首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

To determine interhemispheric differences and effect of postmenstrual age (PMA), height, and gender on somatosensory evoked magnetic fields (SEFs) from the primary (SI) and secondary (SII) somatosensory cortices in healthy newborns.

Methods

We recorded SEFs to stimulation of the contralateral index finger (right in 46 and left in 12) healthy fullterm newborns and analyzed the magnetic responses with equivalent current dipoles.

Results

Activity from both the SI and SII was consistently detectable in the contralateral hemisphere of the newborns during quiet sleep. No significant interhemispheric differences existed in SI or SII response peak latencies, source strengths, or location (n = 8, quiet sleep). SI or SII response peak latency or source strength were not significantly affected by PMA, height, or gender.

Conclusions

During the neonatal period (PMA 37–44 weeks), activity from the contralateral SI and SII can be reliably evaluated with MEG. The somatosensory responses are similar in the left and right hemispheres and no corrections for exact PMA, height, or gender are necessary for interpreting the results. However, the evaluation should be conducted in quiet sleep.

Significance

The reproducibility of the magnetic SI and SII responses suggests clinical applicability of the presented MEG method.  相似文献   

2.
A remarkable preservation of sensorimotor function is observed in patients with refractory epilepsy who were treated by hemispherectomy. Cortical regions in the remaining hemisphere or contralateral subcortical region contribute to the residual sensorimotor function. Somatosensory evoked field (SEF) is used to investigate the residual sensory function in hemispherectomized patients. The SEFs are usually recorded with magnetoencephalography (MEG). The objective is to investigate the ipsilateral cortical regions associated with residual sensory function in hemispherectomized patients using somatosensory evoked field techniques. Six patients with anatomical hemispherectomy were included. Ipsilateral and contralateral sensory functions were assessed by physical examination. Somatosensory evoked fields to electrical stimulation of the bilateral median nerves were recorded by MEG in the hemispherectomized patients and six control subjects. The stimulus intensity was adjusted to the minimum threshold that elicited a thumb twitch. The presumed neuronal source was identified as the equivalent current dipole. Six patients demonstrated different degrees of residual sensory function. Three patients had somatosensory evoked field activation in the ipsilateral cortex upon electrical stimulation of the hemiplegic hand. In these patients the locations of the ipsilateral sensorimotor cortex activation were in the primary somatosensory cortex (SI). The latency of the reliable somatosensory evoked field after stimulation of the median nerve was significantly longer for responses from the hemiplegic side compared with responses to stimulation of the median nerve from the normal side. In conclusion, ipsilateral sensory function has a time-locked relation to the cortical electromagnetic activation in the SI area of hemispherectomized patients.  相似文献   

3.
ObjectiveTo evaluate the maturation of tactile processing by recording somatosensory evoked magnetic fields (SEFs) from healthy human subjects.MethodsSEFs to tactile stimulation of the left index finger were measured from the contralateral somatosensory cortex with magnetoencephalography (MEG) in five age groups: newborns, 6- and 12–18-month-olds, 1.6–6-year-olds, and adults. The waveforms of the measured signals and equivalent current dipoles (ECDs) were analyzed in awake and sleep states in order to separate the effects of age and vigilance state on SEFs.ResultsThere was an orderly, systematic change in the measured and ECD source waveforms of the initial cortical responses with age. The broad U-shaped response in newborns (M60) shifted to a W-shaped response with emergence of a notch by 6 months of age. The adult-type response with M30 and M50 components was present by 2 years. The ECDs of M60 and M30 were oriented anteriorly and that of M50 posteriorly. These maturational changes were independent of vigilance state.ConclusionsThe most significant maturation of short latency cortical responses to tactile stimulation takes place during the first 2 years of life.SignificanceThe maturational changes of somatosensory processing can noninvasively be evaluated with MEG already in infancy.  相似文献   

4.
目的:研究急性脑梗死患者体感皮层中枢和听觉皮层中枢脑磁图(MEG)变化特征。方法:对15例急性脑梗死患者于发病后3-4周进行体感诱发磁场(SEFs)和听觉诱发磁场(AEFs)检测,同时检测健康志愿者作为对照。SEFs电刺激部位为腕部正中神经处,电流脉冲宽度0.3ms,刺激间隔0.5s。AEFs采用双耳纯音刺激,频率2KHz,声音强度90dB,刺激间隔ls,持续时间8ms,脑磁图检查后进行MRI超薄扫描。结果:SEFs的最主要波峰为M20,其ECD均位于体感皮层中枢,AEFs为M100,位于两侧颞横回。两侧ECD位置三维不对称性由(△X2+△Y2+△Z2)1-2表示,SEFs和AEFs测定患者组均较正常对照组不对称性增大。结论:MEG可灵敏地检测出急性脑梗死患者皮层中枢功能损伤。  相似文献   

5.
Cerebral palsy (CP) is characterized by difficulty in control of movement and posture due to brain damage during early development. In addition, tactile discrimination deficits are prevalent in CP. To study the function of somatosensory and motor systems in CP, we compared the reactivity of sensorimotor cortical oscillations to median nerve stimulation in 12 hemiplegic CP children vs. 12 typically developing children using magnetoencephalography. We also determined the primary cortical somatosensory and motor representation areas of the affected hand in the CP children using somatosensory‐evoked magnetic fields and navigated transcranial magnetic stimulation, respectively. We hypothesized that the reactivity of the sensorimotor oscillations in alpha (10 Hz) and beta (20 Hz) bands would be altered in CP and that the beta‐band reactivity would depend on the individual pattern of motor representation. Accordingly, in children with CP, suppression and rebound of both oscillations after stimulation of the contralateral hand were smaller in the lesioned than intact hemisphere. Furthermore, in two of the three children with CP having ipsilateral motor representation, the beta‐ but not alpha‐band modulations were absent in both hemispheres after affected hand stimulation suggesting abnormal sensorimotor network interactions in these individuals. The results are consistent with widespread alterations in information processing in the sensorimotor system and complement current understanding of sensorimotor network development after early brain insults. Precise knowledge of the functional sensorimotor network organization may be useful in tailoring individual rehabilitation for people with CP. Hum Brain Mapp 35:4105–4117, 2014. © 2014 Wiley Periodicals, Inc .  相似文献   

6.
Objective: The primary aim of this exploratory investigation was to determine if there are differences in cortical activation of children with spastic diplegic cerebral palsy (CP) and typically developing children during gait. Methods: Functional near-infrared spectroscopy was used to measure the concentration of oxygenated hemoglobin that was present in the supplementary motor area, pre-central gyrus, post-central gyrus and superior parietal lobule as the children walked on a treadmill. A sagittal plane video was concurrently collected and later digitized to quantify the temporal gait variations. Results: (1) The children with CP had an increased amount of activation in the sensorimotor cortices and superior parietal lobule during gait, (2) the children with CP had a greater amount of variability or error in their stride time intervals, and (3) an increased amount of error in the temporal gait kinematics was associated with an increased amount of activity across the cortical network. Conclusion: Our results suggest that the perinatal damage and subsequent neural reorganization that occurs with spastic diplegic CP may impact the functional cortical activity for controlling gait. Furthermore, our results imply the increased cortical activity of the somatosensory cortices and superior parietal cortices may underlie the greater amount of error in the temporal gait kinematics.  相似文献   

7.
OBJECTIVE: To elucidate the temporal profile of interactions between sensory information from both hands in the somatosensory cortex. METHODS: Somatosensory evoked fields (SEFs), generated by stimulation applied to the right index finger after a preceding stimulation to the left index finger, were recorded using a whole head-type magnetoencephalography (MEG). The paired electrical stimuli were applied with a stimulation onset asynchrony (SOA) of 50, 100, 200, 300, or 400 ms. RESULTS: The mean SEF intensities in the primary somatosensory area (SI) of five subjects, which were evoked approximately 40 ms after the latter of the paired stimuli, were not significantly smaller than that evoked in the control condition when only the right finger was stimulated. In contrast, SEFs in the secondary somatosensory area (SII), generated approximately 100 ms after the stimuli, were suppressed when the paired stimuli were applied at an SOA of 100 ms (P<0.05, t test). In addition, SEFs at approximately 150 ms after the stimuli were significantly suppressed at SOAs of 50, 100 (P<0.05), 200, and 300 ms (P<0.1). CONCLUSION: Within a time window of approximately 300 ms, sensory information from the left finger significantly affected the SEFs generated by sensory inputs from the right finger. This time window may be required for the integration of sensory input.  相似文献   

8.
Somatosensory evoked fields were recorded to determine the effects of movement and attention on high-frequency oscillations during active finger movements of the ipsilateral and contralateral sides in response to electrical stimulation of the median nerve. A whole-scalp neuromagnetometer was used to record somatosensory evoked fields from eight subjects following electric median nerve stimulation at the wrist. The following three sessions were performed: (1). rest, (2). movement of fingers on the ipsilateral in response to stimulation and (3). movement of fingers on the contralateral in response to stimulation. The somatosensory evoked fields with a wide-bandpass (0.1-1000 Hz) were recorded. High-frequency oscillations and N20m were separated by subsequent high-pass (> 300 Hz) and low-pass (< 300 Hz) filtering. The maximum amplitude of high-frequency oscillations decreased during finger movements accompanying a decrease in somatosensory N20m dipole strength. Activation of the motor cortex appeared to suppress both the amplitude of high-frequency oscillations and the N20m dipole strength.  相似文献   

9.
Purpose: Magnetoencephalography (MEG) provides source localization of interictal spikes. We use total intravenous anesthesia (TIVA) with propofol to immobilize uncooperative children. We evaluate the effect of TIVA on interictal spikes in children who have intractable epilepsy with or without MRI lesions. Methods: We studied 28 children (3–14 years; mean, 6.6). We intravenously administered propofol (30–60 μg/kg/min) to record MEG with simultaneous EEG. We evaluated MEG spike sources (MEGSSs). We compared spikes on simultaneous EEG under TIVA with those on scalp video-EEG without TIVA. Results: There was a significant decrease in frequent spikes (10 patients, 36%) on simultaneous EEG under TIVA compared to those (22 patients, 79%) on scalp video-EEG without TIVA (P < 0.01). MEGSSs were present in 21 (75%) of 28 patients. Clustered MEGSSs occurred in 15 (83%) of 18 lesional patients but in 3 (30%) of 10 nonlesional patients (P < 0.05). MEGSSs were more frequently absent in nonlesional (6 patients, 60%) than lesional (one patient, 5%) patients (P < 0.01). Thirteen patients with MRI and/or histopathologically confirmed neuronal migration disorder most frequently showed clustered MEGSSs (11 patients, 85%) compared to those of other lesional and nonlesional patients. Conclusion: Propofol-based TIVA reduced interictal spikes on simultaneous EEG. TIVA for MEG still had utility in identifying spike sources in a subset of pediatric patients with intractable epilepsy who were uncooperative and surgical candidates. In lesional patients, MEG under TIVA frequently localized the clustered MEGSSs. Neuronal migration disorders were intrinsically epileptogenic and produced clustered MEGSSs under TIVA. Nonlesional patients often had no MEGSS under TIVA.  相似文献   

10.
OBJECTIVES: We examined the relation between somatosensory N20m primary responses and high-frequency oscillations (HFOs) after thumb and middle finger stimulation. METHODS: Somatosensory evoked fields (SEFs) from 12 subjects were measured following electric stimulation of the thumb and middle finger. SEFs were recorded with a wide bandpass (3-2000 Hz) and then N20m and HFOs were separated by subsequent 3-300 and 300-900 Hz bandpass filtering. RESULTS: The N20m peak-to-peak amplitude did not differ significantly between thumb and middle finger SEFs. In contrast, HFOs had a significantly larger number of peaks and were higher in the maximum amplitude and the total amplitude after thumb stimulation than after middle finger stimulation. CONCLUSIONS: Our present data demonstrate a different relation between N20m and HFOs after thumb and middle finger stimulation. In view of the fact that the human thumb has uniquely evolved functionally and morphologically, the somatosensory information from the thumb will be processed differently for a fine motor control. We speculate that HFOs are generated by inhibitory interneurons in layer 4 in area 3b. Thus, enhanced activity of interneurons reflected by high amplitude HFOs exerts stronger inhibition on downstream pyramidal cells in area 3b for thumb stimulation.  相似文献   

11.
目的:研究急性脑梗死患者脑磁图(magnetoencephalography,MEG)体感诱发磁场发生源等价电流偶极子(equivalentcurrentdipole,ECD)强度变化特征。方法:对15例急性脑梗死患者于发病后3~4周进行体感诱发磁场(SEFS)检测;同时检测16例健康志愿者作为对照。电刺激部位为腕部正中神经处,电流脉冲宽度0.3ms,刺激间隔0.5s。SEFS波峰由ECD评估。结果:所有受检者SEFs的最基本波形为M20,急性脑梗死患者患侧ECD强度减小(P<0.01)。结论:MEG可灵敏地检测出急性脑梗死患者体感皮层中枢功能损伤。  相似文献   

12.
We investigated whether attention to different stimulus attributes (location, intensity) has different effects on the activity of the secondary (SII) somatosensory cortex. Tactile stimuli were applied to the left index finger and somatosensory evoked fields (SEFs) were recorded using a whole-head magnetoencephalography (MEG) system. Two oddball paradigms with stimuli varying in location or intensity were performed in an ignore and an attend condition. Brain sources were estimated by magnetic source imaging. No attention effect was observed for the primary SI area. However, attention enhanced SII activity bilaterally from 55 to 130 ms by 52% in the spatial and 64% in the intensity discrimination task. SII attentional enhancement was very similar in both paradigms and occurred both for deviants and standards.  相似文献   

13.
《Clinical neurophysiology》2014,125(5):1021-1029
ObjectiveAge-related changes are well documented in the primary somatosensory cortex (SI). Based on previous somatosensory evoked potential studies, the amplitude of N20 typically increases with age probably due to cortical disinhibition. However, less is known about age-related change in the secondary somatosensory cortex (SII). The current study quantified age-related changes across SI and SII mainly based on oscillatory activity indices measured with magnetoencephalography.MethodsWe recorded somatosensory evoked magnetic fields (SEFs) to right median nerve stimulation in healthy young and old subjects and assessed major SEF components. Then, we evaluated the phase-locking factor (PLF) for local field synchrony on neural oscillations and the weighted phase-lag index (wPLI) for cortico-cortical synchrony between SI and SII.ResultsPLF was significantly increased in SI along with the increased amplitude of N20m in the old subjects. PLF was also increased in SII associated with a shortened peak latency of SEFs. wPLI analysis revealed the increased coherent activity between SI and SII.ConclusionsOur results suggest that the functional coupling between SI and SII is influenced by the cortical disinhibition due to normal aging.SignificanceWe provide the first electrophysiological evidence for age-related changes in oscillatory neural activities across the somatosensory areas.  相似文献   

14.
We evaluated the effectiveness of the Multiple Signal Classification (MUSIC) algorithm by analysing pain-related somatosensory-evoked magnetic fields (SEFs) by 148-channel whole-head-type magnetoencephalography. MUSIC peaks of middle latency components were located around the primary somatosensory cortex (SI), contralateral to the stimulated finger. Long latency components were located around the bilateral secondary somatosensory cortices (SII) and cingulate gyri. Peaks at the SII and cingulate gyri were more prominent on very painful and moderately painful stimulation than on weak stimulation. The results were in very good agreement with results from single dipole estimation. These findings suggest that the MUSIC algorithm could be a useful tool for analysis of pain-related SEFs.  相似文献   

15.
Motor recovery after stroke requires continuous interaction of motor and somatosensory systems. Integration of somatosensory feedback with motor programs is needed for the automatic adjustment of the speed, range, and strength of the movement. We recorded somatosensory evoked fields (SEFs) to tactile finger stimulation with whole-scalp magnetoencephalography in 23 acute stroke patients at 1 week, 1 month, and 3 months after stroke to investigate how deficits in the somatosensory cortical network affect motor recovery. SEFs were generated in the contralateral primary somatosensory cortex (SI) and in the bilateral parietal opercula (PO) in controls and patients. In the patients, SI amplitude or latency did not correlate with any of the functional outcome measures used. In contrast, the contralateral PO (cPO) amplitude to the affected hand stimuli correlated significantly with hand function in the acute phase and during recovery; the weaker the PO activation, the clumsier the hand was. At 1 and 3 months, enhancement of the cPO activation paralleled the improvement of the hand function. Whole-scalp magnetoencephalography measurements revealed that dysfunction of somatosensory cortical areas distant from the ischemic lesion may affect the motor recovery. Activation strength of the PO paralleled motor recovery after stroke, suggesting that the PO area is an important hub in mediating modulatory afferent input to motor cortex.  相似文献   

16.
Aside from motor impairment, many children with unilateral cerebral palsy (CP) experience altered tactile, proprioceptive, and kinesthetic awareness. Sensory deficits are addressed in rehabilitation programs, which include somatosensory discrimination exercises. In contrast to adult stroke patients, data on brain activation, occurring during somatosensory discrimination exercises, are lacking in CP children. Therefore, this study investigated brain activation with functional magnetic resonance imaging (fMRI) during passively guided somatosensory discrimination exercises in 18 typically developing children (TD) (age, M = 14 ± 1.92 years; 11 girls) and 16 CP children (age, M = 15 ± 2.54 years; 8 girls). The demographic variables between both groups were not statistically different. An fMRI compatible robot guided the right index finger and performed pairs of unfamiliar geometric shapes in the air, which were judged on their equality. The control condition comprised discrimination of music fragments. Both groups exhibited significant activation (FDR, p < .05) in frontoparietal, temporal, cerebellar areas, and insula, similar to studies in adults. The frontal areas encompassed ventral premotor areas, left postcentral gyrus, and precentral gyrus; additional supplementary motor area (SMAproper) activation in TD; as well as dorsal premotor, and parietal operculum recruitment in CP. On uncorrected level, p < .001, TD children revealed more left frontal lobe, and right cerebellum activation, compared to CP children. Conversely, CP children activated the left dorsal cingulate gyrus to a greater extent than TD children. These data provide incentives to investigate the effect of somatosensory discrimination during rehabilitation in CP, on clinical outcome and brain plasticity.  相似文献   

17.
《Neurological research》2013,35(5):459-462
Abstract

Somatosensory maps were determined in three patients with hemimegalencephaly using magnetic resonance imaging (MRI) and magnetoencephalography (MEG). MRIs were characterized by thickened gray matter with clearly aberrant lamination patterns. Somatosensory Evoked Fields (SEFs), as measured by MEG, were absent from the affected hemisphere in the two patients with severe cortical lamination defects. The third patient presented with relatively preserved cortical lamination in the frontal lobe and clear cortical SEFs in this region, indicating somatotopical reorganization. These findings suggest that the presence and location of MEG-derived somatosensory maps reflect the severity of the cortical lamination defects in hemimegalencephaly. [Neurol Res 2002; 24: 459-462]  相似文献   

18.
ObjectiveTask-specific focal hand dystonia (tspFHD) is a movement disorder diagnosed in individuals performing repetitive hand behaviors. The extent to which processing anomalies in primary sensory cortex extend to other regions or across the two hemispheres is presently unclear.MethodsIn response to low/high rate and novel tactile stimuli on the affected and unaffected hands, magnetoencephalography (MEG) was used to elaborate activity timing and amplitude in the primary somatosensory (S1) and secondary somatosensory/parietal ventral (S2/PV) cortices. MEG and clinical performance measures were collected from 13 patients and matched controls.ResultsCompared to controls, subjects with tspFHD had increased response amplitude in S2/PV bilaterally in response to high rate and novel stimuli. Subjects with tspFHD also showed increased response latency (low rate, novel) of the affected digits in contralateral S1. For high rate, subjects with tspFHD showed increased response latency in ipsilateral S1 and S2/PV bilaterally. Activation differences correlated with functional sensory deficits (predicting a latency shift in S1), motor speed and muscle strength.ConclusionsThere are objective differences in the amplitude and timing of activity for both hands across contralateral and ipsilateral somatosensory cortex in patients with tspFHD.SignificanceKnowledge of cortical processing abnormalities across S1 and S2/PV in dystonia should be applied towards the development of learning-based sensorimotor interventions.  相似文献   

19.

Purpose

Cortical dysplasia (CD) is intrinsically epileptogenic. We hypothesize that CDs clinically emerging in the early developing brain tend to extend into multifocal or larger epileptic networks to pronounce intractability in contrast to CDs which clinically emerge at a later age.

Methods

We evaluated the spatial and temporal profiles of ictal-onset EEG patterns in children with histopathologically confirmed CD. We designated Group A as children with changing ictal-onset EEG patterns over time, and Group B without change. We compared seizure profiles, consecutive scalp video-EEGs (VEEGs), MRI, MEG, and surgical outcomes.

Results

We found 14 children consisting of 10 Group A patients (7 girls) and 4 Group B patients (all boys). Eight (80%) Group A patients had their seizure onset < 5 years while all Group B patients had seizure onset ? 5 years (p < .05). Changes of ictal onset EEG pattern in Group A consisted of bilateral (4 patients), extending (2); extending and bilateral (2); and generalized (2). We saw MRI lesions (6) and single clustered MEG spike sources (MEGSSs) in (5). Six patients underwent surgery before 15 years of age, and 4 of them attained seizure freedom. All 4 Group B patients had MRI lesions and single clustered MEGSSs. Three patients underwent surgery after 15 years of age. All 4 patients attained seizure freedom.

Conclusion

Ictal-onset EEG patterns change over time in children with early seizure onset and intractable epilepsy caused by CD. Younger epileptic children with CD more frequently have multifocal epileptogenic foci or larger epileptogenic foci. Early resection of CD, guided by MRI, MEG, and intracranial video EEG, resulted in seizure freedom despite changes in ictal-onset EEG patterns.  相似文献   

20.
The features of somatosensory (SEFs), auditory (AEFs), and visual evoked fields (VEFs) in healthy subjects and patients with brain diseases provide the basis for clinical investigations using magnetoencephalography (MEG). The SEFs provide clinically useful information to identify the central sulcus and somatotopic organization of the primary somatosensory cortex. Localization accuracy of the SEFs can be tested by cortical stimulation during surgery. Functional reorganization suggested by SEF studies must be verified by other modalities. The AEFs can localize the auditory cortex in the bilateral temporal lobes. Separation of bilateral activities is much clearer in AEFs than in auditory evoked potentials. Modulation of the interhemispheric differences of latency, amplitude, and source localization of AEFs can be used to evaluate auditory function in patients with intracranial lesions. Pattern reversal VEFs provide stable localization of the primary visual function. Separation of bihemispherical activities is the advantage of VEFs over visual evoked potentials. Investigation of VEFs provides objective evaluation of visual field deficits such as homonymous or bitemporal hemianopsia in patients with intracranial lesions. Evoked magnetic fields can provide useful diagnostic information. Such clinical findings, in turn, provides the opportunity to test the source estimation accuracy of MEG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号