首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was conducted to evaluate the top and bottom hardness of two composites cured using polymerizing units equipped with light-emitting diodes [LED] (LEDemetron; Elipar FreeLight, Coltolux LED) and one quartz-tungsten halogen device [QTH] (Optilux 501) under different exposure times (20, 40 and 60 sec). A matrix mold 5 mm in diameter and 2 mm in depth was made to obtain five disc-shaped specimens for each experimental group. The specimens were cured by one of the light-curing units (LCUs) for 20, 40 or 60 sec, and the hardness was measured with a Vickers hardness-measuring instrument (50 g/30 sec). Data were subjected to three-way ANOVA and Tukey's test (alpha = 0.05). LED LCUs were as effective as the QTH device for curing both composites. A significant increase in the microhardness values were observed for all light LCUs when the exposure time was changed from 20 sec to 40 sec. The Z250 composite showed hardness values that were usually higher than those of the Charisma composite under similar experimental conditions. LED LCUs are as efficient for curing composites as the QTH device as long as an exposure time of 40 sec or higher is employed. An exposure time of 40 sec is required to provide composites with a uniform and high Knoop hardness when LED light-curing units are employed.  相似文献   

2.
The new generation LED curing light units have significantly improved curing performance compared to first generation lights, and even some second generation LED curing light units. This study compared the curing performance of 10 new generation LED light curing units (FLASH-lite 1401, LE Demetron 1, Coltolux, Ultra-Lume 5, Mini LED, bluephase, Elipar FreeLight 2, Radii, Smartlite IQ and Allegro) for depth of cure against a high-powered halogen curing light unit (Optilux 501). Depth of cure measurements were utilized per the ANSI/ADA No 27 standard to detect differences between the lights at three time intervals (10, 20 and 40 seconds). A total of 660 samples were prepared (n=10/group). A full factorial ANOVA and Tukey's HSD test showed FLASH-lite 1401 performed significantly better than the other lights at 10- and 20-second time intervals (p<0.01). This study also demonstrated that an exposure time of 20 seconds or longer assures a better depth of cure, 40 seconds being the optimal polymerization time for all of the curing light units.  相似文献   

3.
OBJECTIVE: The aim of this study was to evaluate the degree of conversion and Vickers surface hardness of resin cement under a simulated ceramic restoration with 3 different curing units: a conventional halogen unit, a high-intensity halogen unit, and a light-emitting diode system. METHODS AND MATERIALS: A conventional halogen curing unit (Hilux 550) (40 s), a high-intensity halogen curing unit used in conventional and ramp mode (Optilux 501) (10 s and 20 s, respectively), and a light-emitting diode system (Elipar FreeLight) (20 s, 40 s) were used in this study. The dual-curing resin cement (Variolink II) was cured under a simulated ceramic restoration (diameter 5 mm, height 2 mm), and the degree of conversion and Vickers surface hardness were measured. For degree of conversion measurement, 10 specimens were prepared for each group. The absorbance peaks were recorded using the diffuse-reflection mode of Fourier transformation infrared spectroscopy. For Vickers surface hardness measurement, 10 specimens were prepared for each group. A load of 200 N was applied for 15 seconds, and 3 evaluations of each of the samples were performed. RESULTS: Degree of conversion achieved with Optilux 501 (20 s) was significantly higher than those of Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). For Vickers surface hardness measurement, Optilux 501 (20 s) produced the highest surface hardness value. No significant differences were found among the Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). CONCLUSION: The high-intensity halogen curing unit used in ramp mode (20 s) produced harder resin cement surfaces than did the conventional halogen curing unit, high-intensity halogen curing unit used in conventional mode (10 s) and light-emitting diode system (20 s, 40 s), when cured through a simulated ceramic restoration.  相似文献   

4.
This study evaluates the Knoop microhardness of resin composites cured with different light-emitting diode (LED) based light curing units (LCU) or with a conventional quartz-tungsten-halogen light (QTH). Ten experimental groups with 10 specimens each were used. The specimens were prepared by placing two light-cured resin composites with similar VITA shade A2-microhybrid Filtek Z250/3M ESPE and microfill Durafil VS/Heraeus Kulzer--in a 2.0 mm-thick disc shaped mold. The specimens were polymerized for 40 seconds with the use of one QTH LCU (Optilux 501/Kerr-Demetron) and four LED LCUs: Elipar FreeLight 1 Cordless LED (3M ESPE), Ultrablue II LED with cord (DMC), Ultrablue III LED cordless (DMC) and LEC 470 I (MM Optics). Knoop microhardness was determined at the top and bottom surfaces of the specimens 24 hours following curing. Microhardness values in the microhybrid resin composite group showed no statistically significant differences when cured with LED FreeLight 1 LCU and QTH LCU (p<0.05). The other LED devices evaluated in the study presented lower microhardness values in both surfaces (p<0.05) when compared to QTH. In the microfill resin composite group, no statistically significant differences were observed among all LCUs evaluated on the bottom surfaces (p<0.05). However, on the top surfaces, QTH presented the highest KHN values, and the LED devices presented similar results when compared with KHN values relative to each other (p<0.05).  相似文献   

5.
OBJECTIVES: This study examined the depth of cure and surface microhardness of Filtek Z250 composite resin (3M-Espe) (shades B1, A3, and C4) when cured with three commercially available light emitting diode (LED) curing lights [E-light (GC), Elipar Freelight (3M-ESPE), 475H (RF Lab Systems)], compared with a high intensity quartz tungsten halogen (HQTH) light (Kerr Demetron Optilux 501) and a conventional quartz tungsten halogen (QTH) lamp (Sirona S1 dental unit). METHODS: The effects of light source and resin shade were evaluated as independent variables. Depth of cure after 40 s of exposure was determined using the ISO 4049:2000 method, and Vickers hardness determined at 1.0 mm intervals. RESULTS: HQTH and QTH lamps gave the greatest depth of cure. The three LED lights showed similar performances across all parameters, and each unit exceeded the ISO standard for depth of cure except GC ELight for shade B1. In terms of shade, LED lights gave greater curing depths with A3 shade, while QTH and HQTH lights gave greater curing depths with C4 shade. Hardness at the resin surface was not significantly different between LED and conventional curing lights, however, below the surface, hardness reduced more rapidly for the LED lights, especially at depths beyond 3 mm. SIGNIFICANCE: Since the performance of the three LED lights meets the ISO standard for depth of cure, these systems appear suitable for routine clinical application for resin curing.  相似文献   

6.
This study compared the Vickers hardness of the top and bottom surfaces of two compomers (Compoglass F and Dyract AP) polymerized for 20 and 40 seconds with two different light curing systems. Five samples for each group were prepared using Teflon molds (9x2 mm) and were light-cured either with a conventional halogen lamp (Optilux 501) or LED light (LEDemetron I) for 20 or 40 seconds. After curing, all the samples were stored in distilled water for 24 hours at 37 degrees C. The Vickers hardness measurements were obtained from the top and bottom surfaces of each sample. ANOVA, Scheffé and t-test were used to evaluate the statistical significance of the results. For the top and bottom surfaces, the light curing systems and curing times tested showed no statistical difference, except for Optilux 501, which used 20 seconds for both compomers (p<0.05). There was no significant difference in the microhardness of both surfaces of Compoglass F and Dyract AP cured for either 20 or 40 seconds using LEDemetron I. With Optilux 501, the microhardness of samples cured for 40 seconds was significantly higher than 20 seconds (p<0.05).  相似文献   

7.
This study compared the ability of a variety of light sources and exposure modes to polymerize a dual-cured resin composite through ceramic discs of different thicknesses by depth of cure and Vickers microhardness (VHN). Ceramic specimens (360) (Empress 2 [Ivoclar Vivadent], color 300, diameter 4 mm, height 1 or 2 mm) were prepared and inserted into steel molds according to ISO 4049, after which a dual-cured composite resin luting material (Variolink II [Ivoclar Vivadent]) with and without self-curing catalyst was placed. The light curing units used were either a conventional halogen curing unit (Elipar TriLight [3M/ESPE] for 40 seconds), a high-power halogen curing unit (Astralis 10 [Ivoclar Vivadent] for 20 seconds), a plasma arc curing unit (Aurys [Degré K] for 10 seconds or 20 seconds) or different light emitting diode (LED) curing units (Elipar FreeLight I [3M/ESPE] for 40 seconds, Elipar FreeLight II [3M/ESPE] for 20 seconds, LuxOmax [Akeda] for 40 seconds, e-Light [GC] for 12 seconds or 40 seconds). Depth of cure under the ceramic discs was assessed according to ISO 4049, and VHN at 0.5 and 1.0 mm distance from the ceramic disc bottom was determined (ISO 6507-1). Medians and the 25th and 75th percentiles were determined for each group (n=10), and statistical analysis was performed using the Mann-Whitney-U-test (p < or = 0.05). The results showed that increasing ceramic disc thickness had a negative effect on the curing depth and hardness of all light curing units, with hardness decreasing dramatically under the 2-mm thick discs using LuxOmax, e-Light (12 seconds) or Aurys (10 seconds or 20 seconds). The use of a self-curing catalyst is recommended over the light-curable portion only, because it produced an equivalent or greater hardness and depth of cure with all light polymerization modes.  相似文献   

8.
This study evaluated the sealing ability and push-out bond strength of two luting cements cured with two different types of light curing units (LCU): light-emitting diode (LED) versus quartz tungsten halogen (QTH). Forty teeth were divided into four groups(n=10/group). Quartz fiber posts (D. T. Light-Post) were luted to coronal or apical section of root canals using two types of resin cements (Panavia F or RelyX) cured with either LED LCU (Elipar FreeLight II) or QTH LCU (Optilux 501). Highest push-out bond strength was exhibited by QTH-cured RelyX, which was not significantly different from LED-cured RelyX but was higher than QTHcured Panavia F. The push-out bond strength of Panavia F did not differ with LCU type (p>0.05), but exhibited lower values than both QTH- and LED-cured RelyX. Fluid filtration test revealed that sealing ability was not influenced by luting cement type, but was signifi cantly influenced by LCU type in favor of QTH light source: QTH-cured specimens displayed better seal than LED-cured ones (p<0.05).  相似文献   

9.
This study evaluated the light intensity of various light curing units, the effect of distance of the light guide, and the validity of a tapered light guide. Light curing units tested included (1) four blue light-emitting diode curing units, Lux-O-Max, LEDemetronl, Ortholux LED, and The Cure; (2) two tungsten-quartz halogen curing units, Optilux 501 and Co-bee; and (3) one plasma arc curing unit, Apollo95E. The Optilux 501 was also evaluated for combinations of normal mode and boost mode and Standard tip and Turbo tip light guide. The spectral output of each unit was measured from 300 to 600 nm with a spectroradiometer. The light intensities at distances of zero, five, 10, 15, and 20 mm were determined with the radiometer. The peak value of Ortholux LED and The Cure surpassed that of Apollo95E. The light intensity significantly decreased with distance. Although The Cure showed a higher light intensity than the LEDemetron1 at zero-mm distance, the light intensity of the LEDemetron1 was higher than that of The Cure at five to 20 mm, resulting in no significant difference. The boost mode increased light intensity at any distance. Although the Turbo tip enhanced light intensity at zero-mm distance, reduction of light intensity by Turbo tip was demonstrated at five- to 20-mm distance.  相似文献   

10.
INTRODUCTION: Recent studies have suggested that a 10-second cure time with a high-energy quartz-tungsten-halogen (QTH) or a light-emitting diode (LED) light might be adequate when bonding orthodontic brackets to tooth enamel. The purpose of this study was to evaluate the ability of the latest generation of QTH and LED light-curing units (LCUs) to bond orthodontic brackets to teeth at decreased polymerization times. METHODS: Two LED LCUs (Ortholux LED, 3M Unitek, Monrovia, Calif; UltraLume LED 5, Ultradent Products, South Jordan, Utah) and a QTH LCU (Optilux 501, Demetron, Danbury, Conn) were evaluated. One hundred eighty metal orthodontic brackets were bonded to extracted human molars. The specimens were divided into 9 groups (3 lights and 3 curing times) of 20 teeth each. Each group was cured with 1 of the 3 lights for 20, 10, or 6 seconds. Thirty minutes after polymerization, the specimens were subjected to shear force on a universal testing machine until bracket failure. RESULTS: Two-way ANOVA detected significant differences among the main effects of light type and cure time. Tukey post-hoc tests determined that brackets bonded by all light types had lower bond strengths with the 6-second cure than the 20-second cure (P < .001). The highest bond strengths were obtained with the Optilux 501 QTH LCU and the UltraLume LED 5 LCU at the longest cure time of 20 seconds. CONCLUSIONS: It is recommended that orthodontic brackets be photopolymerized for at least 20 seconds with the QTH or the LED LCU before the archwires are engaged.  相似文献   

11.
Comparative depths of cure among various curing light types and methods   总被引:3,自引:0,他引:3  
This study evaluated the depth of cure associated with commercial LEDs (light-emitting diodes) (Elipar FreeLight [FL], 3M-ESPE; GC e-Light [EL], GC), high intensity (Elipar TriLight [TL], 3M-ESPE) and very high intensity (Astralis 10 [AS], Ivoclar Vivadent) Quartz Tungsten Halogen (QTH) curing lights. Depth of cure of the various lights/curing modes were compared to a conventional QTH light (Max [Mx], Dentsply-Caulk). Ten exposure regimens were investigated: FL1 - 400 mW/cm2 [40 seconds]; FL2 - 0-400 mW/cm2 [12 seconds] --> 400 mW/cm2 [28 seconds]; EL1 - 750 mW/cm2 [10 pulses x 2 seconds], EL2 - 350 mW/cm2 [40 seconds]; EL3 - 600 mW/cm2 [20 seconds]; EL4 - 0 - 600 mW/cm2 [20 seconds] --> 600 mW/cm2 [20 seconds]; TL1 - 800 mW/cm2 [40 seconds]; TL2 - 100- 800 mW/cm2 [15 seconds] --> 800 mW/cm2 [25 seconds]; AS1 - 1200 mW/cm2 [10 seconds]; MX - 400 mW/cm2 [40 seconds]. Depth of cure was determined by penetration, scraping and microhardness techniques. The results were analyzed using one-way ANOVA/Scheffe's post-hoc test and Pearson's correlation at significance level 0.05 and 0.01, respectively. All light curing regimens met the ISO depth of cure requirement of 1.5 mm with the exception of EL1-EL3 with the microhardness technique. Curing with most modes of EL resulted in significantly lower depths of cure than the control [MX]. No significant difference in depth of cure was observed among the control and the two modes of FL. Curing with TL1 resulted in significantly greater depth of cure compared to MX with all testing techniques. No significant difference in depth of cure was observed between the control and AS1 for all testing techniques except for the penetration technique. The depth of composite cure is light unit and exposure mode dependent. Scraping and penetration techniques were found to correlate well but tend to overestimate depth of cure compared to microhardness.  相似文献   

12.
This study evaluated the effectiveness of second generation light emitting diode (2ndLED) units in composite curing. In order to compare their effectiveness with that of conventional quartz tungsten halogen light curing units (QTH) and first generation LEDs (1stLED), the amount of linear polymerization shrinkage, polymerization speed and microhardness were measured. Linear polymerization shrinkage was measured every 0.5-0.55 seconds for 60 seconds when composite specimens (Z250, 3M ESPE Dental Products, St Paul, MN, USA) were light cured with five different light sources: XL 3000 (QTH, 3M ESPE Dental Products), Elipar FreeLight 2 (2ndLED, 3M ESPE Dental Products), Ultra-Lume LED2 (2ndLED, Ultradent Products, South Jordan, UT, USA), Elipar FreeLight (1stLED, 3M ESPE Dental Products) and experimental product X (1stLED, Biomedisys, Seoul, Korea). The amount of linear polymerization shrinkage in 60 seconds and the speed of polymerization shrinkage in the first 15 seconds were measured for the different lighting units. The amount of polymerization was compared with one-way ANOVA using Tukey at the 95% confidence level. In order to compare the speed of polymerization, the peak time (PT) showing the highest speed of polymerization and maximum speed of polymerization (Smax) were determined from the data and compared using one-way ANOVA with Tukey at the 95% confidence level for each material. For microhardness measurements, the microhardness of 2-mm composites, Z250, which had been light cured by XL 3000 (G1), FreeLight 2 (G2), Ultra-Lume LED2 (G3), FreeLight (G4) or experimental product X (G5) were compared on the upper and lower surface. The microhardness of each surface was compared between groups using two-way ANOVA with Tukey test at 95% levels of confidence. The amount of polymerization shrinkage at 60 seconds was G1, G2, G3> G4, G5 (p<0.05). PT was G1, G3 G3 >G4, G5 (p<0.05). On the upper composite surface, there was no difference in microhardness between groups (p<0.05). On the lower surface, the microhardness was G1, G2> G3> G4, G5 (p<0.05). There was no difference in microhardness between the upper and lower surface in G1 and G2; whereas, microhardness of the lower surface was lower in G3, G4 and G5. It was concluded that 2ndLEDs and the conventional QTH unit cu red composites moreeffectively than 1stLEDs.  相似文献   

13.
This study compared 3 light-emitting diode curing lights (UltraLume 5, FreeLight 2, LEDemetron I) with a quartz-tungsten-halogen light (Optilux 401) to determine which was the better at photopolymerizing 5 resin composites. The composites were 2 mm thick and were irradiated for the manufacturers' recommended curing times at distances of 2 mm and 8 mm from the light guide. The Knoop hardness at each of 22 points over a 10-mm diameter footprint at the top and bottom of the composites was used to compare the lights. The 4 curing lights and irradiation distances did not have the same effect on all the composites (P < .001). It was concluded that overall the UltraLume 5 dual peak third generation LED curing light was able to polymerize these 5 resin composites as well as or better than the other curing lights.  相似文献   

14.
The purpose of this study was to compare the thermal emission and curing efficiency of LED (LEDemetron 1, SDS/Kerr) and QTH (VIP, BISCO) curing lights at maximum output and similar power, power density and energy density using the same light guide. Also, another LED curing light (Allegro, Den-Mat) and the QTH light at reduced power density were tested for comparison. Increase in temperature from the tips of the light guides was measured at 0 and 5 mm in air (23 degrees C) using a temperature probe (Fluke Corp). Pulpal temperature increase was measured using a digital thermometer (Omega Co) and a K-type thermocouple placed on the central pulpal roof of human molars with a Class I occlusal preparation. Measurements were made over 90 seconds with an initial light activation of 40 seconds. To test curing efficiency, resin composites (Z100, A110, 3M/ESPE) were placed in a 2-mm deep and 8-mm wide plastic mold and cured with the LED and QTH curing lights at 1- and 5-mm curing distances. Knoop Hardness Numbers (KHN) were determiped on the top and bottom surfaces (Leco). Bottom hardness values were expressed as a percentage of maximum top hardness. No significant differences were found in maximum thermal emission or KHN ratios between the LED (LEDemetron 1) and the QTH (VIP) at maximum output and similar energy densities (ANOVA/Tukey's; alpha=0.05).  相似文献   

15.
In the current study, the degree of conversion (DC) of bonding agents photoactivated using QTH or LED light-curing units (LCUs) was evaluated by Fourier Transform infrared spectroscopy with an attenuated total reflectance (ATR) device. Four LCUs were evaluated: one QTH (Optilux 501; Demetron Kerr) and three LEDs: Radii Cal (SDI), Elipar FreeLight 2 (3M ESPE) and Bluephase (Ivoclar Vivadent). Two etch-and-rinse (Scotchbond Multi-Purpose-SBMP and Single Bond 2-SB2) and two self-etch adhesives (Clearfil SE Bond-CSE, and Clearfil S3 Bond-CS3) were tested. For SBMP and CSE, the primer was not used. The irradiance and spectral emission of the LCUs were obtained with a radiometer and spectrometer. The materials were placed onto the ATR cell as thin films, the solvent was evaporated (when necessary) and photoactivation was carried out for 20 seconds. The DC (%) was evaluated after five minutes (n = 5). The data were statistically analyzed (p < 0.05). The irradiance for Optilux, Radii, FreeLight 2 and Bluephase was 760, 600, 1000 and 1100 mW.cm(-2), respectively. The wavelength of emission for Optilux was between 375 and 520 nm (peak at 496 nm), while for Radii, it was between 420 and 520 nm (peak at 467 nm). Freelight 2 presented an emission spectrum between 415 and 520 nm, and for Bluephase, it was between 410 and 530 nm, both having a peak at 454 nm. SB2 generally showed higher DC compared with the other bonding agents. When cured using the QTH unit, the DC results were SB2 = CS3 > CSE > SBMP; for all LEDs, the DC results showed SB2 > CSE > SBMP > CS3. For SB2, the highest DC was observed when the material was cured with Radii, while there were no significant differences among the other LCUs. CSE and CS3 showed higher DC when cured using the QTH unit, but similar results were observed among the LEDs. For SBMP, no significant differences among the LCUs were detected. In conclusion, the combination bonding agent vs curing unit had a significant effect on DC, mainly for the self-etch adhesives.  相似文献   

16.
Light Emitting Diode (LED) curing units are attractive to clinicians, because most are cordless and should create less heat within tooth structure. However, questions about polymerization efficacy have surrounded this technology. This research evaluated the adequacy of the depth of cure of pit & fissure sealants provided by LED curing units. Optilux (OP) and Elipar Highlight (HL) high intensity halogen and Astralis 5 (A5) conventional halogen lights were used for comparison. The Light Emitting Diode (LED) curing units were Allegro (AL), LE Demetron I (DM), FreeLight (FL), UltraLume 2(UL), UltraLume 5 (UL5) and VersaLux (VX). Sealants used in the study were UltraSeal XT plus Clear (Uclr), Opaque (Uopq) and Teethmate F-1 Natural (Kclr) and Opaque (Kopq). Specimens were fabricated in a brass mold (2 mm thick x 6 mm diameter) and placed between two glass slides (n=5). Each specimen was cured from the top surface only. One hour after curing, four Knoop Hardness readings were made for each top and bottom surface at least 1 mm from the edge. The bottom to top (B/T) KHN ratio was calculated. Groups were fabricated with 20 and 40-second exposure times. In addition, a group using a 1 mm-thick mold was fabricated using an exposure time of 20 seconds. Differences between lights for each material at each testing condition were determined using one-way ANOVA and Student-Newman-Keuls Post-hoc test (alpha=0.05). There was no statistical difference between light curing units for Uclr cured in a 1-mm thickness for 20 seconds or cured in a 2 mm-thickness for 40 seconds. All other materials and conditions showed differences between light curing units. Both opaque materials showed significant variations in B/T KHN ratios dependent upon the light-curing unit.  相似文献   

17.
The microhardness of a bleaching-shade resin composite polymerized with different light-curing units was evaluated. Composite samples (3M ESPE Filtek Supreme) were applied to brass rings (2 mm in thickness, 5 mm in diameter). Three commercial LED lights were used to polymerize the specimens and the results were compared to those of a conventional halogen light. The light sources used in the present study were: Demetron Optilux 401 (QTH), 3M ESPE Elipar FreeLight (LED 1); Kerr L.E. Demetron I (LED 2), and ColtoluxLED lights (LED 3). The microhardness of the top and bottom surfaces was assessed with a digital Vickers hardness-measuring instrument, under load. At the bottom surface, no significant difference among the light sources was observed (two-way ANOVA). At the top surface, the QTH light source presented significantly higher hardness values compared to the values observed when LED 1 and LED 3 were used. There were no significant differences between the QTH and LED 2 light sources. Significantly higher hardness values were also found at the top surface when compared to the values observed at the bottom surface. The power density of the polymerization light sources seemed to be responsible for the observed resin composite hardness, not their irradiance.  相似文献   

18.
This study compared the effectiveness of cure of two LED (light-emitting diodes) lights (Elipar FreeLight [FL], 3M-ESPE and GC e-Light [EL], GC) to conventional (Max [MX] (control), Dentsply-Caulk), high intensity (Elipar TriLight [TL], 3M-ESPE) and very high intensity (Astralis 10 [AS], Ivoclar Vivadent) halogen lights at varying cavity depths. Ten light curing regimens were investigated. They include: FL1-400 mW/cm2 [40 seconds], FL2-0-400 mW/cm2 [12 seconds] --> 400 mW/cm2 [28 seconds], EL1-750 mW/cm2 [10 pulses x 2 seconds], EL2-350 mW/cm2 [40 seconds], EL3-600 mW/cm2 [20 seconds], EL4-0-600 mW/cm2 [20 seconds] --> 600 mW/cm2 [20 seconds], TL1-800 mW/cm2 [40 seconds], TL2-100-800 mW/cm2 [15 seconds] --> 800 mW/cm2 [25 seconds], AS1-1200 mW/cm2 [10 seconds], MX-400 mW/cm2 [40 seconds]. The effectiveness of cure of the different modes was determined by measuring the top and bottom surface hardness (KHN) of 2-mm, 3-mm and 4-mm thick composite (Z100, [3M-ESPE]) specimens using a digital microhardness tester (n = 5, load = 500 g; dwell time = 15 seconds). Results were analyzed using ANOVA/Scheffe's post-hoc test and Independent Samples t-Test (p < 0.05). For all lights, effectiveness of cure was found to decrease with increased cavity depths. The mean hardness ratio for all curing lights at a depth of 2 mm was found to be greater than 0.80 (the accepted minimum standard). At 3 mm, all halogen lights produced a hardness ratio greater than 0.80 but some LED light regimens did not; and at a depth of 4 mm, the mean hardness ratio observed with all curing lights was less than 0.80. Significant differences in top and bottom KHN values were observed among different curing regimens for the same light and between LED and halogen lights. While curing with most modes of EL resulted in significantly lower top and bottom KHN values than the control (MX) at all depths, the standard mode of FL resulted in significantly higher top and bottom KHN at a depth of 3 mm and 4 mm. The depth of composite cure with LED LCUs was, therefore, product and mode dependent.  相似文献   

19.
PURPOSE: To evaluate the influence of different light-curing units on microtensile bond strength of resin composite restorations. MATERIALS AND METHODS: Standardized Class I preparations (6.0 x 4.5 mm, 2.5 mm deep) were made in extracted human third molars after abrading the cusps. Resin was inserted in bulk using a 3M ESPE restorative system [Adper Single Bond (DBA)/ Filtek Z250 (RC)]. Both materials were polymerized using different light-curing units: QTH at 540 mW/cm(2) (XL 3000, 3M ESPE); LED at 750 mW/cm(2) (Elipar FreeLight2, 3M ESPE); PAC at 2130 mW/cm(2) (Arc Light II, Air Techniques). Nine different light combinations were developed to polymerize both DBA and RC: QTH/QTH; QTH/LED; QTH/PAC; LED/LED; LED/QTH; LED/PAC; PAC/PAC; PAC/QTH; PAC/LED. Restored teeth were stored in distilled water for 24 h at 37 degrees C and then sectioned, yielding stick-shaped specimens with a bonded area of approximately 0.9 mm(2). Specimens were assessed in a testing machine at a crosshead speed of 1 mm/min. The results were analyzed using two-way ANOVA and Tukey's test at a pre-set alpha = 0.05. RESULTS: The combinations PAC/QTH and QTH/QTH presented the highest bond strength values, and LED/QTH the lowest (p < 0.05). Significantly lower values were observed in combinations when the LED light was used to polymerize DBA compared to QTH and PAC lights, irrespective of the light source used to polymerize RC (p < 0.05). Same light combinations presented similar bond strength values. CONCLUSIONS: Different light sources influence restoration bond strength. Bond strength is more dependent on the light source used for DBA than for curing RC.  相似文献   

20.
ABSTRACT: Purpose: The purpose of this study was to compare the curing efficiency of three commercially available light‐emitting diode (LED)‐based curing lights with that of a quartz tungsten halogen (QTH) curing light by means of hardness testing. In addition, the power density (intensity) and spectral emission of each LED light was compared with the QTH curing light in both the 380‐to 520‐nm and the 450‐ to 500‐nm spectral ranges. Materials and Methods: A polytetrafluoroethylene mold 2 mm high and 8 mm in diameter was used to prepare five depth‐of‐cure test specimens for each combination of exposure duration, composite type (Silux Plus [microfill], Z‐100 [hybrid]), and curing light (ZAP Dual Curing? Light, LumaCure?, VersaLux?, Optilux 401?). After 24 hours, Knoop hardness measurements were made for each side of the specimen, means were calculated, and a bottom/top Knoop hardness (B/T KH) percentage was determined. A value of at least 80% was used to indicate satisfactory polymerization. A linear regression of B/T KH percentage versus exposure duration was performed, and the resulting equation was used to predict the exposure duration required to produce a B/T KH percentage of 80% for the test conditions. The power densities (power/unit area) of the LED curing lights and the QTH curing light (Optilux 401?) were measured 1 mm from the target using a laboratory‐grade, laser power meter in both the full visible light spectrum range (380–780 nm) and the spectral range (between 450 and 500 nm), using a combination of long‐ and short‐wave edge filters. Results: The emission spectra of the LED lights more closely mirrored the absorption spectrum of the commonly used photoinitiator camphorquinone. Specifically, 95% of the emission spectrum of the VersaLux, 87% of the LumaCure, 84% of the ZAP LED, and 78% of the ZAP combination LED and QTH fell between 450 and 500 nm. In contrast, only 56% of the emission spectrum of the Optilux 401? halogen lamp fell within this range. However, the power density between 450 and 500 nm was at least four times greater for the halogen lamp than for the purely LED lights. As I a result, the LED‐based curing lights required from 39 to 61 seconds to cure a 2‐mm thick hybrid I resin composite and between 83 and 131 seconds to adequately cure a microfill resin composite. By I comparison, the QTH light required only 21 and 42 seconds to cure the hybrid and microfill resin I composites, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号