首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies have focused on the development of novel and innovative approaches for the treatment of peripheral nerve injury using artificial nerve guide conduits. In this study, we attempted to bridge 3.5‐cm defects of the sciatic nerve with a longitudinally oriented collagen conduit (LOCC) loaded with human umbilical cord mesenchymal stem cells (hUC‐MSCs). The LOCC contains a bundle of longitudinally aligned collagenous fibres enclosed in a hollow collagen tube. Our previous studies showed that an LOCC combined with neurotrophic factors enhances peripheral nerve regeneration. However, it remained unknown whether an LOCC seeded with hUC‐MSCs could also promote regeneration. In this study, using various histological and electrophysiological analyses, we found that an LOCC provides mechanical support to newly growing nerves and functions as a structural scaffold for cells, thereby stimulating sciatic nerve regeneration. The LOCC and hUC‐MSCs synergistically promoted regeneration and improved the functional recovery in a dog model of sciatic nerve injury. Therefore, the combined use of an LOCC and hUC‐MSCs might have therapeutic potential for the treatment of peripheral nerve injury.  相似文献   

2.
The treatment of lengthy peripheral nerve defect is challenging in the field of nerve regeneration. Our previous studies have shown that low‐intensity pulsed ultrasound (LIPUS) could promote the proliferation, cell viability, and neural differentiation of induced pluripotent stem cells‐derived neural crest stem cells (iPSCs‐NCSCs) and improve the regeneration of damaged peripheral nerve. In this study, the mechanical signal transduction pathway of LIPUS promoting iPSCs‐NCSCs proliferation and differentiation was further explored, and the effects of LIPUS combined with iPSCs‐NCSCs, perfluorotributylamine (PFTBA), and growth differentiation factor 5 (GDF5) on the repair of peripheral nerve injury were evaluated. Results showed LIPUS may regulate the proliferation and differentiation of iPSCs‐NCSCs through FAK‐ERK1/2 signal pathway. PFTBA could supply sufficient oxygen to promote the viability of iPSCs‐NCSCs under 5% hypoxia culture condition and provide a favourable microenvironment for nerve regeneration. The addition of GDF5 could promote the neural differentiation of iPSCs‐NCSCs in vitro. LIPUS treatment of allogeneic decellularized nerve conduit containing iPSCs‐NCSCs, PFTBA, and GDF5 has very good effect on the repair of sciatic nerve injury. Taken together, these results provide functional evidence that LIPUS might be a useful tool to explore alternative approaches in the field of nerve regeneration.  相似文献   

3.
背景:生物可降解材料制成的神经导管可在体内降解,避免出现的神经卡压等问题,因而受到越来越多的关注. 目的:比较自体神经移植与3种合成可生物降解材料神经导管在修复周围神经损伤的效果差异. 方法:通过电生理学检测,形态学观察等神经恢复效果评价方法,对比分析近年来常用的胶原神经导管、DL-乳酸-ε-己内酯神经导管、聚乙醇酸神经导管与自体神经移植修复周围神经缺损的效果. 结果与结论:虽然神经导管与自体神经移植相比在理论上有其优势的一面,但不同合成材料的神经导管之间在神经功能恢复中存在明显差异性,DL-乳酸-ε-己内酯神经导管修复效果与自体神经移植无明显差异,是较为理想的神经导管材料,聚乙醇酸神经导管因自身的因素影响其降解性能,在3种神经导管中的修复周围神经损伤效果最差,胶原神经导管需要交联剂改善其机械性能,其修复周围神经损伤效果居于前两者之间,因此,这3种神经导管在神经功能再生方面还有潜在的缺陷,不能完全替代自体神经移植,而且3者之间的性价比,还缺少足够的大样本长期随机对照实验结果来验证,还需要进一步的实验观察.  相似文献   

4.
Like other parts of the central nervous system, the adult mammalian optic nerve is difficult to regenerate after injury. Transplantation of the peripheral nerve or a Schwann cell (SC) graft can promote injured axonal regrowth. We tried to develop a new type of tissue-engineered SC graft that consisted of SCs seeded onto a poly(lactic-co-glycolic acid)/chitosan conduit. Meanwhile, SCs were transfected along the ciliary neurotrophic factor (CNTF) gene in vitro by electroporation to increase their neurotrophic effect. Four weeks after transplantation, GAP-43 labelled regenerating axons were found in the SC grafts, and axons in the CNTF-SC graft were longer than those in the SC graft. Tissue-engineered SC grafts can provide a feasible environment for optic nerve regeneration and may become an alternative for bridging damaged nerves and repairing nerve defects in the future.  相似文献   

5.
This study proposed a biodegradable GGT nerve conduit containing genipin crosslinked gelatin annexed with tricalcium phosphate (TCP) ceramic particles for the regeneration of peripheral nerves. Cytotoxicity tests revealed that GGT‐extracts were non‐toxic and promoted proliferation and neuronal differentiation in the induction of stem cells (i‐ASCs) derived from adipose tissue. Furthermore, the study confirmed the effectiveness of a GGT/i‐ASCs nerve conduit as a guidance channel in the repair of a 10‐mm gap in the sciatic nerve of rats. At eight weeks post‐implantation, walking track analysis showed a significantly higher sciatic function index (SFI) (P < 0.05) in the GGT/i‐ASC group than in the autograft group. Furthermore, the mean recovery index of compound muscle action potential (CMAP) differed significantly between GGT/i‐ASCs and autograft groups (P < 0.05), both of which were significantly superior to the GGT group (P < 0.05). No severe inflammatory reaction in the peripheral nerve tissue at the site of implantation was observed in either group. Histological observation and immunohistochemistry revealed that the morphology and distribution patterns of nerve fibers in the GGT/i‐ASCs nerve conduits were similar to those of the autografts. These promising results achieved through a combination of regenerative cells and GGT nerve conduits suggest the potential value in the future development of clinical applications for the treatment of peripheral nerve injury. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The DLTIDDSYWYRI motif (Ln2‐P3) of human laminin‐2 has been reported to promote PC12 cell attachment through syndecan‐1; however, the in vivo effects of Ln2‐P3 have not been studied. In Schwann cells differentiated from skin‐derived precursors, the peptide was effective in promoting cell attachment and spreading in vitro. To examine the effects of Ln2‐P3 in peripheral nerve regeneration in vivo, we developed a dual‐component poly(p‐dioxanone) (PPD)/poly(lactic‐co‐glycolic acid) (PLGA) artificial nerve graft. The novel graft was coated with scrambled peptide or Ln2‐P3 and used to bridge a 10 mm defect in rat sciatic nerves. The dual‐component nerve grafts provided tensile strength comparable to that of a real rat nerve trunk. The Ln2‐P3‐treated grafts promoted early‐stage peripheral nerve regeneration by enhancing the nerve regeneration rate and significantly increased the myelinated fibre density compared with scrambled peptide‐treated controls. These findings indicate that Ln2‐P3, combined with tissue‐engineering scaffolds, has potential biomedical applications in peripheral nerve injury repair. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Silk fibroin (SF)‐derived silkworms represent a type of highly biocompatible biomaterial for tissue engineering. We have previously investigated biocompatibility of SF with neural cells isolated from the central nervous system or peripheral nerve system in vitro, and also developed a SF‐based nerve graft conduit or tissue‐engineered nerve grafts by introducing bone marrow mesenchymal stem cells, as support cells, into SF‐based scaffold and evaluated the outcomes of peripheral nerve repair in a rat model. As an extension of the previous study, the electrospun technique was performed here to fabricate SF‐based neural scaffold inserted with silk fibres for bridging a 30‐mm‐long sciatic nerve gap in dogs. Assessments including functional, histological and morphometrical analyses were applied 12 months after surgery. All the results indicated that the SF‐based neural scaffold group achieved satisfactory regenerative outcomes, which were close to those achieved by autologous nerve grafts as the golden‐standard for peripheral nerve repair. Overall, our results raise a potential possibility for the translation of SF‐based electrospun neural scaffolds as an alternative to nerve autografts into the clinic.  相似文献   

8.
9.
To advance molecular and cellular therapy into the clinic for peripheral nerve injury, modification of neural scaffolds with the extracellular matrix (ECM) of peripheral nerves has been established as a promising alternative to direct inclusion of support cells and/or growth factors within a neural scaffold, while cell‐derived ECM proves to be superior to tissue‐derived ECM in the modification of neural scaffolds. Based on the fact that bone marrow mesenchymal stem cells (BMSCs), just like Schwann cells, are adopted as support cells within a neural scaffold, in this study we used BMSCs as parent cells to generate ECM for application in peripheral nerve tissue engineering. A chitosan nerve guidance conduit (NGC) and silk fibroin filamentous fillers were respectively prepared for co‐culture with purified BMSCs, followed by decellularization to stimulate ECM deposition. The ECM‐modified NGC and lumen fillers were then assembled into a chitosan–silk fibroin‐based, BMSC‐derived, ECM‐modified neural scaffold, which was implanted into rats to bridge a 10 mm‐long sciatic nerve gap. Histological and functional assessments after implantation showed that regenerative outcomes achieved by our engineered neural scaffold were better than those achieved by a plain chitosan–silk fibroin scaffold, and suggested the benefits of BMSC‐derived ECM for peripheral nerve repair. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
目的:概述近年来甲壳素类材料制备神经导管修复周围神经损伤的研究进展.资料来源:应用计算机检索Medline和Springerlink 2000-01/2009-08有关神经导管材料修复周围神经损伤方面的文献,检索词"nerve conduit,peripheral nerve injury",限定文献语言种类为"English";同时检索中国期刊全文数据库、重庆维普数据库2000-01/2009-08相关文献,检索词"神经导管,周围神经损伤",限定文章语言种类为中文.资料选择:纳入与修复周围神经损伤有关的非生物降解材料、生物降解材料和生物衍生材料的文献.对资料进行初审,选取符合甲壳素类神经导管材料修复周围神经损伤要求的有关文章.排除标准相关度不大和重复性文章.结局评价指标:神经组织工程;甲壳素类神经导管材料;神经导管制备.结果:①随着医学材料的进展,天然或人工合成材料的神经导管用于桥接神经缺损的组织工程支架材料,具有引导和促进神经再生作用.生物可降解材料中甲壳素类神经导管可在合理的时间段内降解,有可控的生物亲和性、降解性能、多孔性和机械性能.②在导管结构、复合其他生物可降解材料、表面修饰、添加种子细胞及神经生长因子等方面进行实验研究.③通过改变再生室的空间结构和微环境,从而加快神经生长速度,促进神经功能的良好恢复.并对材料表面修饰及制备方法加以改进,使得导管适应神经再生.结论:随着生物学技术和其他相关技术的发展,甲壳素类神经导管材料在周围神经组织工程中的应用必将得到不断的展现.  相似文献   

11.
Autologous nerve grafting is the current procedure used for repairing facial nerve gaps. As an alternative to this method, tissue engineering cell‐based therapy using induced pluripotent stem cells, Schwann cells and bone marrow‐derived mesenchymal stem cells has been proposed. However, these cells have major problems, including tumorigenesis in induced pluripotent stem cells and invasiveness and limited tissue associated with harvesting for the other cells. Here, we investigated the therapeutic potential of adipose‐derived stem cells (ASCs), which can be harvested easily and repeatedly by a minimally invasive liposuction procedure. The ASCs had characteristics of mesenchymal tissue lineages and could differentiate into Schwann‐like cells that were relatively simple to isolate and expand in culture. In an in vivo study, a silicone conduit containing undifferentiated ASCs, differentiated ASCs or Schwann cells were transplanted, embedded in a collagen gel and the efficacy of repair of a 7 mm‐gap in the rat facial nerve examined. Morphometric quantification analysis of regenerated facial nerves after a regeneration period of 13 weeks showed that undifferentiated ASCs, differentiated ASCs, and Schwann cells had similar potential for nerve regeneration. Furthermore, the functional recovery of facial nerve regeneration using a rat facial palsy scoring system in the three groups was close to that in autologous nerve graft positive controls. These findings suggest that undifferentiated and differentiated ASCs may both have therapeutic potential in facial nerve regeneration as a source of Schwann cells in cell‐based therapy performed as an alternative to autologous nerve grafts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Peripheral nerve damage is a common clinical complication of traumatic injury occurring after accident, tumorous outgrowth, or surgical side effects. Although the new methods and biomaterials have been improved recently, regeneration of peripheral nerve gaps is still a challenge. These injuries affect the quality of life of the patients negatively. In the recent years, many efforts have been made to develop innovative nerve tissue engineering approaches aiming to improve peripheral nerve treatment following nerve injuries. Herein, we will not only outline what we know about the peripheral nerve regeneration but also offer our insight regarding the types of nerve conduits, their fabrication process, and factors associated with conduits as well as types of animal and nerve models for evaluating conduit function. Finally, nerve regeneration in a rat sciatic nerve injury model by nerve conduits has been considered, and the main aspects that may affect the preclinical outcome have been discussed.  相似文献   

13.
Introduction: The sciatic nerve is one of the peripheral nerves that is most prone to injuries. After injury, the connection between the nervous system and the distal organs is disrupted, and delayed treatment results in distal organ atrophy and total disability. Regardless of great advances in the fields of neurosurgery, biological sciences, and regenerative medicine, total functional recovery is yet to be achieved.

Areas covered: Cell-based therapy for the treatment of peripheral nerve injuries (PNIs) has brought a new perspective to the field of regenerative medicine. Having the ability to differentiate into neural and glial cells, stem cells enhance neural regeneration after PNIs. Augmenting axonal regeneration, remyelination, and muscle mass preservation are the main mechanisms underlying stem cells’ beneficial effects on neural regeneration.

Expert opinion: Despite the usefulness of employing stem cells for the treatment of PNIs in pre-clinical settings, further assessments are still needed in order to translate this approach into clinical settings. Mesenchymal stem cells, especially adipose-derived stem cells, with the ability of autologous transplantation, as well as easy harvesting procedures, are speculated to be the most promising source to be used in the treatment of PNIs.  相似文献   


14.
Peripheral nerve injuries are often associated with loss of nerve tissue and require a graft to bridge the gap. Autologous nerve grafts are still the 'gold standard' in reconstructive surgery but have several disadvantages, such as sacrifice of a functional nerve, neuroma formation and loss of sensation at the donor site. Bioengineered grafts represent a promising approach to address this problem. In this study, poly‐3‐hydroxybutyrate (PHB) strips were used to bridge a 10 mm rat sciatic nerve gap and their effects on long‐term (12 weeks) nerve regeneration were compared. PHB strips were seeded with different cell types, either primary Schwann cells (SCs) or SC‐like differentiated adipose‐derived stem cells (dASCs) suspended in a fibrin glue matrix. The control group was PHB and fibrin matrix without cells. Functional and morphological properties of the regenerated nerve were assessed using walking track analysis, EMGs, muscle weight ratios and muscle and nerve histology. The animals treated with PHB strips seeded with SCs or dASCs showed significantly better functional ability than the control group. This correlated with less muscle atrophy and greater axon myelination in the cell groups. These findings suggest that the PHB strip seeded with cells provides a beneficial environment for nerve regeneration. Furthermore, dASCs, which are abundant and easily accessible, constitute an attractive cell source for future applications of cell therapy for the clinical repair of traumatic nerve injuries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
吕荣 《中国临床康复》2011,(8):1454-1458
目的:评价修复周围神经缺损的各种生物型人工材料的性能、应用以及功能恢复评定方法,寻找适宜的周围神经替代物。方法:以"神经导管,周围神经损伤修复,生物材料,许旺细胞"为关键词,采用计算机检索2004-01/2010-11相关文章。纳入与生物材料以及组织工程神经相关的文章;排除重复研究或Meta分析类文章。以28篇文献为主,重点讨论周围神经修复生物型人工材料的种类、性能以及适宜的功能恢复评定方法。结果:以脱细胞神经基质以及人工合成可降解材料为主体的复合型生物工程材料可作为较理想的支架材料应用于周围神经组织工程。脱细胞神经支架解决了自体神经来源受限、移植物排斥反应等问题,韧性与可塑性接近自体神经,微环境更利于周围神经再生。人工合成可降解材料具有生物降解、可塑性、一定的通透性等优势,且已有商品化成品出现。若将上述材料分别合理构建复合材料,有可能得到性能良好的组织工程神经移植物。周围神经修复后功能恢复评定方法主要以大体与形态学观察、组织学、神经肌肉机能学评定为主,辅以分子生物学技术。各类评定方法的应用有利于筛选出最适宜的周围神经损伤修复材料与构建方案。结论:周围神经损伤修复生物型人工材料研究发展迅速,但仍没有超越自体神经移植的支架材料。脱细胞神经基质以及人工合成可降解材料复合构建支架可作为较好的周围神经支架,但仍需要与种子细胞、神经营养因子等联合构建,以取得良好的促进再生效果。当前,对周围神经损伤修复效果的评定更加注重于神经肌肉功能的恢复,迫切需要筛选出最佳的修复材料以及构建方案以满足组织工程神经移植以及功能康复的要求,达到对周围神经损伤后形态、结构修复与功能重建的目的。  相似文献   

16.
This study attempted to improve the efficacy of peripheral nerve regeneration, using the stimulus of low-intensity ultrasound (US) on poly(DL-lactic acid-co-glycolic acid) (PLGA) nerve guidance conduits seeded with Schwann cells. The possible differences between the ultrasonic effects of biodegradable and nonbiodegradable materials used as conduits were also investigated, by comparison with a group of silicone conduits. The PLGA conduits were seeded with or without Schwann cells (6 x 10(3) cells). All conduits were implanted 10 mm into right sciatic nerve defects in rats and underwent 12 ultrasonic treatment sessions over 2 weeks. Ultrasound was applied at a frequency of 1 MHz and an intensity of 0.2 W/cm2 spatial average temporal peak (SATP) for 5 min/day. Histologic analysis was used to evaluate the recovery of the nerve after 6 weeks. Ultrasonically stimulated animals, especially those whose PLGA conduits, seeded with Schwann cells, exhibited considerably more myelinated axons with a larger mean area at the midconduit of the implanted grafts than those in any other group. Ultrasonic stimulation of a silicone conduit induced the generation of mass fibrous tissues that covered the nerve conduits and retarded axon regeneration. These results showed that ultrasonic stimulation may directly stimulate the seeded Schwann cells within the PLGA conduits to regenerate nerves. Nevertheless, the applying of US may not allow incorporation with the silicone rubber as a material from which to form nerve guidance conduits.  相似文献   

17.
背景:关于神经干细胞对周围神经损伤的治疗已有多篇报道,但外周血干细胞对周围神经损伤治疗鲜有报道。目的:探讨自体外周血干细胞移植治疗周围神经损伤使失神经骨骼肌重获神经再支配的临床应用。方法:应用外周血干细胞治疗周围神经损伤6例,同时与周围神经损伤单纯行神经断端吻合或神经移植10例比较。2组患者术后常规肌注鼠神经生长因子一两个疗程,同时给予针灸、理疗、经皮电刺激治疗及功能康复训练。结果与结论:两组患者随访均超过6个月。干细胞移植组运动神经传导速度和感觉神经传导速度的恢复率要明显高于单纯神经吻合组。提示周围神经损伤后给予修复局部用外周血干细胞移植能够使远端失神经骨骼肌早期重新获得神经再支配。  相似文献   

18.
A number of recent studies have shown the effectiveness of tubulation, using neural progenitor cells or Schwann cells, for promoting nerve regeneration. However, the use of neural cells from other neural donor tissues has potentially serious clinical complications. Therefore, we focused on dental pulp as a new cell source for use in such artificial conditions. Previously, we showed that silicone tubes filled with dental pulp cells (DPCs) promoted facial nerve regeneration in rats. However, the use of silicone tubes requires a secondary removal operation because they may give rise to chronic inflammation and pain. Therefore, to avoid this procedure, a new artificial device was prepared from a degradable poly-DL-lactide-co-glycolide (PLGA) tube containing DPCs, and its effectiveness for repairing gaps in the facial nerves of rats was investigated. A PLGA tube containing rat DPCs embedded in a collagen gel was transplanted into a gap in a rat facial nerve. Five days after transplantation, the facial nerves connected by the PLGA tubes containing DPCs were repaired more quickly than the control nerves. The PLGA tubes were resorbed in vivo and nerve regeneration was observed 2 months after the transplantation. Immunostaining showed that Tuj1-positive axons were present in the regenerated nerves 2 months after transplantation, and osmium-toluidine blue staining showed no mineralization of the regenerated nerves in those tubes containing myelinated fibres after 9 weeks. PLGA tubes filled with DPCs promoted nerve regeneration and were readily resorbed in vivo.  相似文献   

19.
Introduction: Sciatic nerve injury is common and usually results in degeneration of the distal axons and muscle denervation. Chronic muscle atrophy and fibrosis limit the recovery of muscle function and severely compromises efforts to restore muscle function. Despite early diagnosis and modern surgical techniques there is still poor functional recovery.

Areas covered: Stem cell transplantation has been investigated as a promising treatment strategy for peripheral nerve injury, and has demonstrated utility in limiting neuronal damage. The focus has been on the isolation of stem cells from bone-marrow and adipose tissue in addition to embryonic and neuronal stem cells. Transplantation of these cells into transected sciatic nerve in animal models demonstrates clinical improvement, inducing vigorous nerve regeneration accompanied by myelin synthesis. Cell replacement, trophic factor production, extracellular matrix molecule synthesis, guidance, remyelination, microenvironmental stabilization and immune modulation have been postulated as possible mechanisms for stem cell implantation.

Expert opinion: Although further research is still needed, this therapeutic approach will probably become a routine treatment technique in the coming years, especially with bone marrow mesenchymal stem cells. We believe that the most promising results were noted for the use of stem cells of this origin in the treatment of sciatic nerve injury.  相似文献   

20.
Despite the spontaneous regenerative capacity of the peripheral nervous system, large gap peripheral nerve injuries (PNIs) require bridging strategies. The limitations and suboptimal results obtained with autografts or hollow nerve conduits in the clinic urge the need for alternative treatments. Recently, we have described promising neuroregenerative capacities of Schwann cells derived from differentiated human dental pulp stem cells (d‐hDPSCs) in vitro . Here, we extended the in vitro assays to show the pro‐angiogenic effects of d‐hDPSCs, such as enhanced endothelial cell proliferation, migration and differentiation. In addition, for the first time we evaluated the performance of d‐hDPSCs in an in vivo rat model of PNI. Eight weeks after transplantation of NeuraWrap? conduits filled with engineered neural tissue (EngNT) containing aligned d‐hDPSCs in 15‐mm rat sciatic nerve defects, immunohistochemistry and ultrastructural analysis revealed ingrowing neurites, myelinated nerve fibres and blood vessels along the construct. Although further research is required to optimize the delivery of this EngNT, our findings suggest that d‐hDPSCs are able to exert a positive effect in the regeneration of nerve tissue in vivo . Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号