首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Most targeted anticancer therapies, as well as cytotoxic and radiation therapies, are encumbered by the development of secondary resistance by cancer cells. Resistance is a complex phenomenon involving multiple mechanisms, including activation of signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR). Novel strategies to overcome resistance by targeting these signaling pathways are being evaluated.

Methods

PubMed and key cancer congress abstracts were searched until July 2012 for preclinical and clinical data relating to the PI3K/AKT/mTOR pathway and anticancer treatment resistance, and use of PI3K/AKT/mTOR inhibitors in resistant cancer cell lines and patient populations.

Results

Activation of the PI3K/AKT/mTOR pathway is frequently implicated in resistance to anticancer therapies, including biologics, tyrosine kinase inhibitors, radiation, and cytotoxics. As such, inhibitors of the PI3K/AKT/mTOR pathway are being rapidly evaluated in preclinical models and in clinical studies to determine whether they can restore therapeutic sensitivity when given in combination. In breast cancer, non-small-cell lung cancer, and glioblastoma, we find compelling preclinical evidence to show that inhibitors of PI3K or mTOR can restore sensitivity in resistant cells. Although clinical evidence is less mature, a recent Phase III study with the mTORC1 inhibitor everolimus in patients with advanced breast cancer resistant to aromatase inhibition and several Phase I/II studies with PI3K inhibitors demonstrate proof-of-concept, warranting future clinical evaluation.

Conclusion

Current preclinical and clinical evidence suggest that inhibitors of the PI3K/AKT/mTOR pathway could have utility in combination with other anticancer therapies to circumvent resistance by cancer cells. Multiple clinical studies are ongoing.  相似文献   

2.
Weigelt B  Warne PH  Downward J 《Oncogene》2011,30(29):3222-3233
The phosphatidylinositol 3-kinase (PI3K) pathway is commonly activated in breast cancers due to frequent mutations in PIK3CA, loss of expression of PTEN or over-expression of receptor tyrosine kinases. PI3K pathway activation leads to stimulation of the key growth and proliferation regulatory kinase mammalian target of rapamycin (mTOR), which can be inhibited by rapamycin analogues and by kinase inhibitors; the effectiveness of these drugs in breast cancer treatment is currently being tested in clinical trials. To identify the molecular determinants of response to inhibitors that target mTOR via different mechanisms in breast cancer cells, we investigated the effects of pharmacological inhibition of mTOR using the allosteric mTORC1 inhibitor everolimus and the active-site mTORC1/mTORC2 kinase inhibitor PP242 on a panel of 31 breast cancer cell lines. We demonstrate here that breast cancer cells harbouring PIK3CA mutations are selectively sensitive to mTOR allosteric and kinase inhibitors. However, cells with PTEN loss of function are not sensitive to these drugs, suggesting that the functional consequences of these two mechanisms of activation of the mTOR pathway are quite distinct. In addition, a subset of HER2-amplified cell lines showed increased sensitivity to PP242, but not to everolimus, irrespective of the PIK3CA/PTEN status. These selective sensitivities were confirmed in more physiologically relevant three-dimensional cell culture models. Our findings provide a rationale to guide selection of breast cancer patients who may benefit from mTOR inhibitor therapy and highlight the importance of accurately assessing the expression of PTEN protein and not just its mutational status.  相似文献   

3.
4.
The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates specificity. PI3K/AKT activation may result from genetic hits affecting different components of the pathway, whereas the mechanisms leading to constitutive mTORC1 activation remain globally unknown. The connections between the PI3K and mTOR kinases are multiple and complex, including common substrates, negative feedback loops, or direct activation mechanisms. First-generation allosteric mTOR inhibitors (eg, rapamycin) are mainly active on mTORC1 and mostly display cytostatic anti-tumor activity. Recently, second-generation catalytic mTOR inhibitors targeting both mTOR complexes 1 and 2 have been developed. Some of them also inhibit class IA PI3K. Here, we highlight recent data generated with these new inhibitors against cancer cells and their potential as anti-cancer drugs.  相似文献   

5.
He X  Wang Y  Zhu J  Orloff M  Eng C 《Cancer letters》2011,301(2):168-176
The anti-tumor activity of rapamycin is compromised by the feedback-loop-relevant hyperactive PI3K and ERK-MAPK pathway signaling. In breast cancer cells treated with rapamycin, we observed a moderate increase of AKT phosphorylation (P-AKT) in a rapamycin resistant cell line, MDA-MB-231, as well as a slight increase of P-AKT in a rapamycin sensitive cell line, MCF-7. We found that resveratrol, a natural phytoalexin, suppressed the phosphorylation and activation of the PI3K/AKT pathway in all the three breast cancer cell lines that we tested. It also had a weak inhibitory effect on the activation of the mTOR/p70S6K pathway in two cell lines expressing wildtype PTEN, MCF-7 and MDA-MB-231. The combined use of resveratrol and rapamycin resulted in modest additive inhibitory effects on the growth of breast cancer cells, mainly through suppressing rapamycin-induced AKT activation. We, therefore, reveal a novel combination whereby resveratrol potentiates the growth inhibitory effect of rapamycin, with the added benefit of preventing eventual resistance to rapamycin, likely by suppressing AKT signaling. We also present data herein that PTEN is an important contributor to resveratrol's growth suppressive effects and its potentiation of rapamycin in this therapeutic scenario, as resveratrol's suppression of rapamycin-mediated induction of P-AKT is both PTEN-dependent and -independent. Thus, the resveratrol-rapamycin combination may have therapeutic value in treating breast cancer and perhaps other processes where mTOR is activated.  相似文献   

6.
Lapatinib-resistance is a major problem for HER2-positive breast cancer treatment. SK-BR-3-LR, a lapatinib-resistant cell clone, was established from HER2-positive SK-BR-3 breast cancer cells following chronic exposure to lapatinib. The PI3K/AKT signaling pathway was demonstrated to be resistant to HER2 inhibition in SK-BR-3-LR cells. However, both small-molecular Recepteur d’Origine Nantais (RON) inhibitors and RON-targeted small interfering RNA (siRNA) effectively restored lapatinib sensitivity in these cells by inhibiting PI3K/AKT activation. Our results demonstrate for the first time the important role of RON in mediating lapatinib resistance and suggest that RON-targeted therapy may become a novel, promising therapeutic strategy after the failure of lapatinib treatment in patients with HER2-positive breast cancer.  相似文献   

7.
Human epidermal growth factor receptor 2 (HER2) amplification occurs in approximately 20% of gastric and gastroesophageal junction cancers in the United States and European Union. Lapatinib, a dual HER2 and epidermal growth factor receptor tyrosine kinase inhibitor, has demonstrated clinical efficacy in HER2‐amplified cancer cells. However, several studies have shown that some cytokines can mediate resistance to lapatinib using their receptor tyrosine kinase (RTK) pathways. One of these, Heregulin1 (HRG1), can confer resistance to lapatinib‐mediated growth inhibition in HER2‐amplified breast cancer cells, but the underlying mechanisms remain unknown. Here, we investigated whether and how HRG1 causes resistance to lapatinib in gastric and gastroesophageal junction cancers in vitro. HER2‐amplified gastric and gastroesophageal junction cancer cell lines were highly sensitive to lapatinib. Exposure to HRG1 together with lapatinib rescued cells from lapatinib‐induced cell cycle arrest and apoptosis. Downregulation of HER3 with siRNA in the presence of HRG1 re‐sensitized HER2‐amplified cancer cells to lapatinib. Immunoblotting analysis indicated that HRG1 re‐activated HER3 and AKT in the presence of lapatinib, which persisted for at least 72 h. Activation of HER3 and downstream AKT was mediated by residual activity of HER2. HRG1‐mediated resistance could be reduced by PI3K/mTOR inhibitors or by complete inhibition of HER2. Thus, we conclude that HRG1 mediates resistance to lapatinib through HER3 and AKT activation, and that this depends on residual HER2 activity. Lapatinib in combination with anti‐PI3K therapies or more potent HER2 inhibitors would improve the efficacy and avoid the emergence of resistant cells.  相似文献   

8.
There is a strong rationale to therapeutically target the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway in breast cancer since it is highly deregulated in this disease and it also mediates resistance to anti-HER2 therapies. However, initial studies with rapalogs, allosteric inhibitors of mTORC1, have resulted in limited clinical efficacy probably due to the release of a negative regulatory feedback loop that triggers AKT and ERK signaling. Since activation of AKT occurs via PI3K, we decided to explore whether PI3K inhibitors prevent the activation of these compensatory pathways. Using HER2-overexpressing breast cancer cells as a model, we observed that PI3K inhibitors abolished AKT activation. However, PI3K inhibition resulted in a compensatory activation of the ERK signaling pathway. This enhanced ERK signaling occurred as a result of activation of HER family receptors as evidenced by induction of HER receptors dimerization and phosphorylation, increased expression of HER3 and binding of adaptor molecules to HER2 and HER3. The activation of ERK was prevented with either MEK inhibitors or anti-HER2 monoclonal antibodies and tyrosine kinase inhibitors. Combined administration of PI3K inhibitors with either HER2 or MEK inhibitors resulted in decreased proliferation, enhanced cell death and superior anti-tumor activity compared with single agent PI3K inhibitors. Our findings indicate that PI3K inhibition in HER2-overexpressing breast cancer activates a new compensatory pathway that results in ERK dependency. Combined anti-MEK or anti-HER2 therapy with PI3K inhibitors may be required in order to achieve optimal efficacy in HER2-overexpressing breast cancer. This approach warrants clinical evaluation.  相似文献   

9.
The small molecule HER2 tyrosine kinase inhibitor (TKI) lapatinib (Tykerb®) is approved for the therapy of patients with HER2-positive breast carcinomas who have progressed on trastuzumab (Herceptin®). Unfortunately, the efficacy of this HER2 TKI is limited by both primary (inherent) and acquired resistance, the latter typically occurring within 12 months of starting therapy. One of the key factors limiting our understanding of the mechanisms involved in lapatinib resistance is the lack of published preclinical models. We herein review lapatinib-refractory models recently developed at the bench and the survival pathways discovered. As hyperactivation of the pharmacologically targetable PI3K/mTOR/p70S6K1 axis appears to be central to the occurrence of lapatinib resistance, preclinical data showing enhanced antitumour effects when combining lapatinib with mTOR inhibitors (e.g., rapamycin analogues and NVP-BEZ235) highlight the importance of translational work to yield clinically useful regimens capable of delaying or treating lapatinib resistance. The unexpected ability of the anti-type II diabetes drug metformin to inactivate mTOR and decrease p70S6K1 activity further reveals that this biguanide, generally considered non-toxic and remarkably inexpensive, might be considered for new combinatorial lapatinib-based protocols in HER2-overexpressing breast cancer patients.  相似文献   

10.
Resistance against first and second generation (irreversible) ErbB inhibitors is an unsolved problem in clinical oncology. The purpose of this study was to examine the effects of the irreversible ErbB inhibitors pelitinib and canertinib on growth of breast and ovarian cancer cells. Although in vitro growth-inhibitory effects of both drugs exceeded by far the effects of all reversible ErbB blockers tested (lapatinib, erlotinib, and gefitinib), complete growth inhibition was usually not reached. To define the mechanism of resistance, we examined downstream signaling pathways in drug-exposed cells by Western blot analysis. Although ErbB phosphorylation was reduced by pelitinib and canertinib, activation of the AKT/mTOR pathway remained essentially unaltered in drug-resistant cells. Correspondingly, transfection of tumor cells with constitutively activated AKT was found to promote resistance against all ErbB inhibitors tested, whereas dominant negative AKT reinstalled sensitivity in drug-resistant cells. In a next step, we applied PI3K/AKT/mTOR blockers including the dual PI3K/mTOR kinase inhibitor NVP-BEZ235. These agents were found to cooperate with pelitinib and canertinib in producing in vitro growth inhibition in cancer cells resistant against ErbB-targeting drugs. In conclusion, our data show that ErbB drug-refractory activation of the PI3K/AKT/mTOR pathway plays a crucial role in resistance against classical and second-generation irreversible ErbB inhibitors, and NVP-BEZ235 can override this form of resistance against pelitinib and canertinib.  相似文献   

11.
With the advent of molecularly targeted agents, treatment of metastatic renal cell carcinoma (mRCC) has improved significantly. Agents targeting the vascular endothelial growth factor receptor (VEGFR) and the mammalian target of rapamycin complex 1 (mTORC1) are more effective and less toxic than previous standards of care involving cytotoxic and cytokine therapies. Unfortunately, many patients relapse following treatment with VEGFR and mTORC1 inhibitors as a result of acquired resistance mechanisms, which are thought to lead to the reestablishment of tumor vasculature. Specifically, the loss of negative feedback loops caused by inhibition of mTORC1 leads to upregulation of downstream effectors of the phosphoinositide 3‐kinase (PI3K)/AKT/mTOR pathway and subsequent activation of hypoxia‐inducible factor, an activator of angiogenesis. De novo resistance involving activated PI3K signaling has also been observed. These observations have led to the development of novel agents targeting PI3K, mTORC1/2 and PI3K/mTORC1/2, which have demonstrated antitumor activity in preclinical models of RCC. Several agents—BKM120, BEZ235 and GDC‐0980—are being investigated in clinical trials in patients with metastatic/advanced RCC, and similar agents are being tested in patients with solid tumors. The future success of mRCC treatment will likely involve a combination of agents targeting the multiple pathways involved in angiogenesis, including VEGFR, PI3K and mTORC1/2.  相似文献   

12.
The mammalian target of rapamycin (mTOR) acts in two structurally and functionally distinct protein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Upon deregulation, activated mTOR signaling is associated with multiple processes involved in tumor growth and metastasis. Compared with mTORC1, much less is known about mTORC2 in cancer, mainly because of the unavailability of a selective inhibitor. However, existing data suggest that mTORC2 with its two distinct subunits Rictor and mSin1 might play a more important role than assumed so far. It is one of the key effectors of the PI3K/AKT/mTOR pathway and stimulates cell growth, cell survival, metabolism, and cytoskeletal organization. It is not only implicated in tumor progression, metastasis, and the tumor microenvironment but also in resistance to therapy. Rictor, the central subunit of mTORC2, was found to be upregulated in different kinds of cancers and is associated with advanced tumor stages and a bad prognosis. Moreover, AKT, the main downstream regulator of mTORC2/Rictor, is one of the most highly activated proteins in cancer. Primary and secondary liver cancer are major problems for current cancer therapy due to the lack of specific medical treatment, emphasizing the need for further therapeutic options. This review, therefore, summarizes the role of mTORC2/Rictor in cancer, with special focus on primary liver cancer but also on liver metastases.  相似文献   

13.
Although HER2 targeted therapies have substantially improved outcomes in HER2 overexpressing (HER2+) breast cancer, resistance to these therapies remains a clinical challenge. To better understand the mechanisms of resistance to lapatinib, a HER2 and EGFR dual kinase inhibitor, we treated HER2+ breast cancer cells with lapatinib for an extended period to generate a lapatinib-resistant (LapR) cell line model and examined cancer-promoting signaling activation in LapR cells. We found that LapR cells possess enhanced mTOR activation, which was independent of PI3K and other known mTOR activators. Lapatinib resistance could be reversed by mTOR kinase inhibition. Intriguingly, LapR cells had constitutive cytosolic cytochrome C, indicating that LapR cells suppress lapatinib-induced apoptosis downstream of cytochrome C release from mitochondria into the cytosol rather than by preventing its release into the cytosol. Consistent with this notion, LapR cells possessed increased levels of 2 of the inhibitors of apoptosis (IAPs), survivin and c-IAP-2, which are reported to block caspase activation downstream of cytosolic cytochrome C release. Further, treatment with the mTOR kinase inhibitor AZD8055 or the Hsp90 inhibitor 17-AAG reversed expression of IAPs and overcame lapatinib resistance in LapR cells. Together, these data suggest that suppression of apoptosis downstream of cytosolic cytochrome C release, possibly through increased expression of IAPs or other caspase-suppressing proteins, may promote lapatinib resistance. Further, PI3K is thought to be the main driver of lapatinib resistance, but our findings indicate that PI3K inhibitors may be ineffective in some lapatinib-resistant HER2+ breast cancers with PI3K-independent activation of mTOR kinase, which may instead benefit from mTOR or Hsp90 inhibitors.  相似文献   

14.
ERBB2/HER2 belongs to the EGFR-family of receptor tyrosine kinases and its overexpression can promote tumor progression. Breast cancer patients with ERBB2 amplifications are currently treated with lapatinib, a small-molecule kinase inhibitor that specifically blocks EGFR/ERBB2 signaling. Here, we show that hypoxia, via HIF-1, induces resistance to lapatinib-mediated effects in ERBB2-expressing mammary epithelial and ERBB2-positive breast cancer cells. Lapatinib-mediated growth inhibition and apoptosis in three-dimensional (3D) cultures are decreased under hypoxic conditions. Hypoxia can maintain activation of signaling pathways downstream from ERBB2 including AKT and ERK in the presence of lapatinib. HIF-1 is both required and sufficient to induce lapatinib resistance as overexpression of stable HIF-1 in ERBB2-expressing cells blocks lapatinib-mediated effects and maintains ERBB2-downstream signaling under normoxic conditions. Under hypoxia, activation of ERK signaling is required for lapatinib resistance as treatment with MEK inhibitor trametinib reverses hypoxia-mediated lapatinib resistance. HIF-1 can bypass the lapatinib-treated inhibition of the ERK pathway via inhibition of the dual-specificity phosphatase 2 (DUSP2). Indeed, overexpression of DUSP2 in ErbB2-positve breast cancer cells reverses hypoxia-mediated lapatinib resistance. Thus, our results provide rationale for therapeutic evaluation of the treatment of hypoxic ERBB2 expressing breast tumors with a combination of lapatinib and MEK inhibitors.  相似文献   

15.
Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-alpha. These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab. The PI3K pathway is, therefore, an attractive target for cancer therapy. We have studied NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR). NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells. The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status. The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235. NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-alpha, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab. In trastuzumab-resistant BT474 H1047R breast cancer xenografts, NVP-BEZ235 inhibited PI3K signaling and had potent antitumor activity. In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies. In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha.  相似文献   

16.
Epidemiologic and experimental studies support a key role of the phosphatidyl inositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway in the biology of human cancers. Alterations resulting in activation of PI3K/Akt/mTOR signaling are perhaps the most frequent events observed in solid tumors, including breast cancer, and contribute to neoplastic transformation. The PI3K/mTOR pathway can be activated by overproduction of growth factors or chemokines, loss of phosphatase and tensin homolog (PTEN) expression, or by mutations in growth factor receptors Ras, PTEN, or PI3K itself. Activation of this pathway contributes to cell cycle proliferation, growth, cell cycle entry, survival, cell motility, protein synthesis, and glucose metabolism, all important aspects of tumorigenesis. The most common genetic aberrations in breast cancer are activating somatic missense mutations in the gene encoding the p110a (PIK3CA) subunit of PI3K. The PTEN gene is often hypermethylated or decreased in expression, through as yet unclear mechanisms, in breast cancer. Studies have shown that PI3K/PTEN/AKT pathway modulation is implicated in HER2/neu-tumorigenesis and in response to the HER2-targeting antibody trastuzumab. Components of the pathway are regulated by feed-back and cross-talk to other signaling cascades and appear to be implicated with drug resistance. Over the past few years, a number of components of this signaling cascade have been the subject of intense drug-discovery activities. Rapamycin analogs have already been shown to have antitumor efficacy in some tumor types. Newer-generation PI3K, AKT, and mTOR inhibitors have shown significant promise preclinically and are now in clinical trials. This article summarizes the progress made in the elucidation of the pathway, clinical implications in pathology of breast cancer, and reviews novel drugs targeting this pathway for cancer treatment, particularly inhibitors of PI3K, AKT, and mTOR, currently undergoing clinical trials. Potential combination strategies, safety concerns, and resistance mechanisms for this new generation of anticancer agents are also discussed.  相似文献   

17.

Background

Treatment with anti-estrogens or aromatase inhibitors is commonly used for patients with estrogen receptor-positive (ER+) breast cancers; however resistant disease develops almost inevitably, requiring a choice of secondary therapy. One possibility is to use inhibitors of the PI3K/mTOR pathway and several candidate drugs are in development. We examined the in vitro effects of two inhibitors of the PI3K/mTOR pathway on resistant MCF-7 cells.

Results

The derived sub-lines showed increased resistance to tamoxifen but none exhibited concomitantly increased sensitivity to the PI3K inhibitors. NVP-BEZ235 and GSK2126458 acted mainly by induction of cell cycle arrest, particularly in G1-phase, rather than by induction of apoptosis. The lines varied considerably in their utilization of the AKT, p70S6K and ERK pathways. NVP-BEZ235 and GSK2126458 inhibited AKT signaling but NVP-BEZ235 showed greater effects than GSK2126458 on p70S6K and rpS6 signaling with effects resembling those of rapamycin.

Methods

We cultured MCF-7 cells for prolonged periods either in the presence of the anti-estrogen tamoxifen (three sub-lines) or in estrogen free medium (two sub-lines) to mimic the effects of clinical treatment. We then analyzed the effects of two dual PI3K/mTOR phosphoinositide-3-kinase inhibitors, NVP-BEZ235 and GSK2126458, on the growth and signaling pathways of these MCF-7 sub-lines. The functional status of the PI3K, mTOR and ERK pathways was analyzed by measuring phosphorylation of AKT, p70S6K, rpS6 and ERK.

Conclusion

Increased resistance to tamoxifen in these MCF-7 sub-lines is not associated with hypersensitivity to PI3K inhibitors. While both drugs inhibited AKT signaling, NVP-BEZ235 resembled rapamycin in inhibiting the mTOR pathway.Key words: breast cancer, PI3K, mTOR, BEZ235, GSK2126458, estrogen receptor, MCF-7  相似文献   

18.
19.
The mammalian target of rapamycin (mTOR), an evolutionarily conserved serine/threonine protein kinase, integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation, survival, and autophagy. The mTOR pathway is frequently activated in many human cancers, mainly resulting from alterations in the upstream regulators, such as phosphoinositide 3-kinase (PI3K)/AKT activation, PTEN loss or dysregulation of mTOR-negative regulators (e.g., TSC1/2), leading to uncontrolled proliferation. Thus, inhibiting the PI3K/AKT/mTOR pathways is widely considered as an effective approach for targeted cancer therapy. Recently, we and others found that DEPTOR, a naturally occurring inhibitor of both mTORC1 and mTORC2, was degraded by SCF (Skp1-Cullin-F box proteins) E3 ubiquitin ligase, the founding member of cullin-RING-ligases (CRLs), resulting in mTOR activation and cell proliferation. In addition to DEPTOR, previous studies have demonstrated that several other negative regulators of mTOR pathway are also substrates of CRL/SCF E3s. Thus, targeting CRL/SCF E3s is expected to cause the accumulation of these mTOR signal inhibitors to effectively block the mTOR pathway. In this review, we will discuss mTOR signaling pathway, how DEPTOR regulates mTOR/AKT axis, thus acting as a tumor suppressor or oncogene in some cases, how DEPTOR is ubiquitinated and degraded by SCFβ-TrCP E3, and how MLN4924, a small-molecule indirect inhibitor of CRL/SCF E3 ligases through blocking cullin neddylation, might be useful as a novel approach of mTOR pathway targeting for cancer therapy.  相似文献   

20.
Dual PI3K/mTOR(phosphatidylinositol 3-kinase/mammalian target of rapamycin) inhibitors are being evaluated clinically for the treatment of tumors with a hyperactivated PI3K/mTOR pathway. However, unexpected outcomes were obtained in clinical studies of cancer patients with an aberrant PI3K pathway. In clinical trials, applicable combination regimens are not yet available. In this study, using an integrated analysis of acquired BEZ235-resistant nasopharyngeal carcinoma cells, we demonstrate that DNA methyltransferase is a key modulator and a common node upstream of the AKT/mTOR and PDK1/MYC pathways, which are activated in cancer cells with acquired BEZ235 resistance. DNA methyltransferases were upregulated and induced PTEN and PPP2R2B gene hypermethylation, which downregulated their expression in BEZ235-resistant cancer cells. Reduced PTEN and PPP2R2B expression correlated with activated AKT/mTOR and PDK1/MYC pathways and conferred considerable BEZ235 resistance in nasopharyngeal carcinoma. Targeting methyltransferases in combination with BEZ235 sensitized BEZ235-resistant cells to BEZ235 in vitro and in vivo, suggesting the potential clinical application of this strategy to overcome BEZ235 resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号