首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
The process of recovery from inactivation of the slow inward current (isi) in the rabbit sinoatrial (S-A) node was evaluated by voltage clamp experiments using double microelectrode method. Double pulse experiments were carried out on preparations loaded with Cs+ using nystatin. The rate of the rapid isi inactivation depended on the amplitude of isi rather than the membrane potential. After a 50 ms depolarizing prepulse isi rapidly recovered from inactivation at -40 mV with a time constant of 84 +/- 25 ms, whereas after a longer prepulse, an additional slow recovery phase with a time constant of 1 to 2 s was observed. The amount of isi during the fast recovery phase following a 300 ms prepulse to -20 mV was smaller than that following a prepulse to +20 mV, as predicted by a Ca2(+)-mediated inactivation mechanism. Conversely, a prepulse to +20 mV caused a greater inactivation in the slow recovery phase, suggesting a voltage-dependent mechanism. The inactivation curve obtained during the fast recovery phase using 50 ms prepulses was U-shaped, indicating a predominant role of the Ca2(+)-mediated mechanism, whereas that obtained during the slow recovery phase resembled previously reported voltage-dependent steady state inactivation (f infinity) curve. These results indicate that the fast and slow phases of recovery represent the removal of Ca2(+)-mediated and voltage-dependent isi inactivation, respectively. The presence of Ca2(+)-mediated inactivation via steady state Ca2+ inflows was also suggested.  相似文献   

2.
OBJECTIVE: The purpose of this study was to investigate the properties of the slow component of the delayed rectifier potassium current (I(Ks)) in myocytes isolated from undiseased human left ventricles. METHODS: The whole-cell configuration of the patch-clamp technique was applied in 58 left ventricular myocytes from 15 hearts at 37 degrees C. Nisoldipine (1 microM) was used to block inward calcium current (I(Ca)) and E-4031 (1-5 microM) was applied to inhibit the rapid component of the delayed rectifier potassium current (I(Kr)). RESULTS: In 31 myocytes, an E-4031 insensitive, but L-735,821 and chromanol 293B sensitive, tail current was identified which was attributed to the slow component of I(K) (I(Ks)). Activation of I(Ks) was slow (tau=903+/-101 ms at 50 mV, n=14), but deactivation of the current was relatively rapid (tau=122.4+/-11.7 ms at -40 mV, n=19). The activation of I(Ks) was voltage independent but its deactivation showed clear voltage dependence. The deactivation was faster at negative voltages (about 100 ms at -50 mV) and slower at depolarized potentials (about 300 ms at 0 mV). In six cells, the reversal potential was -81.6+/-2.8 mV on an average which is close to the K(+) equilibrium potential suggesting K(+) as the main charge carrier. CONCLUSION: In undiseased human ventricular myocytes, I(Ks) exhibits slow activation and fast deactivation kinetics. Therefore, in humans I(Ks) differs from that reported in guinea pig, and it best resembles I(Ks) described in dog and rabbit ventricular myocytes.  相似文献   

3.
OBJECTIVES: The aim of the present study was to compare the apico-basal distribution of ion currents and the underlying ion channel proteins in canine and human ventricular myocardium. METHODS: Ion currents and action potentials were recorded in canine cardiomyocytes, isolated from both apical and basal regions of the heart, using whole-cell voltage clamp techniques. Density of channel proteins in canine and human ventricular myocardium was determined by Western blotting. RESULTS: Action potential duration was shorter and the magnitude of phase-1 repolarization was significantly higher in apical than basal canine myocytes. No differences were observed in other parameters of the action potential or cell capacitance. Amplitude of the transient outward K(+) current (29.6+/-5.7 versus 16.5+/-4.4 pA/pF at +65 mV) and the slow component of the delayed rectifier K(+) current (5.61+/-0.43 versus 2.14+/-0.18 pA/pF at +50 mV) were significantly larger in apical than in basal myocytes. Densities of the inward rectifier K(+) current, rapid delayed rectifier K(+) current, and L-type Ca(2+) current were similar in myocytes of apical and basal origin. Apico-basal differences were found in the expression of only those channel proteins which are involved in mediation of the transient outward K(+) current and the slow delayed rectifier K(+) current: expression of Kv1.4, KChIP2, KvLQT1 and MinK was significantly higher in apical than in basal myocardium in both canine and human hearts. CONCLUSIONS: The results suggest that marked apico-basal electrical inhomogeneity exists in the canine-and probably in the human-ventricular myocardium, which may result in increased dispersion, and therefore, cannot be ignored when interpreting ECG recordings, pathological alterations, or drug effects.  相似文献   

4.
OBJECTIVE: The purpose of the study was to investigate the properties of the delayed rectifier potassium current (IK) in myocytes isolated from undiseased human left ventricles. METHODS: The whole-cell configuration of the patch-clamp technique was applied in 28 left ventricular myocytes from 13 hearts at 35 degrees C. RESULTS: An E-4031 sensitive tail current identified the rapid component of IK (IKr) in the myocytes, but there was no evidence for an E-4031 insensitive slow component of IK (IKs). When nifedipine (5 microM) was used to block the inward calcium current (ICa), IKr activation was fast (tau = 31.0 +/- 7.4 ms, at +30 mV, n = 5) and deactivation kinetics were biexponential and relatively slow (tau 1 = 600.0 +/- 53.9 ms and tau 2 = 6792.2 +/- 875.7 ms, at -40 mV, n = 7). Application of CdCl2 (250 microM) to block ICa altered the voltage dependence of the IKr considerably, slowing its activation (tau = 657.1 +/- 109.1 ms, at +30 mV, n = 5) and accelerating its deactivation (tau = 104.0 +/- 18.5 ms, at -40 mV, n = 8). CONCLUSIONS: In undiseased human ventricle at 35 degrees C IKr exists having fast activation and slow deactivation kinetics; however, there was no evidence found for an expressed IKs. IKr probably plays an important role in the frequency dependent modulation of repolarization in undiseased human ventricle, and is a target for many Class III antiarrhythmic drugs.  相似文献   

5.
Summary Distinct differences exist in action potentials and ionic currents between rabbit, rat, and guinea pig ventricular myocytes. Data obtained at room temperature indicate that about half of the rabbit myocytes show prominent phase 1 repolarization and transient outward current. Action potentials in guinea pig ventricular myocytes resemble those from rabbit myocytes not exhibiting phase 1 repolarization; and guinea pig myocytes do not develop transient outward current. Rat ventricular action potentials are significantly shorter than those from rabbit and guinea pig ventricular myocytes. Unlike rabbit and guinea pig myocytes, rat ventricular myocytes also exhibit a prominent phase 1 and lack a well defined plateau phase during repolarization. All rat ventricular myocytes exhibit a transient outward current which can be best fitted by a double exponential relation. There are no significant differences between the amplitude, voltage dependence and inactivation kinetics of the inward calcium currents observed in rabbit, rat and guinea pig. The steady-state current-voltage relations between –120 mV and –20 mV, which mostly represent the inward rectifier potassium current are similar in rabbit and guinea pig. The amplitude of this current is significantly less in rat ventricular myocytes. The outward currents activated upon depolarization to between –10 and +50 mV are different in the three species. Only a negligible, or absent, delayed rectifier outward current has been observed in rabbit and rat; however, a relatively large delayed rectifier current has been found in guinea pig. These large interspecies variations in outward membrane currents help explain the differences in action potential configurations observed in rabbit, rat, and guinea pig.  相似文献   

6.
BACKGROUND: The ionic mechanism underlying the transient inward current (I(ti)), the current responsible for delayed afterdepolarizations (DADs), appears to be different in ventricular myocytes and Purkinje fibers. In ventricular myocytes, I(ti) was ascribed to a Na(+)-Ca(2+) exchange current, whereas in Purkinje fibers, it was additionally ascribed to a Cl(-) current and a nonselective cation current. If Cl(-) current contributes to I(ti) and thus to DADs, Cl(-) current blockade may be potentially antiarrhythmogenic. In this study, we investigated the ionic nature of I(ti) in single sheep Purkinje and ventricular myocytes and the effects of Cl(-) current blockade on DADs. METHODS AND RESULTS: In whole-cell patch-clamp experiments, I(ti) was induced by repetitive depolarizations from -93 to +37 mV in the presence of 1 micromol/L norepinephrine. In both Purkinje and ventricular myocytes, I(ti) was inward at negative potentials and outward at positive potentials. The anion blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) blocked outward I(ti) completely but inward I(ti) only slightly. The DIDS-sensitive component of I(ti) was outwardly rectifying, with a reversal close to the reversal potential of Cl(-) currents. Blockade of Na(+)-Ca(2+) exchange by substitution of extracellular Na(+) by equimolar Li(+) abolished the DIDS-insensitive component of I(ti). DIDS reduced both DAD amplitude and triggered activity based on DADs. Conclusions-In both Purkinje and ventricular myocytes, I(ti) consists of 2 ionic mechanisms: a Cl(-) current and a Na(+)-Ca(2+) exchange current. Blockade of the Cl(-) current may be potentially antiarrhythmogenic by lowering DAD amplitude and triggered activity based on DADs.  相似文献   

7.
With the advent of techniques to isolate large numbers of single adult mammalian ventricular myocytes, it has become possible to determine whether, as a result of the different pressure loading of the right and left ventricles (RV and LV), RV and LV myocytes differ in electromechanical properties. We studied the morphology, contraction and electrophysiology of the L-type slow inward calcium current (Isi) in isolated adult feline RV and LV myocytes. The maximum width of LV myocytes was slightly greater than for RV myocytes (25.9 +/- 7.0 microns vs. 25.1 +/- 7.9 microns, P = 0.05), but RV and LV myocytes did not differ significantly in maximum length or two-dimensional surface area. RV and LV myocytes did not differ significantly in the extent of shortening or rates of shortening and relaxation. The voltage dependence of activation and inactivation and the time course of activation and recovery from inactivation of Isi also did not differ significantly between RV and LV myocytes. We conclude that despite the different pressure loads on the RV and LV, single myocytes from either ventricle have similar physiologic properties.  相似文献   

8.
Slow inward current and cardiac arrhythmias   总被引:2,自引:0,他引:2  
The slow inward current contributes to the normal electrical and contractile activity of several cardiac and vascular tissues and also may mediate the electrical abnormalities responsible for certain cardiac arrhythmias. The slow inward current differs from the fast inward sodium current in that it is carried primarily by calcium rather than sodium, requires a more positive level of membrane potential to be activated, has slower activation and inactivation kinetics, is responsible for normal depolarization in sinus and atrioventricular (AV) nodal cells and is blocked by a rather specific group of agents that includes verapamil, diltiazem and nifedipine. Recent data suggest that slow-channel openings occur in bursts, separated by silent periods, and that less negative membrane potentials and beta-adrenergic stimulation increase the probability that the channels will open. Inactivation of the channels is associated with a lower probability of channel opening. Slow-channel blocking agents such as verapamil, diltiazem and nifedipine appear to bind to activated, rather than rested, slow channels. Therefore, their effects are more prominent at faster pacing rates and at less negative membrane potentials. Clinically occurring cardiac arrhythmias dependent on the slow inward current include primarily sinus and AV nodal reentry and reciprocating tachycardia in the Wolff-Parkinson-White syndrome when one of the pathways incorporates the AV node. Damaged atrial, ventricular and specialized tissue also can generate slow response-mediated reentry or forms of automaticity that may be clinically important under certain circumstances.  相似文献   

9.
OBJECTIVE: It was the aim of our study to describe repolarizing currents in ventricular myocytes isolated from children with tetralogy of Fallot. This is the first report on outward currents in ventricular myocytes from children. METHODS: Ventricular myocytes were isolated from tissue samples of the outflow tract of the right ventricle which were obtained during corrective surgery of tetralogy of Fallot. Action potentials and whole-cell currents were recorded with the patch clamp technique at a temperature of 36-37 degrees C. RESULTS: The mean resting potential was -71.7 +/- 1.92 mV, action potential amplitude was 110 +/- 2.96 mV and action potential duration at 90% repolarization was 794 +/- 99.5 ms (n = 12). In four out of 12 myocytes early afterdepolarizations (EADs) were observed. Upon hyperpolarization Ba(2+)-sensitive inward currents similar to the inward rectifier current (IKl) could be observed. The current density at -120 mV was -22.8 +/- 2.47 pA/pF (n = 14). A transient outward current (Itol) could be recorded in all myocytes studied, the current density varied from 0.3 to 8.6 pA/pF with a mean of 3.77 +/- 0.47 pA/pF at +40 mV (n = 38). Recovery of Itol from inactivation was fast (70% recovery within 100 ms), rate-dependent reduction amounted to 38.2% at 4 Hz. A delayed rectifier current was seen in only two out of 38 myocytes (rapid component IKr). CONCLUSIONS: The electrophysiological characteristics of right ventricular myocytes isolated from children with tetralogy of Fallot resemble in most cases subendocardial myocytes from adults. The most prominent difference is a fast recovery from inactivation as well as a small rate dependent reduction of Itol. The observed EADs may have clinical implications.  相似文献   

10.
The slow inward calcium currents were compared in rat and guinea pig heart using enzymatically dissociated, single ventricular cells. A single electrode voltage clamp was used, in which current and voltage were sampled separately using a time-sharing method. Spatial homogeneity of membrane potential during peak slow inward calcium current was assessed by measuring the potential with two microelectrodes 50 micron apart; the potentials were within 3 mV of each other. Peak current-voltage relations for slow inward calcium currents were similar for the two species, but the individual currents showed a faster time course of inactivation and a slower time course of recovery from inactivation for rat, compared with guinea pig. The potassium current blockers 4-aminopyridine and tetraethylammonium chloride did not produce significant effects on the net membrane currents recorded at the holding potentials (-50 to -40 mV) used in this study. The underlying mechanism for the inactivation of the slow inward calcium currents was explored using a double pulse procedure. In both rat and guinea pig heart cells prepulses to very positive potentials were associated with a partial restoration of the slow inward calcium current in the following test pulse. In addition, internal ethylene glycol-bis N,N,N',N'-tetraacetic acid or substitution of barium for calcium slowed the rate of inactivation of the slow inward calcium current in rat heart cells. Calcium activation of nonspecific currents was thought less likely to have produced these results due to the lack of effect of depolarizing prepulses on hyperpolarizing test pulses. A calcium-dependent component of inactivation may be responsible for the differences observed in both the inactivation and the recovery time courses of the slow inward calcium current in these species.  相似文献   

11.
Action potentials of premature beats in ventricular muscle fibers showed a transient prolongation of duration as well as an increase in second depolarization of the plateau phase when the preceding diastolic intervals were progressively shortened. These changes were abolished by manganese ions. Voltage clamp experiments also disclosed a transient increase in slow inward current in premature excitations, of which time course was very similar to that in action potential changes. These results suggested that prolongation of action potential durations was mainly brought about by changes in slow inward current and this was partly related to the characteristics of recovery from inactivation of this current. An increase of slow inward current produced depressed conduction on the subsequent beat and it also shared the effects to extend the areas of slow response. These effects may accelerate the occurrence of re-entry.  相似文献   

12.
Spontaneous release of calcium from the sarcoplasmic reticulum leads to delayed afterdepolarizations which may represent an arrhythmogenic mechanism in the intact heart. The current underlying delayed afterdepolarizations is the transient inward current, but how this is triggered by a spontaneous rise in cytoplasmic calcium concentration is a matter of debate. We have investigated this by rapid application of caffeine to isolated guinea-pig cardiac myocytes, before and after drive train-induced aftercontractions. Mean (+/- s.e.m.) sarcoplasmic reticulum content reduced from 85 +/- 11 micromol/l accessible cell volume to 53 +/- 9 micromol/l accessible cell volume (n=11) during the course of the aftercontraction. The charge movement expected to result from extrusion of this calcium via the sodium-calcium exchanger was 70.1 +/- 5.4 pC, compared with charge measured during the transient inward current of 70.1 +/- 10.8 pC in the same cells (P=0.9969). Rapid inhibition of the sodium-calcium exchanger, by replacement of the superfusate with a sodium and calcium free solution between the end of the drive train and the aftercontraction, completely abolished the transient inward current (from 90.4 +/- 10.2 pA inward current to 23.8 +/- 14.9 pA outward current, P<0.001). We conclude that the transient inward current in this species is explained entirely by sodium-calcium exchange current without the need to invoke other calcium-activated conductances.  相似文献   

13.
This review focuses mainly on studies in non-ischemic animal models of heart failure. These animals develop ventricular arrhythmias, mostly non-sustained ventricular tachycardia, and often die suddenly. Clinical studies suggest that sudden death is due to ventricular tachycardia or fibrillation in about 50% of cases, the other half to bradyarrhythmias or electromechanical dissociation. Electrophysiologic changes in heart failure are not confined to the ventricles: the intrinsic sinus rate is reduced due to a downregulation of If and sensitivity to acetylcholine is enhanced by upregulation of the muscarinic receptor. Reduction of heart rate may be a protective mechanism since at rapid rates contractility is reduced and the likelihood for triggered activity due to delayed afterdepolarizations is enhanced. The beneficial effect of beta-adrenergic blockade in patients may be partly due to the reduction in sinus rate. Although the results of different studies often vary, the most consistent electrophysiological changes in the ventricles are prolongation of the action potential, especially at slow rates, a reduction in the transient outward current Ito, the rapid and slow components of the delayed rectifier Ikr and Iks, and the inward rectifier Ik1. Abnormalities in intracellular calcium handling play a major role in the genesis of delayed afterdepolarizations. Triggered activity based on delayed afterdepolarizations has been demonstrated in failing myocardium and are caused by spontaneous release of calcium from the sarcoplasmic reticulum (SR), especially in the presence of noradrenaline. Three factors combine to the enhanced propensity for the occurrence of delayed afterdepolarizations: (1) increased activity of the Na/Ca exchanger, (2) a reduced inward rectifier, (3) residual beta-adrenergic responsiveness required to raise the reduced sarcoplasmic calcium content to a level where spontaneous calcium release occurs. Early afterdepolarizations have also been demonstrated, especially in human myocytes from failing hearts in the presence of noradrenaline. Mapping experiments have shown that the ventricular arrhythmias are mainly due to non-reentrant mechanisms, most likely triggered activity based on delayed afterdepolarizations.  相似文献   

14.
We reinvestigated the issue of whether l-palmitoylcarnitine inhibits the Na/K pump in the heart. The effects of l-palmitoylcarnitine or ouabain on the Na/K pump current were studied with the voltage-clamp technique in isolated guinea-pig ventricular myocytes. In myocytes bathed in Tyrode's solution, l-palmitoylcarnitine shifted the current-voltage relation inward at all potentials between -80 and 20 mV. the "U"-shaped difference current seen in l-palmitoylcarnitine was maximal at -30 mV and declined at potentials more positive and negative than this. Under conditions that minimized time-dependent currents, ouabain or l-palmitoylcarnitine shifted membrane current inward in the presence of 5.4 mM extracellular potassium. Reduction of extracellular potassium to 0 mM for 2 min also shifted membrane current inward. When extracellular potassium was returned to 5.4 mM, the intracellular sodium that had accumulated was extruded and a transient outward current was generated as a result of Na/K pump stimulation. Ouabain or l-palmitoylcarnitine reversibly suppressed this transient outward current and reduced the rate constant for the decline of this current. The ability of l-palmitoylcarnitine to imitate the actions of ouabain on membrane current and on the transient outward current indicates that this amphiphile inhibits the Na/K pump current in guinea-pig ventricular myocytes. This results is consistent with the suppression by l-palmitoylcarnitine of the activity of Na/K ATPase in cardiac sarcolemmal vesicles.  相似文献   

15.
The ionic mechanisms of slow recovery of cardiac excitability and rate-dependent activation failure were studied in single, enzymatically dissociated guinea pig ventricular myocytes and in computer simulations using a modified version of the Beeler and Reuter model for the ventricular cell. On the basis of our results, we developed a simplified analytical model for recovery of cell excitability during diastole. This model was based on the equations for current distribution in a resistive-capacitive circuit. A critical assumption in the model is that, in the voltage domain of the subthreshold responses, the sodium and calcium inward currents do not play a significant role, and only the two potassium outward currents, the delayed rectifier (IK) and the inward rectifier, are operative. The appropriate parameters needed to numerically solve the analytical model were measured in the guinea pig ventricular myocyte, as well as in the Beeler and Reuter cell. The curves of recovery of excitability and the rate-dependent activation patterns generated by numerical iteration of the analytical model equations closely reproduced the experimental results. Our analysis demonstrates that slow deactivation of the delayed rectifier current determines the observed variations in excitability during diastole, whereas the inward rectifier current determines the amplitude and shape of the subthreshold response. Both currents combined are responsible for the development of Wenckebach periodicities in the ventricular cell. The overall study provides new insight into the ionic mechanisms of rate-dependent conduction block processes and may have important clinical implications as well.  相似文献   

16.
Long QT syndrome (LQTS) type 3 (LQT3), typified by the DeltaKPQ mutation (LQT3 mutation in which amino acid residues 1505 to 1507 [KPQ] are deleted), is caused by increased sodium entry during the action potential plateau resulting from mutation-altered inactivation of the Na(v)1.5 channel. Although rare, LQT3 is the most lethal of common LQTS variants. Here we tested the hypothesis that cellular electrical dysfunction, caused not only by action potential prolongation but also by mutation-altered Na(+) entry, distinguishes LQT3 from other LQTS variants and may contribute to its distinct lethality. We compared cellular electrical activity in myocytes isolated from mice heterozygous for the DeltaKPQ mutation (DeltaKPQ) and myocytes from wild-type littermates. Current-clamp pause protocols induced rate-dependent spontaneous diastolic activity (delayed after depolarizations) in 6 of 7 DeltaKPQ, but no wild-type, myocytes (n=11) tested. Voltage-clamp pause protocols that independently control depolarization duration and interpulse interval identified a distinct contribution of both depolarization duration and mutant Na(+) channel activity to the generation of Ca(i)(2+)-dependent diastolic transient inward current. This was found at rates and depolarization durations relevant both to the mouse model and to LQT3 patients. Flecainide, which preferentially inhibits mutation-altered late Na(+) current and is used to treat LQT3 patients, suppresses transient inward current formation in voltage-clamped DeltaKPQ myocytes. Our results demonstrate a marked contribution of mutation-altered Na(+) entry to the incidence of pause-dependent spontaneous diastolic activity in DeltaKPQ myocytes and suggest that altered Na(+) entry may contribute to the elevated lethality of LQT3 versus other LQTS variants.  相似文献   

17.
The ionic conductance of cultured rat glomerulosa cells has been studied using the whole cell variant of the patch-clamp technique. We have identified and partially characterized three currents: a transient outward current, a slow outward current, and a slow inward current. The transient outward current activated rapidly and then inactivated slowly on maintained depolarization. Activation was initiated at -30 mV, and zero current was seen at -60 to -50 mV. The slow outward current did not inactivate with time and was initiated around 0 mV; its zero current voltage was difficult to evaluate. The two outward currents were present in different proportions, which explains the different time course of the total outward current from one cell to another. A slow inward current was also found which activated near -30 mV and reached its reversal potential between 80 and 100 mV. This current was blocked by Co2+, increased with [Ca2+]o, and was insensitive to Na+-free external medium. ACTH, a potent stimulant of steroid output, was found to block the transient outward current, but was ineffective on the slow outward current and the slow inward current. Tetraethylammonium and 4-aminopyridine, K+ channel inhibitors, also blocked the transient outward current.  相似文献   

18.
OBJECTIVE: To determine the characteristics of a TTX-sensitive Ca(2+) current that occurred only following remodelling after myocardial infarction in Wistar rat. METHODS: Using the whole-cell patch-clamp technique, we studied ionic inward current in myocytes isolated from four different ventricular regions of control Wistar rat hearts, or from hearts 4 to 6 months after ligation of the left coronary artery. Inward current characteristics were also analysed in Xenopus laevis oocytes that heterologously expressed the human sodium channel alpha-subunit Nav1.5. The effects of oxidative stress by hydrogen peroxide or tert-butyl-hydroxyperoxide as well as those of PKA-dependent phosphorylation, which partly mimic the pathological conditions, were investigated on control cardiomyocytes and Nav1.5-expressing oocytes. RESULTS: In Na-free solution, a low-threshold, tetrodotoxin-sensitive inward current was found in 20 out of 78 cells isolated from 16 post-myocardial infarcted (PMI) cardiomyocytes but not in cardiomyocytes from young and sham rat hearts. This current exhibited kinetics and pharmacological properties similar to the I(Ca(TTX)) current previously reported. I(Ca(TTX))-like current was critically dependent on extracellular Na(+) and was reduced by micromolar Na(+) concentrations. Neither in normal rat cardiomyocytes nor in Nav1.5-expressing oocytes could a I(Ca(TTX))-like current be elicited in Na(+)-free extracellular solution, even after oxidative stress or PKA-dependent phosphorylation. CONCLUSIONS: Our data suggest that I(Ca(TTX))-like current in PMI myocytes does not arise from classical Na(+) channels modified by oxidative stress or PKA phosphorylation and most probably represents a different Na(+) channel type re-expressed in some cells after remodelling.  相似文献   

19.
The effect of temperature reduction on monkey ventricular action potentials has been studied. Under this condition the genesis of a notch separating the AP spike from the AP plateau has been related either to a conduction phenomenon or to a delay in the activation of the slow inward current. It is observed that the development of a notch at the beginning of the plateau depends both on the presence of a large outward, repolarising current, carried by chloride and/or potassium ions, and on the presence of a slow inward calcium current large enough to depolarise the membrane as the chloride current deactivates.  相似文献   

20.
Gender disparities in ECG variables and susceptibility to arrhythmia exist. The basis of these sex-related distinctions in cardiac electrophysiology has been extensively studied in various species, but is virtually unexplored in humans. The aim of this study was to clarify the cellular basis of electrophysiological gender disparities in human cardiac myocytes. Human midmyocardial left ventricular myocytes were isolated from explanted hearts of male and female patients in end-stage heart failure at the time of cardiac transplantation. The action potentials, sarcolemmal ion currents, and susceptibility to the generation of early afterdepolarizations were studied using whole-cell patch-clamp methodology. The functional effects of gender disparities in sarcolemmal ion currents were assessed by computer simulations using the Priebe-Beuckelmann or the ten Tusscher-Noble-Noble-Panfilov human ventricular cell models. Female myocytes had significantly longer action potentials and greater susceptibility to early afterdepolarizations than male myocytes. All other action potential parameters (resting membrane potential, amplitude, plateau level, upstroke velocity, maximal velocity of phase-1 and phase-3 repolarization) had similar values for both genders. In female myocytes, the transient outward potassium current (I(to1)) tended to be smaller, while the L-type calcium current (I(Ca,L)) and quasi-steady state current (I(QSS)) tended to be larger. Computer simulations showed that these subtle differences in sarcolemmal ion currents may conspire to cause the observed gender disparities in action potential properties. Female failing myocytes have longer action potentials and a greater susceptibility to early afterdepolarizations than male failing myocytes. These gender disparities may be due to slightly larger depolarizing I(Ca,L) in conjunction with slightly smaller repolarizing I(QSS) and I(to1) in female myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号