首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Synapses are specialized cell–cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development.  相似文献   

2.
Malignant gliomas are characterized by their ability to invade normal brain tissue. We have previously shown that the small GTPase Rac1 plays a role in both migration and invasion in gliomas. Here, we aim to identify Rac-activating guanine nucleotide exchange factors (GEFs) that mediate glioblastoma invasiveness. Using a brain tumor expression database, we identified three GEFs, Trio, Ect2, and Vav3, that are expressed at higher levels in glioblastoma versus low-grade glioma. The expression of these GEFs is also associated with poor patient survival. Quantitative real-time polymerase chain reaction and immunohistochemical analyses on an independent set of tumors confirmed that these GEFs are overexpressed in glioblastoma as compared with either nonneoplastic brain or low-grade gliomas. In addition, depletion of Trio, Ect2, and Vav3 by siRNA oligonucleotides suppresses glioblastoma cell migration and invasion. Depletion of either Ect2 or Trio also reduces the rate of cell proliferation. These results suggest that targeting GEFs may present novel strategies for anti-invasive therapy for malignant gliomas.  相似文献   

3.
Vav-1 and Vav-2 are closely related Dbl-homology GTP exchange factors (GEFs) for Rho GTPases. Mutation of Vav-1 disrupts T cell development and T cell antigen receptor-induced activation, but has comparatively little effect on B cells. We found that combined deletion of both Vav-1 and Vav-2 in mice resulted in a marked reduction in mature B lymphocyte numbers. Vav-1(-/-)Vav-2(-/-) B cells were unresponsive to B cell antigen receptor (BCR)-driven proliferation in vitro and to thymus-independent antigen in vivo. BCR-stimulated intracellular calcium mobilization was greatly impaired in Vav-1(-/-)Vav-2(-/-) B cells. These findings establish a role for Vav-2 in BCR calcium signaling and reveal that the Vav family of GEFs is critical to B cell development and function.  相似文献   

4.
Vav-family proteins in T-cell signalling   总被引:2,自引:0,他引:2  
  相似文献   

5.
The Saccharomyces cerevisiae Cdc24p guanine nucleotide exchange factor (GEF) activates the Cdc42p GTPase to a GTP-bound state. Cdc42p and Cdc24p co-localize at polarized growth sites during the cell cycle; and analysis of Cdc24p carboxyl-terminal truncation and site-specific mutations identified a 56-amino-acid domain as being necessary and sufficient for localization to these sites. This domain, however, was unable to anchor Cdc24p at these sites. Anchoring was restored by fusing the targeting domain to either the Cdc24p carboxyl-terminal PC domain that interacts with the Bem1p scaffold protein or the Cdc42p KKSKKCTIL membrane-anchoring domain. Mutant analysis and protein solubilization data indicated that anchoring required Bem1p, the Rsr1p/Bud1p GTPase, and the potential transmembrane protein YGR221Cp/Tos2p. These data are consistent with Cdc24p localization being a function of both membrane-specific targeting and subsequent anchoring within a multi-protein complex. Given the highly conserved roles of GEFs in Cdc42p signaling pathways, it is likely that similar targeting and anchoring mechanisms exist for Rho GEFs in other eukaryotes.Communicated by S. Hohmann  相似文献   

6.
Ca2+ sensitivity of smooth muscle and nonmuscle myosin II reflects the ratio of activities of myosin light-chain kinase (MLCK) to myosin light-chain phosphatase (MLCP) and is a major, regulated determinant of numerous cellular processes. We conclude that the majority of phenotypes attributed to the monomeric G protein RhoA and mediated by its effector, Rho-kinase (ROK), reflect Ca2+ sensitization: inhibition of myosin II dephosphorylation in the presence of basal (Ca2+ dependent or independent) or increased MLCK activity. We outline the pathway from receptors through trimeric G proteins (Galphaq, Galpha12, Galpha13) to activation, by guanine nucleotide exchange factors (GEFs), from GDP. RhoA. GDI to GTP. RhoA and hence to ROK through a mechanism involving association of GEF, RhoA, and ROK in multimolecular complexes at the lipid cell membrane. Specific domains of GEFs interact with trimeric G proteins, and some GEFs are activated by Tyr kinases whose inhibition can inhibit Rho signaling. Inhibition of MLCP, directly by ROK or by phosphorylation of the phosphatase inhibitor CPI-17, increases phosphorylation of the myosin II regulatory light chain and thus the activity of smooth muscle and nonmuscle actomyosin ATPase and motility. We summarize relevant effects of p21-activated kinase, LIM-kinase, and focal adhesion kinase. Mechanisms of Ca2+ desensitization are outlined with emphasis on the antagonism between cGMP-activated kinase and the RhoA/ROK pathway. We suggest that the RhoA/ROK pathway is constitutively active in a number of organs under physiological conditions; its aberrations play major roles in several disease states, particularly impacting on Ca2+ sensitization of smooth muscle in hypertension and possibly asthma and on cancer neoangiogenesis and cancer progression. It is a potentially important therapeutic target and a subject for translational research.  相似文献   

7.
The Rho GTPase acts as a binary molecular switch by converting between a GDP-bound inactive and a GTP-bound active conformational state. The guanine nucleotide exchange factors (GEFs) are critical activators of Rho. Rho1 has been shown to regulate actin cytoskeleton and cell wall synthesis in the fission yeast Schizosaccharomyces pombe. Here we studied function of fission yeast RhoGEFs, Rgf1, Rgf2, and Rgf3. It was shown that these proteins have similar molecular structures, and function as GEFs for Rho1. Disruption of either rgf1 or rgf2 did not show a serious effect on the cell. On the other hand, disruption of rgf3 caused severe defects in contractile ring formation, F-actin patch localization, and septation during cytokinesis. Rgf1 and Rgf2 were localized to the cell ends during interphase and the septum. Rgf3 formed a ring at the division site, which was located outside the contractile ring and inside the septum where Rho1 was accumulated. In summary, Rgf1 and Rgf2 show functional redundancy, and roles of these RhoGEFs are likely to be different from that of Rgf3. Rho1 is likely to be activated by Rgf3 at the division site, and involved in contractile ring formation and/or maintenance and septation.  相似文献   

8.
Rho GTPases play a fundamental role in a variety of biological processes ranging from the reorganization of the actin cytoskeleton to the regulation of cell proliferation. The activation of Rho GTPases is regulated by guanine nucleotide exchange factors (GEFs) belonging to the Dbl family of proteins. The hallmark of this large family of GEFs is the presence of a tandem DH-PH module in which a pleckstrin-homology (PH) domain is located at the C-terminus of a Dbl-homology (DH) domain. Recent studies have demonstrated that SWAP-70 constitutes a novel class of Rac-GEF, in which the PH domain is located at the N-terminus, rather than the C terminus, of the DH domain. Here we report the molecular cloning of human IBP (IRF-4 binding protein), a new member of this novel family of GEFs. The IBP gene maps to human chromosome 6p21.31 centromeric to the MHC locus. Isolation of the murine IBP cDNA reveals a very high degree of homology with the human IBP cDNA suggesting that IBP is evolutionarily conserved. The 5' portion of the murine IBP cDNA is furthermore identical to the Def-6 cDNA fragment, which was identified in the course of a search for genes differentially expressed in the murine hematopoietic system. IBP is broadly expressed in the immune system and can be detected in both T and B cell compartments in contrast to SWAP-70 whose expression is primarily restricted to B cells. Taken together these findings indicate that IBP is a novel type of GEF, which participates in the activation of Rho GTPases in lymphoid tissues.  相似文献   

9.
Vav guanine nucleotide exchange factors (GEFs) have been implicated in cell adhesion by integrin and immune response receptors through the regulation of Rho GTPases. Here, we examine the role of Vav and Rho GTPases in phagocytosis by using primary murine macrophages. The genetic deletion of Rac1 and Rac2 prevents phagocytosis mediated by integrin and Fcgamma receptors (FcgammaR), whereas the genetic deletion of Vav1 and Vav3 only prevents integrin-mediated phagocytosis through the complement receptor alpha(M)beta(2). In addition, a Rac1/2 or Vav1/3 deficiency blocks Arp2/3 recruitment and actin polymerization at the complement-induced phagosome, indicating that these proteins regulate early steps in phagocytosis. Moreover, constitutively active Rac is able to rescue actin polymerization and complement-mediated phagocytosis in Vav-deficient macrophages. These studies indicate that Rac is critical for complement- and FcgammaR-mediated phagocytosis. In contrast, Vav is specifically required for complement-mediated phagocytosis, suggesting that Rac is regulated by GEFs other than Vav downstream of the FcgammaR.  相似文献   

10.
Rap1 is a monomeric GTPase that is closely related to Ras. In this review, we summarize our recent work showing that the B cell antigen receptor (BCR), as well as chemokine receptors, activate Rapl via a pathway that involves phospholipase C-dependent production of diacylglycerol (DAG). The possible identities of the DAG-regulated guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that regulate the activation of Rap1 by the BCR and chemokine receptors will be discussed. Although initially thought to be an antagonist of Ras-mediated signaling, Rap1 does not appear to modulate the ability of the BCR to activate downstream targets of Ras. Instead, activation of Rap1 promotes B cell adhesion as well as B cell migration toward chemokines. Thus, Rap1 may play a key role in a number of processes that are essential for B cell development and activation.  相似文献   

11.
Rap1 is a monomeric GTPase that is closely related to Ras. In this review, we summarize our recent work showing that the B cell antigen receptor (BCR), as well as chemokine receptors, activate Rap1 via a pathway that involves phospholipase C-dependent production of diacylglycerol (DAG). The possible identities of the DAG-regulated guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that regulate the activation of Rap1 by the BCR and chemokine receptors will be discussed. Although initially thought to be an antagonist of Ras-mediated signaling, Rap1 does not appear to modulate the ability of the BCR to activate downstream targets of Ras. Instead, activation of Rap1 promotes B cell adhesion as well as B cell migration toward chemokines. Thus, Rap1 may play a key role in a number of processes that are essential for B cell development and activation.  相似文献   

12.
The in vitro MultiFlow® DNA Damage Assay multiplexes γH2AX, p53, phospho-histone H3, and polyploidization biomarkers into a single flow cytometric analysis. The current report describes a tiered sequential data analysis strategy based on data generated from exposure of human TK6 cells to a previously described 85 chemical training set and a new pharmaceutical-centric test set (n = 40). In each case, exposure was continuous over a range of closely spaced concentrations, and cell aliquots were removed for analysis following 4 and 24 hr of treatment. The first data analysis step focused on chemicals' genotoxic potential, and for this purpose, we evaluated the performance of a machine learning (ML) ensemble, a rubric that considered fold increases in biomarkers against global evaluation factors (GEFs), and a hybrid strategy that considered ML and GEFs. This first tier further used ML output and/or GEFs to classify genotoxic activity as clastogenic and/or aneugenic. Test set results demonstrated the generalizability of the first tier, with particularly good performance from the ML ensemble: 35/40 (88%) concordance with a priori genotoxicity expectations and 21/24 (88%) agreement with expected mode of action (MoA). A second tier applied unsupervised hierarchical clustering to the biomarker response data, and these analyses were found to group certain chemicals, especially aneugens, according to their molecular targets. Finally, a third tier utilized benchmark dose analyses and MultiFlow biomarker responses to rank genotoxic potency. The relevance of these rankings is supported by the strong agreement found between benchmark dose values derived from MultiFlow biomarkers compared to those generated from parallel in vitro micronucleus analyses. Collectively, the results suggest that a tiered MultiFlow data analysis pipeline is capable of rapidly and effectively identifying genotoxic hazards while providing additional information that is useful for modern risk assessments—MoA, molecular targets, and potency. Environ. Mol. Mutagen. 60:513–533, 2019. © 2019 Wiley Periodicals, Inc.  相似文献   

13.
Antigen recognition by B-cell antigen receptors (BCRs) activates distinct intracellular signaling pathways that control the differentiation fate of activated B lymphocytes. BCR-proximal signaling enzymes comprise protein tyrosine kinases, phosphatases, and plasma membrane lipid-modifying enzymes, whose function is furthermore coordinated by catalytically inert adaptor proteins. Here, we show that an additional class of enzymatic activity provided by guanine-nucleotide exchange factors (GEFs) of the Vav family controls BCR-proximal Ca2+ mobilization, cytoskeletal actin reorganization, and activation of the PI3 kinase/Akt pathway. Whereas Vav1 and Vav3 supported all of those signaling processes to different extents in a human B-cell model system, Vav2 facilitated Actin remodeling, and activation of Akt but did not promote Ca2+ signaling. On BCR activation, Vav1 was directly recruited to the phosphorylated BCR and to the central adaptor protein SLP65 via its Src homology 2 domain. Pharmacological inhibition or genetic inactivation of the substrates of Vav GEFs, small G proteins of the Rho/Rac family, impaired BCR-induced Ca2+ mobilization, probably because phospholipase Cγ2 requires activated Rac proteins for optimal activity. Our findings show that Vav family members are key relays of the BCR signalosome that differentially control distinct signaling pathways both in a catalysis-dependent and -independent manner.  相似文献   

14.
We previously demonstrated that FGD1, the Cdc42 guanine nucleotide exchange factor (GEF) responsible for faciogenital dysplasia, is targeted by the ubiquitin ligase SCFFWD1/β-TrCP upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. Here we show that FGD3, which was identified as a homologue of FGD1 but has been poorly characterized, has conserved the same motif and is down-regulated similarly by SCFFWD1/β-TrCP. Although FGD3 and FGD1 share strikingly similar Dbl homology (DH) domains and adjacent pleckstrin homology (PH) domains, both of which are responsible for guanine nucleotide exchange, there also exist remarkable differences in their structures. Indeed, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells: whereas FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. Furthermore, FGD1 and FGD3 reciprocally regulated cell motility: when inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration whereas FGD3 inhibited it. Thus we demonstrate that the highly homologous GEFs, FGD1 and FGD3 play different roles to regulate cellular functions but that their intracellular levels are tightly controlled by the same destruction pathway through SCFFWD1/β-TrCP.  相似文献   

15.
The vav family     
The Vav family of Rho-guanine nucleotide exchange factors (GEFs) is thought to control a diverse array of signaling pathways emanating from antigen receptors in lymphocytes, although the exact mechanism by which Vav exerts its function is only beginning to emerge. Vav proteins are modular and contain the Dbl-homology domain, typical of all known Rho-GEFs, in addition to several other structural domains characteristic of proteins involved in signal transduction. Recently, our laboratory generated mice congenitally lacking all three Vav isoforms, providing genetic evidence that the Vav family is critical and nonredundant in T- and B-lymphocyte development and function and is essential in the formation of the adaptive immune system. These experiments also demonstrated that Vav proteins are indispensable for both T-cell receptor- and B-cell receptor-induced Ca++ fluxes. However, detailed analyses of Vav-deficient mice revealed unexpected complexity of Vav involvement in cellular activation. Notably, we observed lineage-specific Vav regulation of mitogen-activated protein kinase signaling, in which Vav was required in T-cells, but not in B-cells. Moreover, the three Vav proteins appear to function specifically in distinct signaling pathways emanating from activating receptors of natural killer cells that trigger natural cytotoxicity.  相似文献   

16.
The formation of postsynaptic GABAA and glycine receptor clusters requires the receptor-associated peripheral membrane protein gephyrin. Here we describe two splice variants of a novel gephyrin-binding protein, termed collybistin I and II, which belong to the family of dbl-like GDP/GTP exchange factors (GEFs). Co-expression of collybistin II with gephyrin induced the formation of submembrane gephyrin aggregates that accumulate hetero-oligomeric glycine receptors. Our data suggest that collybistin II regulates the membrane deposition of gephyrin by activating a GTPase of the Rho/Rac family. Therefore, this protein may be an important determinant of inhibitory postsynaptic membrane formation and plasticity.  相似文献   

17.
人类许多肿瘤的发生都是基因异常调节的结果,神经肿瘤也不例外.研究表明,某些与发育相关的基因发生突变或调节异常可能会导致神经肿瘤的发生,最近发现的一种原癌基因Bmi-1(B lymphoma MO-MLV insertion region 1,Bmi-1)就是其中之一,它不仅参与胚胎的发育、多种干细胞的维持和自我更新,而且其过度表达可导致包括神经肿瘤在内的多种肿瘤的形成;Bmi-1缺失小鼠可表现为多种异常,如共济失调、血液疾病及神经疾病,表明Bmi-1具有多种生物学功能[1].  相似文献   

18.
肌腱是连接肌肉和骨骼系统的的致密结缔组织.目前,临床上肌腱损伤的治疗尚无很好的方法,应用组织工程化技术构建肌腱进行修复为肌腱损伤的治疗提供了良好的前景.了解肌腱的发育成熟过程对组织工程化肌腱构建是相当重要的.Scleraxis和Tenomodulin是肌腱和韧带相对特异的分子标志,在肌腱发育成熟中起了重要作用.就Scleraxis和Tenomodulin的分子结构、在肌腱发育成熟中的作用和其调控予以综述,以加深对肌腱发育过程的认识.  相似文献   

19.
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.  相似文献   

20.
FGFs/FGFRs在骨折愈合过程中作用的研究进展   总被引:1,自引:0,他引:1  
FGFs/FGFRs(fibrohlast growth factors/fibroblast growth factor receptors)家族成员是体内重要的生长因子,它不仅参与了骨骼发育过程,而且也参与了骨折愈合过程。骨折愈合过程是骨骼发行过程的再现,调控骨折愈合过程的生长因子往往在骨骼发育过程中存在类似作用。本综述就FGF1,2以及FGFR1,2,3在骨折愈合过程中的作用加以介绍,并结合FGF/FGFR骨骼发育过程中的作用和机制,为下一步的研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号