首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the increasing use of genetically modified mice to investigate the dopamine (DA) system, little is known about the ultrastructural features of the striatal DA innervation in the mouse. This issue is particularly relevant in view of recent evidence for expression of the vesicular glutamate transporter 2 (VGLUT2) by a subset of mesencephalic DA neurons in mouse as well as rat. We used immuno-electron microscopy to characterize tyrosine hydroxylase (TH)-labeled terminals in the core and shell of nucleus accumbens and the neostriatum of two mouse lines in which the Vglut2 gene was selectively disrupted in DA neurons (cKO), their control littermates, and C57BL/6/J wild-type mice, aged P15 or adult. The three regions were also examined in cKO mice and their controls of both ages after dual TH-VGLUT2 immunolabeling. Irrespective of the region, age and genotype, the TH-immunoreactive varicosities appeared similar in size, vesicular content, percentage with mitochondria, and exceedingly low frequency of synaptic membrane specialization. No dually labeled axon terminals were found at either age in control or in cKO mice. Unless TH and VGLUT2 are segregated in different axon terminals of the same neurons, these results favor the view that the glutamatergic cophenotype of mesencephalic DA neurons is more important during the early development of these neurons than for the establishment of their scarce synaptic connectivity. They also suggest that, in mouse even more than rat, the mesostriatal DA system operates mainly through non-targeted release of DA, diffuse transmission and the maintenance of an ambient DA level.  相似文献   

2.
The mesostriatal dopamine (DA) system contributes to several aspects of responses to rewarding substances and is implicated in conditions such as drug addiction and eating disorders. A subset of DA neurons has been shown to express the type 2 Vesicular glutamate transporter (Vglut2) and may therefore corelease glutamate. In the present study, we analyzed mice with a conditional deletion of Vglut2 in DA neurons (Vglut2(f/f;DAT-Cre)) to address the functional significance of the glutamate-DA cophenotype for responses to cocaine and food reinforcement. Biochemical parameters of striatal DA function were also examined by using DA receptor autoradiography, immediate-early gene quantitative in situ hybridization after cocaine challenge, and DA-selective in vivo chronoamperometry. Mice in which Vglut2 expression had been abrogated in DA neurons displayed enhanced operant self-administration of both high-sucrose food and intravenous cocaine. Furthermore, cocaine seeking maintained by drug-paired cues was increased by 76%, showing that reward-dependent plasticity is perturbed in these mice. In addition, several lines of evidence suggest that adaptive changes occurred in both the ventral and dorsal striatum in the absence of VGLUT2: DA receptor binding was increased, and basal mRNA levels of the DA-induced early genes Nur77 and c-fos were elevated as after cocaine induction. Furthermore, in vivo challenge of the DA system by potassium-evoked depolarization revealed less DA release in both striatal areas. This study demonstrates that absence of VGLUT2 in DA neurons leads to perturbations of reward consumption as well as reward-associated memory, features of particular relevance for addictive-like behavior.  相似文献   

3.
目的观察3,6,9,12月龄presenilin1和presenilin2双敲除小鼠(dKO)脑组织氧化损伤情况,探讨氧化损伤与presenilins功能丧失所引起的阿尔茨海默病样症状之间的关系。方法酶联免疫反应(ELISA)检测dKO小鼠大脑皮层中Aβ42水平和尿液中8-羟基脱氧鸟苷(8-hydroxy-2-deoxyguanosine,8-OHdG)水平;硫代巴比妥酸法检测脂质过氧化水平,分光光度计测定DNPH法检测蛋白质损伤水平;试剂盒法检测超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-PX)活性。结果与对照组相比,dKO小鼠大脑皮层中Aβ42水平显著降低。同时,除了在3月龄dKO小鼠大脑皮层中发现脂质过氧化水平有显著增加外,蛋白质损伤在各年龄段dKO小鼠中均没有明显变化。ELISA检测结果显示尿液中游离的8-OHdG水平在各年龄段的dKO小鼠中均显著降低。SOD和GSH-PX活性均无明显变化,只有9月龄dKO小鼠中的GSH-PX活性有显著增高。结论氧化损伤特别是DNA损伤参与dKO小鼠神经退行性症状的发生过程;由于dKO小鼠大脑皮层中没有Aβ42的沉积,推测造成氧化损伤的原因可能是由活化的小胶质细胞和星形胶质细胞所释放的免疫因子介导的。  相似文献   

4.
Ultrastructural analysis of megakaryocytes in GPV knockout mice   总被引:3,自引:0,他引:3  
Lesions in the genes for GPIb alpha, GPIb beta or GPIX result in a bleeding diathesis, the Bernard-Soulier syndrome (BSS), which associates a platelet adhesion defect with thrombocytopenia, giant platelets and abnormal megakaryocytes (MK). The role of GPV, also absent in BSS, was recently addressed by gene targeting in mice. While a negative modulator function for GPV on thrombin-induced platelet responses was found in one model, the absence of GP V had no effect on GPIb-IX expression or platelet adhesion. Our study extends previous results and reports that electron microscopy of bone marrow from the GPV knockout mice revealed a normal MK ultrastructure and development of the demarcation membrane system (DMS). There was a usual presence of MK fragments in the bone marrow vascular sinus. Immunogold labelling of MK from the knockout mice showed a normal distribution of GPIb-IX in the DMS and on the cell surface. The distribution of fibrinogen, vWF and P-selectin was unchanged with, interestingly, P-selectin also localised within the DMS in both situations. Thus GPV is not crucial to MK development and platelet production, consistent with the fact that no mutation in the GPV gene has as yet been described in BSS.  相似文献   

5.
Three vesicular glutamate transporters have been identified in mammals. Two of them, VGLUT1 and VGLUT2, define the glutamatergic phenotype and their distribution in the brain is almost complementary. In the present study we examined the distribution and expression levels of these two VGLUTs during postnatal development of the mouse barrel cortex. We also investigated changes in the localization of VGLUT1 and VGLUT2 within particular compartments of the barrel field (barrels/septa) during its development. We found differences in the time course of developmental expression, with VGLUT1 peaking around P14, while VGLUT2 increased gradually until adulthood. Over the examined period (P3 - adult) both transporters had stronger expression in the barrel interiors, and in this compartment VGLUT2 dominated, whereas in the inter-barrel septa VGLUT1 dominated over VGLUT2. Furthermore, we found that some nerve terminals in the barrel cortex coexpressed both transporters until adulthood. Colocalization was observed within the barrels, but not within the septa.  相似文献   

6.
We studied the role of the dopamine D2 receptor in physiological regulation of pain-related behavior. The experiments were performed in dopamine D2 receptor knockout mice and in their wild-type controls. Baseline sensitivity to thermal nociception was determined by measuring the response latency in the hot plate at three different stimulus temperatures and by determining the radiant-heat-induced paw withdrawal. Mechanical sensitivity was assessed by determining paw withdrawal responses to stimulation with a calibrated series of monofilaments. Intracolonic capsaicin was used to produce sustained pain-related behavior and referred hypersensitivity to mechanical stimulation. The hot plate response latencies were not significantly different between the dopamine D2 receptor knockout and wild-type animals, although the stimulus temperature-dependent decrease in the response latency was steeper in the wild-type group. The radiant-heat-induced paw withdrawal latency was slightly longer in the knockout animals. The number of capsaicin-induced behavioral responses or the latency to the occurrence of the first capsaicin-induced response was not different between the experimental groups. Dopamine D2 receptor knockout animals were more sensitive to mechanical stimulation of the hindpaws than wild-type animals both in the baseline condition and following development of capsaicin-induced referred hypersensitivity in the hindpaws. The results indicate that dopamine D2 receptors influence baseline nociception in the mouse, although this effect is weak and submodality selective. Additionally, dopamine D2 receptors may contribute to attenuation of referred hypersensitivity caused by sustained nociception.  相似文献   

7.

Objective

This report aims to describe the oxidative damage profile in brain of presenilin1 and presenilin2 conditional double knockout mice (dKO) at both early and late age stages, and to discuss the correlation between oxidative stress and the Alzheimer-like phenotypes of dKO mice.

Methods

The protein level of Aβ42 in dKO cortex and free 8-OHdG level in urine were measured by ELISA. Thiobarbituric acid method and spectrophotometric DNPH assay were used to determine the lipid peroxidation and protein oxidation in cortex, respectively. SOD and GSH-PX activities were assessed by SOD Assay Kit-WST and GSH-PX assay kit, separately.

Results

Significant decrease of Aβ42 was verified in dKO cortex at 6 months as compared to control mice. Although lipid peroxidation (assessed by MDA) was increased only in dKO cortex at 3 months and protein oxidation (assessed by carbonyl groups) was basically unchanged in dKO cortex, ELISA analysis revealed that free 8-OHdG, which was an indicator of DNA lesion, was significantly decreased in urine of dKO mice from 3 months to 12 months. Activities of SOD and GSH-PX in dKO and control cortices showed no statistical difference except a significant increase of GSH-PX activity in dKO mice at 9 months.

Conclusion

Oxidative damage, especially DNA lesion, was correlated with the neurodegenerative symptoms that appeared in dKO mice without the deposition of Aβ42. Triggers of oxidative damage could be the inflammatory mediators released by activated microglia and astrocytes.  相似文献   

8.
PDSS2 is a gene that encodes one of the two subunits of trans-prenyl diphosphate synthase that is essential for ubiquinone biosynthesis. It is known that mutations in PDSS2 can cause primary ubiquinone deficiency in humans and a similar disease in mice. Cerebellum is the most often affected organ in ubiquinone deficiency, and cerebellar atrophy has been diagnosed in many infants with this disease. In this study, two Pdss2 conditional knockout mouse lines directed by Pax2-cre and Pcp2-cre were generated to investigate the effect of ubiquinone deficiency on cerebellum during embryonic development and in adulthood, respectively. The Pdss2f/−; Pax2-cre mouse recapitulates some symptoms of ubiquinone deficiency in infants, including severe cerebellum hypoplasia and lipid accumulation in skeletal muscles at birth. During early cerebellum development (E12.5-14.5), Pdss2 knockout initially causes the delay of radial glial cell growth and neuron progenitor migration, so the growth of mutant cerebellum is retarded. During later development (E15.5-P0), increased ectopic apoptosis of neuroblasts and impaired cell proliferation result in the progression of cerebellum hypoplasia in the mutant. Thus, the mutant cerebellum contains fewer neurons at birth, and the cells are disorganized. The developmental defect of mutant cerebellum does not result from reduced Fgf8 expression before E12.5. Electron microscopy reveals mitochondrial defects and increased autophagic-like vacuolization that may arise in response to abnormal mitochondria in the mutant cerebellum. Nevertheless, the mutant mice die soon after birth probably due to cleft palate and micrognathia, which may result from Pdss2 knockout caused by ectopic Pax2-cre expression in the first branchial arch. On the other hand, the Pdss2f/−; Pcp2-cre mouse is healthy at birth but gradually loses cerebellar Purkinje cells and develops ataxia-like symptoms at 9.5 months; thus this conditional knockout mouse may serve as a model for ubiquinone deficiency in adult patients. In conclusion, this study provides two mouse models of Pdss2 based ubiquinone deficiency. During cerebellum development, Pdss2 knockout results in severe cerebellum hypoplasia by impairing cell migration and eliciting ectopic apoptosis, whereas Pdss2 knockout in Purkinje cells at postnatal stages leads to the development of cerebellar ataxia.  相似文献   

9.
Behavioral abnormalities produced by D2 dopamine receptor gene deletion in mice have been attributed either to resulting Parkinson-like features (i.e. response slowing and response initiation difficulties) or to behavioral deficits contributed by alleles of the originating 129Sv strain. Three strategies were used to address these conflicting hypotheses: (1) we used mice congenic at n10 backcross into the C57BL/6 line to minimize the 129Sv contribution; (2) we compared mice that were wild-type (+/+), heterozygous (+/-), or homozygous (-/-) for the D2 gene with the two most relevant inbred lines (129Sv and C57BL/6) and (3) we used both conventional and novel behavioral assessment methods. Behavioral attributes were expressed in terms of locomotor activity, wall rearing, rotarod performance, operant response acquisition, operant response performance, lick dynamics (force, rhythm), grip strength, and tremor in response to harmaline challenge. Results showed that, compared to controls, the -/- mice exhibited longer duration wall rears, retarded operant response acquisition, increased latencies to move from the operandum to the reward well, and exaggerated response to harmaline. Age was investigated as a variable (10-11 weeks versus 41-44 weeks of age) in the locomotor activity and wall rear assessments. A gene dosage effect (deficits in the +/- mice) on these two variables became apparent in the older mice. Taken together, the results showed that mice without the D2 gene exhibited Parkinson-like behavioral features that were not easily attributed to alleles contributed by the 129Sv strain, but were consistent with basal ganglia dysfunction.  相似文献   

10.
VGLUT1 and VGLUT2 have been reported to show complementary distributions in most brain regions and have been assumed to define distinct functional elements. In the present study, we first investigated the expression of VGLUT1 and VGLUT2 in the trigeminal sensory nuclear complex of the rat by dual‐fluorescence in situ hybridization. Although VGLUT1 and/or VGLUT2 mRNA signals were detected in all the nuclei, colocalization was found only in the principal sensory trigeminal nucleus (Vp). About 64% of glutamatergic Vp neurons coexpressed VGLUT1 and VGLUT2, and the others expressed either VGLUT1 or VGLUT2, indicating that Vp neurons might be divided into three groups. We then injected retrograde tracer into the thalamic regions, including the posteromedial ventral nucleus (VPM) and posterior nuclei (Po), and observed that the majority of both VGLUT1‐ and VGLUT2‐expressing Vp neurons were retrogradely labeled with the tracer. We further performed anterograde labeling of Vp neurons and observed immunoreactivies for anterograde tracer, VGLUT1, and VGLUT2 in the VPM and Po. Most anterogradely labeled axon terminals showed immunoreactivities for both VGLUT1 and VGLUT2 in the VPM and made asymmetric synapses with dendritic profiles of VPM neurons. On the other hand, in the Po, only a few axon terminals were labeled with anterograde tracer, and they were positive only for VGLUT2. The results indicated that Vp neurons expressing VGLUT1 and VGLUT2 project to the VPM, but not to the Po, although the functional differences of three distinct populations of Vp neurons, VGLUT1‐, VGLUT2‐, and VGLUT1/VGLUT2‐expressing ones, remain unsettled. J. Comp. Neurol. 518:3149–3168, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The present study was undertaken to examine the role of the dopamine (DA) D2 receptor in the ethanol-evoked DA response in the ventral striatum. We performed microdialysis experiments using the D2 null mutant and wild-type controls and measured the effect of an intraperitoneal (i.p.) injection of either saline or ethanol (2 g/kg) on dialysate DA concentrations in the ventral striatum. Dialysate ethanol concentrations were also determined in the samples from the ventral striatum. In addition, the effects of quinpirole, a D2/D3 agonist, were examined in both the ventral and dorsal striatum. Basal dialysate concentrations of DA were significantly reduced in both the ventral and dorsal striatum of the D2 knockouts compared with wild-type controls. Ethanol administration significantly enhanced ventral striatal DA in both groups, but the increase in dialysate DA concentration was 3.5-fold higher in the wild-type controls. The time course of dialysate ethanol concentrations was similar in the two groups. Saline injection did not alter DA concentrations in either the ventral or dorsal striatum. However, quinpirole (0.3 mg/kg) administration significantly depressed striatal dialysate DA concentrations in the wild-type mice, but not in the D2 knockouts. The results suggest that the D2 receptor is necessary for normal development and regulation of striatal extracellular DA concentrations, but the mechanism for this alteration is unclear. In addition, the blunted ethanol-evoked DA response in the D2 knockouts may contribute, in part, to some of the behavioral deficits previously observed in response to ethanol.  相似文献   

12.
Although amphetamine induces hyperactivity by releasing dopamine (DA), mice that lack alpha1b-adrenoceptors do not release DA in response to amphetamine and do not, therefore, exhibit locomotor supersensitivity to amphetamine. However, such mice reveal hyperlocomotion to p-chloroamphetamine (PCA). Because these alpha1b-adrenoceptor knockout mice have no alterations in the striatal densities of DA D1 or D2 receptors, the basis for any possible dopaminergic contribution to the PCA-induced hyperlocomotion to PCA is unclear. Therefore, because supersensitive animals are generally known to have a higher proportion of DA D2 receptors in the high-affinity state for DA D2(High), we investigated whether there was any change in the alpha1b-adrenoceptor knockout striata in the proportion of DA D2(High) receptors to determine whether there could be a DA-based contribution to the PCA-induced hyperlocomotion. We found that the proportion of D2(High) in the wild type striata was 23 +/- 3.3%, whereas that in the alpha1b-adrenoceptor knockout striata was 52 +/- 2.9%, an increase of 2.3-fold. This elevation agrees with other types of DA-supersensitive animal striata and could assist in eliciting a supersensitive response in these alpha1b-adrenoceptor knockout mice.  相似文献   

13.
The dopamine (DA) transporter (DAT) controls the temporal and spatial resolution of dopaminergic neurotransmission. Disruption of the Dat1 gene in mice leads to increased extracellular DA concentrations and reduced expression of D1- and D2-like receptors in striatum. The mutants are hyperactive in the open field and they display deficits in learning and memory. In humans, dopaminergic dysfunction has been associated with a number of different psychiatric disorders and some of these conditions are accompanied by abnormal social responses. To determine whether social responses were also impaired in DAT knockout (KO) mice, behaviors of group- and isolation-housed animals were compared. All group-housed animals readily established hierarchies. However, the social organizations of the mutants were changed over time. Under both group- and isolation-housed conditions, mutants exhibited increased rates of reactivity and aggression following mild social contact. In isolation, exposure to a novel environment exacerbated these abnormal responses. Regardless of housing context, stereotyped and perseverative patterns of social responses were a common feature of the KO repertoire. In fact, many abnormal behaviors were due to the emergence and predominance of these inflexible behaviors. These data suggest that KO mice may serve as a useful animal model for understanding not only how DA dysfunction contributes to social abnormalities, but also how behavioral inflexibility distorts their social responses.  相似文献   

14.
Abnormal iron accumulations are frequently observed in the brains of patients with Parkinson's disease and in normal aging. Iron metabolism is regulated in the CNS by iron regulatory proteins (IRP-1 and IRP-2). Mice engineered to lack IRP-2 develop abnormal motoric behaviors including tremors at rest, abnormal gait, and bradykinesia at middle to late age (18 to 24 months). To further characterize the dopamine (DA) systems of IRP-2 -/- mice, we harvested CNS tissue from age-matched wild type and IRP-2 -/- (16-19 months) and analyzed the protein levels of tyrosine hydroxylase (TH), dopamine transporter (DAT), vesicular monoamine transporter (VMAT2), and DA levels in dorsal striatum, ventral striatum (including the core and shell of nucleus accumbens), and midbrain. We further analyzed the phosphorylation of TH in striatum at serine 40, serine 31, and serine 19. In both dorsal and ventral striatum of IRP-2 knockout mice, there was a 20-25% loss of TH protein and accompanied by a approximately 50% increase in serine 40 phosphorylation above wild-type levels. No change in serine 31 phosphorylation was observed. In the ventral striatum, there was also a significant loss (approximately 40%) of DAT and VMAT2. Levels of DA were decreased (approximately 20%) in dorsal striatum, but turnover of DA was also elevated ( approximately 30%) in dorsal striatum of IRP-2 -/- mice. We conclude that iron misregulation associated with the loss of IRP-2 protein affects DA regulation in the striatum. However, the modest loss of DA and DA-regulating proteins does not reflect the pathology of PD or animal models of PD. Instead, these observations support that the IRP-2 -/- genotype may enable neurobiological events associated with aging.  相似文献   

15.
The enteric nervous system (ENS) consists of several neuronal subclasses with distinct functional properties. The formation and maintenance of these distinct populations during development and aging is dependent on the support of appropriate neurotrophic factors. During early postnatal development, the ENS has to adept continuously to changing alimentation situations, which might also affect neuronal maturation and differentiation. There is evidence that basic-fibroblast-growth-factor (Fgf2) exerts neurotrophic effects in the ENS. In this study primary myenteric plexus cultures from both wild type and Fgf2-knockout mice were investigated under the influence of Fgf2 and glial-cell-line-derived-factor (GDNF). It could be demonstrated, that the influence of neurotrophic support is decreased in the Fgf2-knockouts, while the neuronal cultures of wild type revealed a more pronounced receptiveness for trophic support. These data show that Fgf2 plays a role in the development of the ENS.  相似文献   

16.
A second vesicular glutamate transporter (VGLUT2) has been reported to be expressed in neurosecretory neurons of the hypothalamic-neurohypophysial system. To study its role in the neurosecretory neurons, we evaluated the expression of the VGLUT2 gene in the paraventricular (PVN) and supraoptic (SON) nuclei as well as the immunoreactivity in the neurohypophysis under euhydrated and chronic hyperosmotic conditions with in situ hybridization and immunohistochemistry. The intensity of hybridization signals in the PVN, SON and thalamus of rats subjected to water deprivation for 7 days, or drinking 2% NaCl for 4 or 7 days, was compared with that of euhydrated rats (control). The overall intensity in the entire PVN or SON, but not the thalamus, was higher in osmotically stimulated rats than in controls. Within the PVN, a significantly higher intensity of signals than that of controls was found only in the dorsolateral posterior magnocellular region in 4-day salt-loaded rats and in all subregions in water-deprived or 7-day salt-loaded rats. The intensity in the SON was higher in the stimulated rats than in controls, regardless of subregions. In the neurohypophysis, VGLUT2 staining was frequently localized in vasopressin terminals of control rats and was apparently reduced in stimulated rats. These results indicate that VGLUT2 is principally expressed in magnocellular vasopressin neurons, suggesting some local effect of intrinsic glutamate on neurohypophysial hormone secretion.  相似文献   

17.
Mice of the BALB/cJ strain have more neurons and greater tyrosine hydroxylase (TH) activity in the midbrain than mice of the CBA/J strain (Baker, H., T. H. Joh, and D. J. Reis (1980) Proc. Natl. Acad. Sci. U.S.A. 77: 4369-4373). To determine whether the strain differences in dopamine (DA) neuron number and regional TH activity are more generalized, regional TH activity was measured and counts of neurons containing the enzyme were made in the hypothalamus of male mice of the BALB/cJ and CBA/J strains. TH activity was measured in dissections of whole hypothalamus (excluding the preoptic area), the preoptic area containing a rostral extension of the A14 group, the mediobasal hypothalamus containing the A12 group, and the mediodorsal hypothalamus containing neurons of the A13 and A14 groups. Serial sections were taken and the number of DA neurons was established by counting at 50- to 60-microns intervals all cells stained for TH through each area. In conjunction with data obtained biochemically, the average amount of TH per neuron was determined. In all areas, TH activity in CBA/J mice was significantly less (p less than 0.001) than in BALB/cJ mice, ranging from 48% in the mediobasal hypothalamus to 71% in the medial and dorsal hypothalamus. The number of TH-containing neurons was also significantly less in the CBA/J strain (p less than 0.001), ranging from 49% in the preoptic area to 74% in the mediobasal hypothalamus (MBH). With the exception of the MBH, enzyme activity per neuron was similar in both strains. In the MBH, strain differences in TH activity were greater than those for neuron number, resulting in less TH activity per neuron in the CBA/J strain. The results suggest that strain differences in the number of DA neurons are widespread and involve DA systems throughout the brain. Therefore, differences in whole brain TH activity cannot be attributed only to differences in specific regions. Our findings further support the view that the number of neurons of a specific chemical class may be under genetic control.  相似文献   

18.
Valproic acid (VPA) is a widely used treatment for both epilepsy and bipolar disorders, although its therapeutic mechanism of action is not fully understood. Because norepinephrine (NE) is implicated in seizure susceptibility and affective disorders, and given previous findings indicating that VPA can act on the NE system, it is possible that NE may mediate some of the therapeutic actions of VPA. To test this hypothesis, we measured flurothyl-induced seizure susceptibility and severity parameters after both acute and chronic VPA treatments in dopamine beta-hydroxylase knockout (Dbh -/-) mice that lack NE. We found that the protective effects of acute VPA on seizure susceptibility, as measured by latency to first myoclonic jerk, were attenuated in Dbh -/- mice. Further, while acute VPA reduced the number of control mice that progressed to tonic extension, VPA did not reduce seizure severity in Dbh -/- mice. The carryover anticonvulsant effects following cessation of chronic VPA treatment were similar in both genotypes. Therefore, we conclude that NE is involved in some of the anticonvulsant effects of VPA, especially the effect of acute VPA on seizure severity.  相似文献   

19.
Purpose: Increased activity of mTOR Complex 1 (mTORC1) has been demonstrated in cortical dysplasia and tuberous sclerosis complex, as well as in animal models of epilepsy. Recent studies in such models revealed that inhibiting mTORC1 with rapamycin effectively suppressed seizure activity. However, seizures can recur after treatment cessation, and continuous rapamycin exposure can adversely affect animal growth and health. Here, we evaluated the efficacy of an intermittent rapamycin treatment protocol on epilepsy progression using neuron subset‐specific‐Pten (NS‐Pten) conditional knockout mice. Methods: NS‐Pten knockouts were treated with a single course of rapamycin during postnatal weeks 4 and 5, or intermittently over a period of 5 months. Epileptiform activity was monitored using video–electroencephalography (EEG) recordings, and mossy fiber sprouting was evaluated using Timm staining. Survival and body weight were assessed in parallel. Key Findings: NS‐Pten knockouts treated with a single course of rapamycin had recurrence of epilepsy 4–7 weeks after treatment ended. In contrast, epileptiform activity remained suppressed, and survival increased if knockout mice received additional rapamycin during weeks 10–11 and 16–17. Aberrant mossy fiber sprouting, present by 4 weeks of age and progressing in parallel with epileptiform activity, was also blocked by rapamycin. Significance: These findings demonstrate that a single course of rapamycin treatment suppresses epileptiform activity and mossy fiber sprouting for several weeks before epilepsy recurs. However, additional intermittent treatments with rapamycin prevented this recurrence and enhanced survival without compromising growth. Therefore, these studies add to the growing body of evidence implicating an important role for mTORC1 signaling in epilepsy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号