首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CONTEXT: All-trans retinoic acid (tRA) induces differentiation in MCF-7 breast cancer cells, stimulates sodium/iodide symporter (NIS) gene expression, and inhibits cell proliferation. Radioiodine administration after systemic tRA treatment has been proposed as an approach to image and treat some differentiated breast cancer. OBJECTIVE: The objective of this work was to study the relative role of genomic and nongenomic pathways in tRA stimulation of NIS expression in MCF-7 cells. DESIGN: We inspected the human NIS gene locus for retinoic acid-responsive elements and tested them for function. The effects of signal transduction pathway inhibitors were also tested in tRA-treated MCF-7 cells and TSH-stimulated FRTL-5 rat thyroid cells, followed by iodide uptake assay, quantitative RT-PCR of NIS, and cell cycle phase analysis. RESULTS: Multiple retinoic acid response elements around the NIS locus were identified by sequence inspection, but none of them was a functional tRA-induced element in MCF-7 cells. Inhibitors of the IGF-I receptor, Janus kinase, and phosphatidylinositol 3-kinase (PI3K), significantly reduced NIS mRNA expression and iodide uptake in tRA-stimulated MCF-7 cells but not FRTL-5 cells. An inhibitor of p38 MAPK significantly reduced iodide uptake in both tRA-stimulated MCF-7 cells and TSH-stimulated FRTL-5 cells. IGF-I and PI3K inhibitors did not significantly reduce the basal NIS mRNA expression in MCF-7 cells. Despite the chronic inhibitory effects on cell proliferation, tRA did not reduce the S-phase distribution of MCF-7 cells during the period of NIS induction. CONCLUSION: The IGF-I receptor/PI3K pathway mediates tRA-stimulated NIS expression in MCF-7 but not FRTL-5 thyroid cells.  相似文献   

3.
CONTEXT: The sodium iodide symporter (NIS) mediates the active iodide uptake in the thyroid gland as well as lactating breast tissue. Recently induction of functional NIS expression was reported in the estrogen receptor-positive human breast cancer cell line MCF-7 by all-trans retinoic acid (atRA) treatment in vitro and in vivo, which might offer the potential to treat breast cancer with radioiodine. OBJECTIVE: In the current study, we examined the effect of dexamethasone (Dex) on atRA-induced NIS expression and therapeutic efficacy of 131-I in MCF-7 cells. DESIGN: For this purpose, NIS mRNA and protein expression levels in MCF-7 cells were examined by Northern and Western blot analysis after incubation with Dex (10(-9) to 10(-7) m) in the presence of atRA (10(-6) m) as well as immunostaining using a mouse monoclonal human NIS-specific antibody. In addition, NIS functional activity was measured by iodide uptake and efflux assay, and in vitro cytotoxicity of 131-I was examined by in vitro clonogenic assay. RESULTS: After incubation with Dex in the presence of atRA, NIS mRNA levels in MCF-7 cells were stimulated up to 11-fold in a concentration-dependent manner, whereas NIS protein levels increased up to 16-fold and iodide accumulation was stimulated up to 3- to 4-fold. Furthermore, iodide efflux was modestly decreased after stimulation with Dex in the presence of atRA. Furthermore, in the in vitro clonogenic assay, selective cytotoxicity of 131-I was significantly increased from approximately 17% in MCF-7 cells treated with atRA alone to 80% in MCF-7 cells treated with Dex in the presence of atRA. CONCLUSION: Treatment with Dex in the presence of atRA significantly increases functional NIS expression levels in addition to inhibiting iodide efflux, resulting in an enhanced selective killing effect of 131-I in MCF-7 breast cancer cells.  相似文献   

4.
We reported recently the induction of androgen-dependent iodide uptake activity in the human prostatic adenocarcinoma cell line LNCaP using a prostate-specific antigen (PSA) promoter-directed expression of the sodium iodide symporter (NIS) gene. This offers the potential to treat prostate cancer with radioiodine. In the current study, we examined the regulation of PSA promoter-directed NIS expression and therapeutic effectiveness of (131)I in LNCaP cells by all-trans-retinoic acid (atRA). For this purpose, NIS mRNA and protein expression levels in the NIS-transfected LNCaP cell line NP-1 were examined by Northern and Western blot analysis following incubation with atRA (10 (-9) to 10(-6) M) in the presence of 10(-9) M mibolerone (mib). In addition, NIS functional activity was measured by iodide uptake assay, and in vitro cytotoxicity of (131)I was examined by in vitro clonogenic assay. Following incubation with atRA, NIS mRNA levels in NP-1 cells were stimulated 3-fold in a concentration-dependent manner, whereas NIS protein levels increased 2.3-fold and iodide accumulation was stimulated 1.45-fold. This stimulatory effect of atRA, which has been shown to be retinoic acid receptor mediated, was completely blocked by the pure androgen receptor antagonist casodex (10(-6) M), indicating that it is androgen receptor dependent. The selective killing effect of (131)I in NP-1 cells was 50% in NP-1 cells incubated with 10(-9) M mib. This was increased to 90% in NP-1 cells treated with atRA (10(-7) M) plus 10(-9) M mib. In conclusion, treatment with atRA increases NIS expression levels and selective killing effect of (131)I in prostate cancer cells stably expressing NIS under the control of the PSA promoter. Therefore atRA may be used to enhance the therapeutic response to radioiodine in prostate cancer cells following PSA promoter-directed NIS gene delivery.  相似文献   

5.
Recently, we have reported the induction of prostate-specific radioiodine accumulation in prostate cancer cells (LNCaP) using a prostate-specific antigen (PSA)-promoter-directed expression of the sodium iodide symporter (NIS) gene. This offers the potential to treat prostate cancer with radioiodine. The aim of our current study was to examine the regulation of PSA-promoter-directed NIS expression in NIS-transfected LNCaP cells (NP-1) by dexamethasone (Dex). For this purpose, NIS mRNA and protein expression levels were examined in NP-1 cells by Northern and Western blot analysis, respectively, after incubation with Dex (10(-8)-10(-6) M) in the presence of 10(-9) M mibolerone. NIS functional activity was measured by iodide uptake assay. In addition, we examined regulation of in vitro cytotoxicity of 131-I by Dex in an in vitro clonogenic assay. After incubation with Dex, iodide accumulation in NP-1 cells increased up to 1.5-fold, whereas NIS mRNA and protein expression levels were increased up to 1.7-fold. This effect of Dex was blocked by the androgen receptor antagonist casodex (10(-6) M). The killing effect of 131-I in NP-1 cells was increased from 55% when incubated with mibolerone alone to 95% when treated with Dex (10(-7) M) plus mibolerone. Treatment of NP-1 cells with Dex resulted in an additional antiproliferative effect as measured by clonogenic assay and nonradioactive proliferation assay. In conclusion, in addition to an antiproliferative effect, treatment with Dex increases androgen-dependent NIS mRNA and protein expression as well as iodide accumulation, resulting in an increased cytotoxic effect of 131-I in prostate cancer cells stably expressing NIS under the control of the PSA-promoter.  相似文献   

6.
7.
8.
9.
Acute promyelocytic leukemia (APL) is characterized by the translocation, t(15;17) and the expression of a PML/RAR alpha fusion protein that is diagnostic of the disease. There is evidence that PML/RAR alpha protein acts as a dominant negative inhibitor of normal retinoid receptor function and myeloid differentiation. We now show that the PML/RAR alpha fusion product is directly downregulated in response to retinoic acid (tRA) treatment in the human APL cell line, NB4. tRA treatment induces loss of PML/RAR alpha at the protein level but not at the level of mRNA, as determined by Northern blots, by Western blots, and by ligand binding assays and in binding to RA- responsive DNA elements. We present evidence that this regulation is posttranslational. This evidence suggests that tRA induces synthesis of a protein that selectively degrades PML/RAR alpha. We further show that this loss of PML/ RAR-alpha is not limited to the unique APL cell line. NB4, because PML/RAR alpha protein is selectively downregulated by tRA when expressed in the transfected myeloid cell line U937. The loss of PML/RAR alpha may be directly linked to tRA-induced differentiation, because in a retinoid-resistant subclone of NB4, tRA does not decrease PML/RAR alpha protein expression. In NB4 cells, the specific downregulation of the fusion protein decreases the ratio of PML/RAR alpha to wild-type RAR alpha. Because the ratio of expression of PML/RAR alpha to wild-type RAR alpha and PML may be important in maintaining the dominant negative block of myelocytic differentiation, these data suggest a molecular mechanism for restoration by tRA normal myeloid differentiation in APL cells.  相似文献   

10.
Regulation of the sodium/iodide symporter by retinoids--a review.   总被引:1,自引:0,他引:1  
Decrease or loss of iodide uptake, due to impaired expression and/or function of the sodium/iodide-symporter (NIS), is a major obstacle to the treatment of advanced thyroid carcinomas by radioiodide therapy. Several approaches are being evaluated to optimise or restore sufficient iodide transport in those cases, among them retinoid therapy. Retinoids with their growth-inhibiting and differentiation-inducing properties have been repeatedly used for treatment and chemoprevention of various cancers. In thyroid carcinoma cell lines they trigger changes in gene expression that may be interpreted as partial redifferentiation. Especially, they stimulate NIS mRNA expression and iodide uptake in human follicular thyroid carcinoma cells. Moreover, they also increase NIS expression and function in human mammary tumour cells. In a clinical pilot study to evaluate the feasibility of retinoid redifferentiation in the case of otherwise untreatable thyroid cancers, 21 of 50 patients showed an increase of radioiodide uptake after 5 weeks. This indicates that increasing NIS activity and radioiodide uptake by retinoic acid redifferentiation may be a therapeutic alternative for thyroid cancers refractory to other therapeutic modalities and probably also for mammary cancer.  相似文献   

11.
12.
13.
The sodium/iodide symporter (NIS) mediates iodide uptake in the thyroid gland and lactating breast. NIS mRNA and protein expression are detected in most thyroid cancer specimens, although functional iodide uptake is usually reduced resulting in the characteristic finding of a 'cold' or non-functioning lesion on a radioiodine image. Iodide uptake after thyroid stimulating hormone (TSH) stimulation, however, is sufficient in most differentiated thyroid cancer to utilize beta-emitting radioactive iodide for the treatment of residual and metastatic disease. Elevated serum TSH, achieved by thyroid hormone withdrawal in athyreotic patients or after recombinant human thyrotropin administration, directly stimulates NIS gene expression and/or NIS trafficking to the plasma membrane, increasing radioiodide uptake. Approximately 10-20% differentiated thyroid cancers, however, do not express the NIS gene despite TSH stimulation. These tumors are generally associated with a poor prognosis. Reduced NIS gene expression in thyroid cancer is likely due in part, to impaired trans-activation at the proximal promoter and/or the upstream enhancer. Basal NIS gene expression is detected in about 80% breast cancer specimens, but the fraction with functional iodide transport is relatively low. Lactogenic hormones and various nuclear hormone receptor ligands increase iodide uptake in breast cancer cells in vitro, but TSH has no effect. A wide range of 'differentiation' agents have been utilized to stimulate NIS expression in thyroid and breast cancer using in vitro and in vivo models, and a few have been used in clinical studies. Retinoic acid has been used to stimulate NIS expression in both thyroid and breast cancer. There are similarities and differences in NIS gene regulation and expression in thyroid and breast cancer. The various agents used to enhance NIS expression in thyroid and breast cancer will be reviewed with a focus on the mechanism of action. Agents that promote tumor differentiation, or directly stimulate NIS gene expression, may result in iodine concentration in 'scan-negative' thyroid cancer and some breast cancer.  相似文献   

14.
15.
16.
17.
Retinoid-dependent pathways suppress myocardial cell hypertrophy.   总被引:9,自引:0,他引:9       下载免费PDF全文
Utilizing an in vitro model system of cardiac muscle cell hypertrophy, we have identified a retinoic acid (RA)-mediated pathway that suppresses the acquisition of specific features of the hypertrophic phenotype after exposure to the alpha-adrenergic receptor agonist phenylephrine. RA at physiological concentrations suppresses the increase in cell size and induction of a genetic marker for hypertrophy, the atrial natriuretic factor (ANF) gene. RA also suppresses endothelin 1 pathways for cardiac muscle cell hypertrophy, but it does not affect the increase in cell size and ANF expression induced by serum stimulation. A trans-activation analysis using a transient transfection assay reveals that neonatal rat ventricular myocardial cells express functional RA receptors of both the retinoic acid receptor and retinoid X receptor (RAR and RXR) subtypes. Using synthetic agonists of RA, which selectively bind to RXR or RAR, our data indicate that RAR/RXR heterodimers mediate suppression of alpha-adrenergic receptor-dependent hypertrophy. These results suggest the possibility that a pathway for suppression of hypertrophy may exist in vivo, which may have potential therapeutic value.  相似文献   

18.
19.
The sodium/iodide symporter (NIS) is a membrane transport glycoprotein normally expressed in the thyroid gland and lactating mammary gland. NIS is a target for radioiodide imaging and therapeutic ablation of thyroid carcinomas and has the potential for similar use in breast cancer treatment. To facilitate NIS-mediated radionuclide therapy, it is necessary to identify signaling pathways that lead to increased NIS expression and function in breast cancer. We examined NIS expression in mammary tumors of 14 genetically engineered mouse models to identify genetic manipulations associated with NIS induction. The cAMP and phosphoinositide-3 kinase (PI3K) signaling pathways are associated with NIS up-regulation. We showed that activation of PI3K alone is sufficient to increase NIS expression and radioiodide uptake in MCF-7 human breast cancer cells, whereas cAMP stimulation increases NIS promoter activity and NIS mRNA levels but is not sufficient to increase radioiodide uptake. This study is the first to demonstrate that NIS expression is induced by cAMP and/or PI3K in breast cancer both in vivo and in vitro.  相似文献   

20.
Nakajima  H; Kizaki  M; Sonoda  A; Mori  S; Harigaya  K; Ikeda  Y 《Blood》1994,84(12):4107-4115
Retinoic acids (RAs) exert pleiotropic effects on cellular growth and differentiation. All-trans retinoic acid (ATRA) and 9-cis retinoic acid (9-cis RA), a stereoisomer of ATRA, induce differentiation of leukemic cell lines and cells from patients with acute myelogenous leukemia (AML) in vitro. Despite information on the effects of RAs on hematopoietic cells, little is known about how RAs act on the hematopoietic microenvironment, especially on bone marrow stromal cells. Based on recent observations that various cytokines produced mainly by bone marrow stromal cells regulate hematopoiesis, we analyzed the effects of RAs on cytokine production by these cells. ATRA or 9-cis RA treatment of human bone marrow stromal cell line KM101, which produces macrophage colony-stimulating factor (M-CSF) and granulocyte- macrophage colony-stimulating factor (GM-CSF) constitutively, enhanced mRNA levels of both cytokines in a dose-dependent manner. Both RAs also stimulated M-CSF production from primary cultures of human bone marrow stromal cells. Both retinoic acid receptor (RAR)-alpha and retinoid X receptor (RXR)-alpha were expressed constitutively in KM101 cells. ATRA did not affect the expression of either receptor, whereas 9-cis RA increased RXR-alpha mRNA expression in a dose-dependent manner, but did not affect levels of RAR-alpha mRNA. These findings may have important biologic implications for both the role of RAs in hematopoiesis and the therapeutic effects of ATRA on the hematopoietic microenvironment in patients with acute promyelocytic leukemia (APL).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号