recently, regeneration of peripheral nerve gaps is still a challenge. These injuries affect the quality of life of the patients negatively. In the recent years, many efforts have been made to develop innovative nerve tissue engineering approaches aiming to improve peripheral nerve treatment following nerve injuries. Herein, we will not only outline what we know about the peripheral nerve regeneration but also offer our insight regarding the types of nerve conduits, their fabrication process, and factors associated with conduits as well as types of animal and nerve models for evaluating conduit function. Finally, nerve regeneration in a rat sciatic nerve injury model by nerve conduits has been considered, and the main aspects that may affect the preclinical outcome have been discussed.  相似文献   

9.
目的观察应用复合碱性成纤维细胞生长因子(bFGF)-壳聚糖导管修复大鼠周围神经损伤的效果。方法成年Wistar大鼠25 只分为假手术组(n=10)、单纯损伤组(n=5)和人工神经修复组(n=10)。假手术组仅暴露坐骨神经5 mm,单纯损伤组暴露坐骨神经并切断,人工神经修复组以复合bFGF-壳聚糖导管桥接缺损。术后对实验动物的坐骨神经进行大体观察,对运动进行行为观察,以及组织化学和免疫组织化学方法评价神经再生情况和靶肌肉恢复情况。结果术后5 周,与单纯损伤组相比,人工神经修复组运动功能有一定程度恢复。人工神经修复组再生的坐骨神经已经通过bFGF-壳聚糖导管越过缺损并与远端相连接。免疫组织化学方法显示,坐骨神经再生段可观察到神经微丝(NF)阳性和S-100 阳性纤维。应用Masson 染色方法,可观察到人工神经修复组腓肠肌去纤维化程度相对于单纯损伤组有明显改善。结论应用bFGF-壳聚糖导管能有效修复周围神经损伤并使大鼠运动功能得到改善。  相似文献   

10.
Surgical intervention is the current gold standard treatment following peripheral nerve injury. However, this approach has limitations, and full recovery of both motor and sensory modalities often remains incomplete. The development of artificial nerve grafts that either complement or replace current surgical procedures is therefore of paramount importance. An essential component of artificial grafts is biodegradable conduits and transplanted cells that provide trophic support during the regenerative process. Neural crest cells are promising support cell candidates because they are the parent population to many peripheral nervous system lineages. In this study, neural crest cells were differentiated from human embryonic stem cells. The differentiated cells exhibited typical stellate morphology and protein expression signatures that were comparable with native neural crest. Conditioned media harvested from the differentiated cells contained a range of biologically active trophic factors and was able to stimulate in vitro neurite outgrowth. Differentiated neural crest cells were seeded into a biodegradable nerve conduit, and their regeneration potential was assessed in a rat sciatic nerve injury model. A robust regeneration front was observed across the entire width of the conduit seeded with the differentiated neural crest cells. Moreover, the up‐regulation of several regeneration‐related genes was observed within the dorsal root ganglion and spinal cord segments harvested from transplanted animals. Our results demonstrate that the differentiated neural crest cells are biologically active and provide trophic support to stimulate peripheral nerve regeneration. Differentiated neural crest cells are therefore promising supporting cell candidates to aid in peripheral nerve repair.  相似文献   

11.
Stem cell‐based tissue engineering has emerged as a promising avenue for the treatment of liver diseases and as drug metabolism and toxicity models in drug discovery and development. The in vitro simulation of a micro‐environmental niche for hepatic differentiation remains elusive, due to lack of information about crucial factors for the stem cell niche. For generation of functional hepatocytes, an in vivo three‐dimensional (3D) micro‐environment and architecture should be reproduced. Towards this, we fabricated three scaffolds as dextran–gelatin (DG1), chitosan–hyaluronic acid (CH1) and gelatin–vinyl acetate (GEVAC). Hepatic differentiation of human umbilical cord‐derived mesenchymal stem cells (hUC‐MSCs) was induced by culturing hUC‐MSCs on these scaffolds. The scaffolds support hepatic differentiation by mimicking the native extracellular matrix (ECM) micro‐environment and architecture to facilitate 3D cell–cell and cell–matrix interactions. The expression of hepatic markers, glycogen storage, urea production, albumin secretion and cytochrome P450 (CYP450) activity indicated the hepatic differentiation of hUC‐MSCs. The differentiated hUC‐MSCs on the 3D scaffolds formed hepatospheroids (3D hepatocyte aggregates), as illustrated by scanning electron microscopy (SEM), confocal microscopy and cytoskeleton organization. It was observed that the 3D scaffolds supported improved cell morphology, expression of hepatic markers and metabolic activities, as compared to Matrigel‐coated plates. To the best of our knowledge, this is the first report demonstrating the use of a well‐characterized scaffold (GEVAC) for enhanced differentiation of hUC‐MSCs to hepatocyte‐like cells (HLCs). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
足迹分析评定中药当归对大鼠坐骨神经损伤后的功能恢复   总被引:3,自引:0,他引:3  
足迹分析是评定坐骨神经,损伤及其再生和/或功能恢复的重要方法。为探讨中药当归有否促进周围神经损伤后的功能恢复作用,我们对大鼠坐骨神经实行钳夹和线扎损伤,并进行2小时间点(10、20d)的当归治疗。通过观察分析2个时间点治疗组、损伤对照组及正常对照级珠足迹变化。结果显示当归能够促进神经损伤后原功能恢复。  相似文献   

13.
Outcomes of end‐to‐end nerve repairs are more successful compared with outcomes of repairs bridged by nerve grafts. However, end‐to‐end repairs are not always possible for large nerve gaps, as excessive tension may cause catastrophic failure. In this study, we built on previous nerve‐lengthening studies to test the hypotheses that gradual lengthening of the proximal stump across a large nerve gap enables an end‐to‐end repair and such a repair results in more favourable regenerative outcomes than autografts, which represent the gold standard in bridging nerve gaps. To test these, we compared structural and functional outcomes in Lewis rats after repair of sciatic nerve gaps using either autografts or a novel compact internal fixator device, which was used to lengthen proximal nerve stumps towards the distal stump over 2 weeks, prior to end‐to‐end repair. Twelve weeks after the initial injury, outcomes following nerve lengthening/end‐to‐end repair were either comparable or superior in every measure compared with repair by autografting. The sciatic functional index was not significantly different between groups at 12 weeks. However, we observed a reduced rate of contracture and corresponding significant increase in paw length in the lengthening group. This functional improvement was consistent with structural regeneration; axonal growth distal to the injury was denser and more evenly distributed compared with the autograft group, suggesting substantial regeneration into both tibial and peroneal branches of the sciatic nerve. Our findings show that end‐to‐end repairs following nerve lengthening are possible for large gaps and that this strategy may be superior to graft‐based repairs.  相似文献   

14.
周围神经损伤后再生的药物调控研究   总被引:2,自引:0,他引:2  
目的 探讨神康灵对损伤的坐骨神经再生的作用。方法 采用 2 8只成年体重为 2 0 0g的Wistar大鼠 ,随机分成 2组 (实验组和对照组 ) ,分别于术后 4周和 6周 ,通过肌电图检测坐骨神经运动诱发电位的传导速度和波幅 ;组织学检测有髓神经轴突数目、横截面积 ,从而探讨神康灵对坐骨神经损伤后再生的作用。结果 实验组神经传导速度、再生的有髓神经纤维横截面积、数目均优于对照组。结论 神康灵对坐骨神经损伤后的再生有明显的促进作用。  相似文献   

15.
骨髓间充质细胞构建组织工程神经修复坐骨神经缺损   总被引:1,自引:1,他引:0  
背景:许旺细胞是周围神经组织工程的种子细胞,但体外分离、培养、纯化许旺细胞较困难.脱细胞同种异体神经移植物具有较强的修复外周神经缺损的能力,且可诱导骨髓间充质细胞分化为类许旺细胞,理论上骨髓间充质细胞可替代许旺细胞作为种子细胞应用于周围神经组织工程.目的:观察骨髓间充质细胞构建组织工程神经修复坐骨神经缺损的效果,评估骨髓间充质细胞作为种子细胞修复周围神经缺损的可行性.设计、时间及地点:随机对照动物实验,于2008-07/12在大理学院基础医学院实验室完成.材料:将30只SD大鼠按随机数字表法分为3组,每组10只.骨髓间充质细胞+异体移植组将骨髓间充质细胞复合脱细胞同种异体神经移植物培养的组织工程神经与两断端用10/0无创线端端吻合;异体移植组将脱细胞同种异体神经移植物桥接;自体移植组将切断的坐骨神经旋转180°端端吻合.方法:运用骨髓间充质细胞构建的组织工程神经修复大鼠10 mm坐骨神经缺损,移植后12周通过坐骨神经功能指数、腓肠肌湿质量恢复率、S-100免疫组织化学染色、电镜等方法观察移植物修复效果.主要观察指标:复合物培养时观察细胞形态的变化;移植后观察坐骨神经功能指数及腓肠肌湿质量恢复率;通过甲苯胺蓝染色观察新生髓鞘形成和轴突生长及神经纤维的分布情况,结合透射电镜及S-100蛋白免疫组织化学染色,观察许旺细胞生长和神经纤维再生情况.结果:坐骨神经功能指数及腓肠肌湿质量恢复率的检测结果显示骨髓间充质细胞+异体移植组优于异体移植组(P<0.05).骨髓间充质细胞+异体移植组复合物中S-100的表达明显高于异体移植组,有髓神经纤维数量、有髓纤维直径和髓鞘厚度均大于异体移植组(P< 0.05),修复效果接近自体移植组.结论:骨髓间充质细胞构建的组织工程神经修复周围神经缺损的效果优于单纯的脱细胞同种异体神经移植物,骨髓间充质细胞作为种子细胞在周围神经组织工程中具有较强的应用价值.  相似文献   

16.
To advance molecular and cellular therapy into the clinic for peripheral nerve injury, modification of neural scaffolds with the extracellular matrix (ECM) of peripheral nerves has been established as a promising alternative to direct inclusion of support cells and/or growth factors within a neural scaffold, while cell‐derived ECM proves to be superior to tissue‐derived ECM in the modification of neural scaffolds. Based on the fact that bone marrow mesenchymal stem cells (BMSCs), just like Schwann cells, are adopted as support cells within a neural scaffold, in this study we used BMSCs as parent cells to generate ECM for application in peripheral nerve tissue engineering. A chitosan nerve guidance conduit (NGC) and silk fibroin filamentous fillers were respectively prepared for co‐culture with purified BMSCs, followed by decellularization to stimulate ECM deposition. The ECM‐modified NGC and lumen fillers were then assembled into a chitosan–silk fibroin‐based, BMSC‐derived, ECM‐modified neural scaffold, which was implanted into rats to bridge a 10 mm‐long sciatic nerve gap. Histological and functional assessments after implantation showed that regenerative outcomes achieved by our engineered neural scaffold were better than those achieved by a plain chitosan–silk fibroin scaffold, and suggested the benefits of BMSC‐derived ECM for peripheral nerve repair. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
兔坐骨神经电损伤后神经组织超微结构观察   总被引:1,自引:0,他引:1  
目的:研究兔坐骨神经电损伤后神经组织和雪旺氏细胞超微结构变化。 方法:随机将实验动物按损伤电压分为3组:55V组、110V组、220V组,建立电损伤动物模型。对电击后不同时程兔坐骨神经进行取材固定,利用透射电子显微镜观察其超微结构。 结果:(1)坐骨神经55V电损伤4周后,神经结构即恢复正常;(2)110V电损伤2周时,神经破坏加重,雪旺氏细胞增殖,16周时神经结构基本恢复正常;(3)220V电损伤时雪旺氏细胞被破坏,观察16周仍未见神经恢复。 结论:神经组织在受到电损伤后超微结构随损伤电压的增大而改变明显;周围神经电击伤后神经再生能力与雪旺氏细胞相关,雪旺氏细胞的恢复可能是神经能够成功再生的必要保证。  相似文献   

18.
Nerve conduits are a proven strategy for guiding axon regrowth following injury. This study compares degradable silk–trehalose films containing chondroitinase ABC (ChABC) and/or glial cell line‐derived neurotrophic factor (GDNF) loaded within a silk fibroin‐based nerve conduit in a rat sciatic nerve defect model. Four groups of silk conduits were prepared, with the following silk–trehalose films inserted into the conduit: (a) empty; (b) 1 µg GDNF; (3) 2 U ChABC; and (4) 1 µg GDNF/2 U ChABC. Drug release studies demonstrated 20% recovery of GDNF and ChABC at 6 weeks and 24 h, respectively. Six conduits of each type were implanted into 15 mm sciatic nerve defects in Lewis rats; conduits were explanted for histological analysis at 6 weeks. Tissues stained with Schwann cell S‐100 antibody demonstrated an increased density of cells in both GDNF‐ and ChABC‐treated groups compared to empty control conduits (p < 0.05). Conduits loaded with GDNF and ChABC also demonstrated higher levels of neuron‐specific PGP 9.5 protein when compared to controls (p < 0.05). In this study we demonstrated a method to enhance Schwann cell migration and proliferation and also foster axonal regeneration when repairing peripheral nerve gap defects. Silk fibroin‐based nerve conduits possess favourable mechanical and degradative properties and are further enhanced when loaded with ChABC and GDNF. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
目的探讨经过体内预变性的神经用于周围神经缺损桥接修复的效果。方法 SD大鼠20只,制作右侧坐骨神经压榨伤动物模型,3 d后,取坐骨神经用于对侧行神经桥接,在桥接后0 d、3 d、7 d、14 d取材,应用ED1和NF200染色比较双侧神经再生速度及神经纤维内巨噬细胞浸入情况。结果压榨伤后3 d,远端神经纤维内见大量ED1染色阳性巨噬细胞侵入,NF200阳性染色成棒状或碎片状;神经桥接后3 d、7 d、14 d,预变性组与对照组桥接远端均可见大量ED1染色阳性巨噬细胞侵入,经过预变性的神经内神经再生速度明显提高。结论 经过体内预变性的神经用于周围神经缺损桥接修复可明显促进神经再生,其机制可能是巨噬细胞的早期侵入,有利于神经生长抑制物的清除。  相似文献   

20.
目的:探讨脉冲电磁场对周围神经再生的影响及其作用机理。方法:以60只Wistar大鼠左侧坐骨神经重度钳夹伤为模型,术后随机将大鼠均分为治疗组和对照组,治疗组给予脉冲电磁场治疗。术后不同时期观测大鼠伤肢功能神经恢复情况、电生理指标和组织学检查。结果:脉冲电磁场治疗促进伤肢功能的恢复,加速了损伤神经远段Wallerian变性进程,促进雪旺氏细胞增殖,促进轴索及髓鞘再生,加速运动神经传导速度的恢复。结论:脉冲电磁场可能是通过对周围神经再生过程中多环节的调控和促进,促进周围神经再生和功能恢复的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号