首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coxsackievirus B (CVB) is a significant pathogen of neonatal diseases with severe systemic involvement and high mortality. Hence, it is essential to develop a CVB-induced acute systemic disease model on newborn mouse and study the injury at the onset phase. In this work, a clinical strain of CVB3, Nancy, and its variant strain, Macocy, were adopted in 24 hour old neonates by oral infection. The pathological changes in the heart, liver and lung tissues were analyzed by pathology assays. In situ end labeling assay for programmed cell death was carried out for liver tissues. The data on fatality and infection rates and pathology scores were analyzed statistically. The genomic sequences of the two strains were aligned. The model represented the manifest clinical syndromes of hepatitis, pneumonia and myocardial injury at the onset phase, in which massive numbers of hepatocytes had undergone programmed cell death. Statistical and pathological analysis indicated that the myocardial injury was mild, whereas the liver and lung were more severe. The fatality rate, infection and pathology of the two CVB strains were the same. Therefore, two nucleotide mutations in the 5’ UTR and four amino acid mutations in polyprotein, which did not alter virulence, were shown. By peroral CVB infection of neonatal mice, we developed an acute systemic disease model for studying visceral pathology and systemic disease. At the onset of acute neonatal systemic disease, the hepatitis and pneumonia may be the dominant reason of death, as the injury of liver and lung is more severe than that of heart.  相似文献   

2.
Coxsackievirus-induced pancreatitis   总被引:2,自引:0,他引:2  
In humans, infections with the group B coxsackieviruses (CVBs) range from asymptomatic infections to chronic, debilitating diseases. The CVBs are associated with chronic inflammatory diseases of the pancreas, heart, and central nervous system. A major focus in CVB pathogenesis is to understand the mechanisms by which these viruses cause acute diseases that resolve or acute diseases that progress to chronic diseases. The present review explores CVB infections in the development of acute and chronic pancreatitis. Mouse models of CVB-induced pancreatitis share many features with the human diseases and are providing insight into the multi-faceted processes of pancreatic tissue repair and irreversible tissue destruction. The development and progression of CVB-induced pancreatic inflammatory disease is an extremely complex process, involving both viral and host factors. The review examines the roles of the virus and host in contributing to the disease process. Recent studies of global gene expression during CVB-induced pancreatitis have increased our understanding of host factors that influence the outcome of infection and have highlighted interrelationships among complex biological programs. As we unravel the complexity of the disease process, the information gained will lead to the design of therapeutics that not only prevent the progression of chronic inflammatory disease, but that also restore functionality of affected tissues and organs.  相似文献   

3.
Neonates are particularly susceptible to coxsackievirus infections of the central nervous system (CNS), which can cause meningitis, encephalitis, and long-term neurological deficits. However, viral tropism and mechanism of spread in the CNS have not been examined. Here we investigate coxsackievirus B3 (CVB3) tropism and pathology in the CNS of neonatal mice, using a recombinant virus expressing the enhanced green fluorescent protein (eGFP). Newborn pups were extremely vulnerable to coxsackievirus CNS infection, and this susceptibility decreased dramatically by 7 days of age. Twenty-four hours after intracranial infection of newborn mice, viral genomic RNA and viral protein expression were detected in the choroid plexus, the olfactory bulb, and in cells bordering the cerebral ventricles. Many of the infected cells bore the anatomical characteristics of type B stem cells, which can give rise to neurons and astrocytes, and expressed the intermediate filament protein nestin, a marker for progenitor cells. As the infection progressed, viral protein was identified in the brain parenchyma, first in cells expressing neuron-specific class III beta-tubulin, an early marker of neuronal differentiation, and subsequently in cells expressing NeuN, a marker of mature neurons. At later time points, viral protein expression was restricted to neurons in specific regions of the brain, including the hippocampus, the entorhinal and temporal cortex, and the olfactory bulb. Extensive neuronal death was visible, and appeared to result from virus-induced apoptosis. We propose that the increased susceptibility of the neonatal CNS to CVB infection may be explained by the virus' targeting neonatal stem cells; and that CVB is carried into the brain parenchyma by developing neurons, which continue to migrate and differentiate despite the infection. On full maturation, some or all of the infected neurons undergo apoptosis, and the resulting neuronal loss can explain the longer-term clinical picture.  相似文献   

4.
The group B coxsackieviruses (CVB) induce experimental pancreatitis and myocarditis in mice and are established agents of human myocarditis, especially in children. We tested the hypothesis that the development of CVB-induced myocarditis is linked to CVB-induced pancreatitis by studying the replication of different CVB strains in mice. Eight of nine genotypically different type 3 CVB (CVB3) strains induced acute pancreatitis in mice; of these, three viruses also induced acute myocarditis. One CVB3 strain was avirulent for both organs. Myocarditis was not observed in the absence of pancreatitis. The results obtained by inoculation of mice with strains of other CVB serotypes were consistent with these data. Infectious virus titers were measured in serum, pancreas, and heart as a function of time after inoculation of mice with three CVB3 strains. Each strain was representative of one of the three viral virulence phenotypes: avirulent, pancreovirulent only, and cardiovirulent. All strains replicated well and persisted in the pancreas through 8 days post-inoculation, but the cardiovirulent CVB3 strain tended to replicate to higher titer earlier and persist longer in sera, pancreatic, and cardiac tissues than the noncardiovirulent strains. Replication of the CVB3 strains were studied in two human pancreatic tumor lines and in primary human endothelial cell cultures derived from cardiac artery. Cardiovirulent strains, both individually and as a group, tended to replicate to titers as high as, or higher than, noncardiovirulent strains did in cell culture. The data are consistent with the possibility of an etiologic link between CVB-induced pancreatic and heart disease.  相似文献   

5.
Coxsackieviruses B (CVB) are small, non-enveloped, single-stranded RNA viruses belonging to the Enterovirus genus of the Picornaviridae family. They are common worldwide and cause a wide variety of human diseases ranging from those having relatively mild symptoms to severe acute and chronic pathologies such as cardiomyopathy and type 1 diabetes. The development of safe and effective strategies to combat these viruses remains a challenge. The present review outlines current approaches to control CVB infections and associated diseases. Various drugs targeting viral or host proteins involved in viral replication as well as vaccines have been developed and shown potential to prevent or combat CVB infections in vitro and in vivo in animal models. Repurposed drugs and alternative strategies targeting miRNAs or based on plant extracts and probiotics and their derivatives have also shown antiviral effects against CVB. In addition, clinical trials with vaccines and drugs are underway and offer hope for the prevention or treatment of CVB-induced diseases.  相似文献   

6.
Coxsackievirus type B (CVB) infection of the pancreas induces a massive cellular infiltrate composed of natural killer cells, T cells, and macrophages and leads to the destruction of exocrine tissue. The physiological manifestations of pancreatic CVB infection are correlated with viral tropism; the virus infects acinar cells but spares the islets of Langerhans. Here we evaluate the mechanisms underlying pancreatic inflammation and destruction and identify the determinants of viral tropism. T-cell-mediated immunopathology has been invoked, along with direct virus-mediated cytopathicity, to explain certain aspects of CVB-induced pancreatic disease. However, we show here that in the pancreas, the extent of inflammation and tissue destruction appears unaltered in the absence of the cytolytic protein perforin; these findings exclude any requirement for perforin-mediated lysis by natural killer cells or cytotoxic T cells in CVB3-induced pancreatic damage. Furthermore, perforin-mediated cytotoxic T-cell activity does not contribute to the control of CVB infection in this organ. In addition, we demonstrate that the recently identified coxsackie-adenovirus receptor is expressed at high levels in acinar cells but is barely detectable in islets, which is consistent with its being a major determinant of virus tropism and, therefore, of disease. However, further studies using various cell lines of pancreatic origin reveal secondary determinants of virus tropism.  相似文献   

7.
The basis for the distinct patterns of brain pathology in individuals experiencing virus-induced encephalitis may be related to either the tropism of the virus or the host's response to virus infection of the central nervous system (CNS). In these studies we used Theiler's murine encephalomyelitis virus (TMEV) and a series of mice deficient in various immune system components (α/β T cells, antibody, Class I MHC, and Class II MHC) to examine the hypothesis that discrete populations of CNS cells are protected differentially from virus infection by distinct arms of the immune response. Here we demonstrate that the Class I-mediated immune response provided more protection from areas of the brain (brainstem, corpus callosum and cerebellum) with abundant white matter as there was significantly more disease in these areas in β2m -/- (Class I-deficient) mice as compared to Aβ° (Class II-deficient) mice. In contrast, the striatum, with an abundance of neurons, was protected from virus-induced pathology primarily by antibody. In addition, we determined that antibody and α/β T cells provided protection from severe deficits and death during the acute phase of the disease. The data presented here support the hypothesis that distinct immune system components function to protect discrete areas of the CNS from virus-induced pathology.  相似文献   

8.
Although case reports have described detection of rotavirus (RV) in extraintestinal sites such as the liver, kidney, and central nervous system (CNS) of children with RV gastroenteritis, CNS localization in RV infection seems to be rare. RT-PCR and nucleotide sequencing detected a G1P[8] strain in the stool and cerebrospinal fluid (CSF) samples of a patient with concurrent RV-associated enteritis and CNS signs. Upon sequence analysis, the viruses detected in the CSF was identical to the virus detected in the stools. In the VP7- and VP4-based phylogenetic dendograms the strain clustered within the G1-Ic sub-lineage and the P[8]-III lineage. This study supports the hypothesis that RV infection was able to spread from the intestinal tract to the CNS, and likely played a role in the onset of neurological disease.  相似文献   

9.
S Perlman  G Jacobsen  A Afifi 《Virology》1989,170(2):556-560
The route of entry into the central nervous system (CNS) of most neurtropic viruses has not been established. The coronavirus, mouse hepatitis virus strain JHM (MHV-JHM), causes acute encephalomyelitis and acute and chronic demyelinating diseases and is an important model system for virus-induced neurological disease. Suckling C57BL/6 mice infected intranasally with MHV-JHM develop either the acute encephalomyelitis or a late onset, symptomatic demyelinating encephalomyelitis, depending on whether they are nursed by unimmunized or immunized dams. Analysis by in situ hybridization was used to determine the route of entry of MHV-JHM into the CNS in these mice. At early times, viral RNA was detected only in the trigeminal and olfactory nerves and in their immediate connections in all mice. A few days later, MHV-JHM RNA was found throughout the brain in mice dying of the acute encephalomyelitis, but remained confined to the entry sites in mice which did not develop acute disease. These results suggest that MHV-JHM enters the CNS via an interneuronal route in all mice, but that the presence of maternal antibody prevents the dissemination of virus via extracellular fluid. In addition, MHV-JHM may establish low-level persistence in the trigeminal or olfactory nerve or in one of its connections in mice that do not develop acute encephalomyelitis.  相似文献   

10.
Complement is implicated in the pathology of neurodegenerative and inflammatory disease in the central nervous system (CNS). Although studies demonstrate that inhibition of complement activation attenuates disease development in the CNS, the specific complement components that contribute to the pathogenesis of CNS diseases remain unclear. To dissect the role of C5a in CNS disease, we developed a transgenic mouse that produces C5a exclusively in the brain using the astrocyte-specific, murine glial fibrillary acidic protein (GFAP) promoter. C5a/GFAP mice develop normally and do not demonstrate any signs of spontaneous inflammation or neurodegeneration with age. Using C5a/GFAP mice, we examined the outcome of the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). To our surprise the onset and severity of myelin oligodendrocyte glycoprotein-induced EAE was essentially identical between C5a/GFAP and control mice. These results demonstrate that C5a, despite it is pro-inflammatory functions, is not critical to the development and progression of EAE.  相似文献   

11.
Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2 (SPG2) are X-linked developmental defects of myelin formation affecting the central nervous system (CNS). They differ clinically in the onset and severity of the motor disability but both are allelic to the proteolipid protein gene (PLP), which encodes the principal protein components of CNS myelin, PLP and its spliced isoform, DM20. We investigated 52 PMD and 28 SPG families without large PLP duplications or deletions by genomic PCR amplification and sequencing of the PLP gene. We identified 29 and 4 abnormalities respectively. Patients with PLP mutations presented a large range of disease severity, with a continuum between severe forms of PMD, without motor development, to pure forms of SPG. Clinical severity was found to be correlated with the nature of the mutation, suggesting a distinct strategy for detection of PLP point mutations between severe PMD, mild PMD and SPG. Single amino-acid changes in highly conserved regions of the DM20 protein caused the most severe forms of PMD. Substitutions of less conserved amino acids, truncations, absence of the protein and PLP-specific mutations caused the milder forms of PMD and SPG. Therefore, the interactions and stability of the mutated proteins has a major effect on the severity of PLP-related diseases.  相似文献   

12.
《Seminars in immunology》2016,28(3):292-308
The recognition that complement proteins are abundantly present and can have pathological roles in neurological conditions offers broad scope for therapeutic intervention. Accordingly, an increasing number of experimental investigations have explored the potential of harnessing the unique activation pathways, proteases, receptors, complexes, and natural inhibitors of complement, to mitigate pathology in acute neurotrauma and chronic neurodegenerative diseases. Here, we review mechanisms of complement activation in the central nervous system (CNS), and explore the effects of complement inhibition in cerebral ischemic-reperfusion injury, traumatic brain injury, spinal cord injury, Alzheimer’s disease, amyotrophic lateral sclerosis, Parkinson’s disease and Huntington’s disease. We consider the challenges and opportunities arising from these studies. As complement therapies approach clinical translation, we provide perspectives on how promising complement-targeted therapeutics could become part of novel and effective future treatment options to improve outcomes in the initiation and progression stages of these debilitating CNS disorders.  相似文献   

13.
Multiple sclerosis (MS) has been proposed to be an immune‐mediated disease in the central nervous system (CNS) that can be triggered by virus infections. In Theiler's murine encephalomyelitis virus (TMEV) infection, during the first week (acute stage), mice develop polioencephalomyelitis. After 3 weeks (chronic stage), mice develop immune‐mediated demyelination with virus persistence, which has been used as a viral model for MS. Regulatory T cells (Tregs) can suppress inflammation, and have been suggested to be protective in immune‐mediated diseases, including MS. However, in virus‐induced inflammatory demyelination, although Tregs can suppress inflammation, preventing immune‐mediated pathology, Tregs may also suppress antiviral immune responses, leading to more active viral replication and/or persistence. To determine the role and potential translational usage of Tregs in MS, we treated TMEV‐infected mice with ex vivo generated induced Tregs (iTregs) on day 0 (early) or during the chronic stage (therapeutic). Early treatment worsened clinical signs during acute disease. The exacerbation of acute disease was associated with increased virus titers and decreased immune cell recruitment in the CNS. Therapeutic iTreg treatment reduced inflammatory demyelination during chronic disease. Immunologically, iTreg treatment increased interleukin‐10 production from B cells, CD4+ T cells and dendritic cells, which may contribute to the decreased CNS inflammation.  相似文献   

14.
Coxsackievirus B3 (CVB3) infection causes central nervous system diseases including aseptic meningitis and encephalitis. To understand the mechanism of this virus, a yeast two-hybrid system was used to screen cellular proteins from a human heart cDNA library. The results revealed that the human Pleckstrin Homology Domain Retinal protein (PHR1), a PH domain-containing protein with low expression in the heart and high expression in the brain, interacts with CVB3 VP1, a major structural protein of CVB3. Yeast mating assays and in vitro coimmunoprecipitation verified the interaction between CVB3 VP1 and PHR1. An α-galactosidase assay indicated that of α-galactosidase activity was higher in positive clones than in controls suggesting a strong interaction. Furthermore, assay of deletion mutants defined the minimal region of PHR1 required for its interaction with VP1 as amino acids 95–172 and two regions of VP1 required for its interaction with PHR1 as amino acids 729–767 and 811–859. The results revealed multiple binding sites between PHR1 and CVB3 VP1 and suggested that the strong interaction between these two proteins might play an important role in central nervous system disease in the human brain.  相似文献   

15.
Demyelination is a pathological feature that is characteristic of many diseases of the central nervous system (CNS) including multiple sclerosis (MS), sub-acute sclerosing panencephalomyelitis (SSPE), metachromatic leukodystrophy and Pelizaeus-Merzbacher disease. While demyelination is a pathological end-point that is common to all of these diseases, the cellular and molecular mechanisms responsible for this pathology are very different. These range from genetic defects that affect lipid metabolism in the leukodystrophies, cytopathic effects of viral infection in SSPE to the action of immunological effector mechanisms in MS and the viral encephalopathies. Irrespective of the initial cause of myelin degradation, many of these disorders are associated with some degree of CNS inflammation, as indicated by the local activation of microglia, recruitment of macrophages or the intrathecal synthesis of immunoglobulin. Many of these phenomena are now being duplicated in animal models, providing not only new insights into the pathogenesis of human demyelinating diseases, but also unexpected interrelationships between the immune response in the CNS and the pathogenesis of diseases such as Alzheimers disease and HIV encephalopathy. Autoimmune mediated models of inflammatory demyelinating CNS disease have proved particularly valuable in this respect as they allow the effects of defined immune effector mechanisms to be studied in the absence of CNS infection.  相似文献   

16.
The genus Henipavirus within the family Paramyxoviridae includes the Hendra virus (HeV) and Nipah virus (NiV) which were discovered in the 1990s in Australia and Malaysia, respectively, after emerging to cause severe and often fatal outbreaks in humans and animals. While HeV is confined to Australia, more recent NiV outbreaks have been reported in Bangladesh, India and the Philippines. The clinical manifestations of both henipaviruses in humans appear similar, with a predominance of an acute encephalitic syndrome. Likewise, the pathological features are similar and characterized by disseminated, multi‐organ vasculopathy comprising endothelial infection/ulceration, vasculitis, vasculitis‐induced thrombosis/occlusion, parenchymal ischemia/microinfarction, and parenchymal cell infection in the central nervous system (CNS), lung, kidney and other major organs. This unique dual pathogenetic mechanism of vasculitis‐induced microinfarction and neuronal infection causes severe tissue damage in the CNS. Both viruses can also cause relapsing encephalitis months and years after the acute infection. Many animal models studied to date have largely confirmed the pathology of henipavirus infection, and provided the means to test new therapeutic agents and vaccines. As the bat is the natural host of henipaviruses and has worldwide distribution, spillover events into human populations are expected to occur in the future.  相似文献   

17.
Theiler's murine encephalomyelitis virus (TMEV) is an enteric pathogen of mice which causes acute and chronic neurological disorders in the natural host. When brain-derived stocks of TMEV isolates are adapted to cell culture they predominantly form either large or small plaques. In this study the type of central nervous system (CNS) infection (acute versus chronic) and the associated disease occurring in mice inoculated intracerebrally with large and small plaque strains of TMEV was investigated. Large and small plaque strains of TMEV were found to vary in virulence, type of neurological disease produced and ability to establish persistent CNS infection in mice. Two large plaque strains, GDVII and FA viruses, were highly virulent, produced acute encephalitis, but were cleared from the nervous systems of surviving animals. Therefore, it appears that these large plaque variants do not cause persistent CNS infection in mice. In contrast, five small plaque strains, DA, WW, TO4, Yale and BeAn8386 viruses, were relatively avirulent, usually produced no illness during the first month after inoculation, but readily established persistent CNS infection in mice. Persistently infected mice later developed demyelinating disease. Having identified strains of TMEV that differ regarding their ability to persist, we now hope to be able to exploit this difference in elucidating the basic mechanism(s) of TMEV persistence.  相似文献   

18.
Coxsackieviruses are significant human pathogens causing myocarditis, meningitis, and encephalitis. We previously demonstrated the ability of coxsackievirus B3 (CVB3) to persist within the neonatal central nervous system (CNS) and to target neural stem cells. Given that CVB3 is a cytolytic virus and may therefore damage target cells, we characterized the potential reduction in neurogenesis within the developing brain and the subsequent developmental defects that occurred after the loss of these essential neural stem cells. Neonatal mice were inoculated with a recombinant CVB3 expressing eGFP (eGFP-CVB3), and alterations in neurogenesis and brain development were evaluated over time. We observed a reduction in proliferating cells in CNS neurogenic regions simultaneously with the presence of nestin(+) cells undergoing apoptosis. The size of the brain appeared smaller by histology, and a permanent decrease in brain wet weight was observed after eGFP-CVB3 infection. We also observed an inverse relationship between the amount of virus material and brain wet weight up to day 30 postinfection. In addition, signs of astrogliosis and a compaction of the cortical layers were observed at 90 days postinfection. Intriguingly, partial brain wet weight recovery was observed in mice treated with the antiviral drug ribavirin during the persistent stage of infection. Hence, long-term neurological sequelae might be expected after neonatal enteroviral infections, yet antiviral treatment initiated long after the end of acute infection might limit virus-mediated neuropathology.  相似文献   

19.
Experimental allergic encephalomyelitis (EAE) is an autoimmune disease characterized by inflammation and demyelination in the central nervous system (CNS). Administration of transforming growth factor-beta (TGF-beta) has been shown to inhibit EAE. In this study, the possible role of endogenous TGF-beta in the regulation of relapsing EAE produced by the transfer of myelin basic protein-specific T cell lines was assessed. Although TGF-beta is not present in the normal CNS, this cytokine was detected by immunohistology in areas of central nervous system inflammation in both acute and chronic disease. The administration of anti-TGF-beta at the disease onset led to a worsening of the clinical course of EAE and more extensive pathological lesions. These findings provide direct evidence for a role of endogenous TGF-beta in the remissions seen in chronic relapsing EAE.  相似文献   

20.
A prominent feature of the clinical spectrum of multiple sclerosis (MS) is its high incidence of onset in the third decade of life and the relative rarity of clinical manifestations during childhood and adolescence, features suggestive of age-related restriction of clinical expression. Experimental allergic encephalomyelitis (EAE), a model of central nervous system (CNS) autoimmune demyelination with many similarities to MS, has a uniform rapid onset and a high incidence of clinical and pathological disease in adult (mature) animals. Like MS, EAE is most commonly seen and studied in female adults. In this study, age-related resistance to clinical EAE has been examined with the adoptive transfer model of EAE in SJL mice that received myelin basic protein-sensitized cells from animals 10 days (sucklings) to 12 weeks (young adults) of age. A variable delay before expression of clinical EAE was observed between the different age groups. The preclinical period was longest in the younger (<14 days of age) animals, and shortest in animals 6 to 8 weeks old at time of transfer. Young animals initially resistant to EAE eventually expressed well-developed clinical signs by 6 to 7 weeks of age. This was followed by a remitting, relapsing clinical course. For each age at time of sensitization, increased susceptibility of females compared to males was observed. Examination of the CNS of younger animal groups during the preclinical period showed lesions of acute EAE. Older age groups developed onset of signs coincident with acute CNS lesions. This age-related resistance to clinical EAE in developing mice is reminiscent of an age-related characteristic of MS previously difficult to study in vivo. The associated subclinical CNS pathology and age-related immune functions found in young animals may be relevant to the increasing clinical expression of MS with maturation, and may allow study of factors associated with the known occasional poor correlation of CNS inflammation and demyelination and clinical changes in this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号