共查询到20条相似文献,搜索用时 93 毫秒
1.
纳米药物递送系统在肿瘤精准医疗领域具有良好的应用前景,但有机或无机合成的纳米材料存在制备过程繁琐和易被机体内免疫系统识别、清除等问题。受自然界生物系统的启发,生物细胞膜介导的仿生纳米递药系统近年来成为研究热点。生物膜仿生递药系统通过机体内源性细胞膜对纳米载体表面进行包覆修饰,有效地将天然生物膜“自体”性质和“人工”功能载体的优势相融合,赋予其肿瘤靶向性,低免疫原性和血液长循环等特点。基于纳米药物和细胞膜仿生技术在肿瘤精准医疗领域的研究进展,对细胞膜仿生修饰纳米粒的实验基础、膜仿生纳米递药系统的构建及在肿瘤靶向化疗、免疫治疗、光热治疗上的应用三方面进行综述,并对未来研究进行展望。 相似文献
2.
近年来,利用机体免疫系统进行抗肿瘤的免疫疗法受到了广泛关注。然而抑制性肿瘤微环境限制了免疫治疗的效果,因此克服肿瘤微环境及其中的免疫抑制性细胞的作用成为肿瘤免疫疗法的一大热点。纳米制剂具有重新编程免疫抑制性微环境的巨大潜力,为免疫治疗提供了有效策略。随着主动靶向性纳米载体技术的不断发展和对药物作用位点研究的不断深入,具有更精准主动靶向功能的亚细胞器靶向性纳米载体材料也受到越来越多的关注。本文简要介绍了各亚细胞器与肿瘤的关系,概述了基于酸碱性调节、活性氧含量、免疫原性及免疫抑制细胞的肿瘤微环境特点的纳米药物靶向递送系统的设计策略与研究进展,为亚细胞器途径靶向递药系统的构建及其在肿瘤免疫治疗方面的应用提供借鉴和参考。 相似文献
3.
近年来,透明质酸(hyaluronic acid,HA)作为一种高效的肿瘤靶向递送载体引起了人们的广泛关注。HA的优越性主要体现在其具备良好的生物相容性、生物可降解性和特殊的CD44受体结合能力。本文针对HA的结构修饰、作为肿瘤特异性药物载体的基础理论以及基于HA纳米递药系统的研究成果进行了综述,并展望了其应用前景。 相似文献
4.
5.
6.
7.
8.
目的:介绍近年来分子靶向药物治疗肿瘤的临床研究和应用。方法:收集国内外近期相关文献对靶向药物治疗肿瘤的现状及关键技术进行评价。结果及结论:分子靶向药物是利用肿瘤细胞与正常细胞之间分子细胞生物学上的差异,采用封闭受体、抑制血管生成、阻断信号传导通路等方法作用于肿瘤细胞特定的靶点,特异性地抑制肿瘤细胞生长,促使肿瘤细胞凋亡。分子靶向治疗比传统的化疗特异性强、毒副反应小,将成为今后肿瘤治疗的新趋势。现代生物技术发展迅猛,针对肿瘤细胞的靶向性治疗面临着前所未有的机遇和挑战,具有新的概念和内涵。现有方法或多或少都存在缺陷。充分利用多学科综合性发展的进步将加速新型靶向载体系统的出现。 相似文献
9.
化疗是临床上治疗肿瘤的主要途径之一,但化疗药物在肿瘤部位的低浓度及系统毒性仍是其临床应用受限的首要问题。前体药物通过对原药的化学结构或药物剂型给予一定修饰,大大克服了化疗药物的缺点,开辟了一条靶向治疗肿瘤的新途径。目前,新发展的抗肿瘤前药有导向酶活化前药、载体前药、脂质前药等,现对其研究进展和应用做一综述。 相似文献
10.
《沈阳药科大学学报》2020,(1):31-42
目的通过综述中性粒细胞介导的药物递送系统在肿瘤靶向治疗中的应用,为纳米制剂递送的未来发展提供理论依据。方法查阅国内外相关文献91篇,对中性粒细胞与纳米制剂的结合策略、影响因素和发展前景等内容进行总结与分析。结果中性粒细胞是肿瘤生长、转移等过程的参与者之一,且因数量丰富、形态灵活,使得研究者们开始以中性粒细胞为靶点,设计中性粒细胞介导的纳米药物递送系统。目前,中性粒细胞与纳米制剂的结合策略主要有三种:中性粒细胞体外载药再回输、中性粒细胞体内载药和中性粒细胞仿生纳米粒。而影响中性粒细胞介导的纳米药物递送的因素主要包括影响中性粒细胞摄取、运输以及释放药物等多种因素。结论对中性粒细胞介导的药物递送系统应用于肿瘤治疗的策略进行理性评价与反思,将为纳米制剂递送的研究与发展提供更为完善的理论依据和实际应用价值。 相似文献
11.
12.
新生儿Fc受体(FcRn)最早发现是母体抗体传递给胎儿和新生儿的膜表面蛋白,后来也证明在成人体内也在多器官、多组织中终生表达,其维持着免疫球蛋白G和血清白蛋白在机体中的长循环和动态平衡,在固有免疫和适应性免疫调节中发挥着极为重要的作用。在现代生物制药研究中, FcRn是良好的药物递送靶点,也是目前研究的热点。本文简述了FcRn的基本生物学性质和作用机制,以及目前常用的FcRn的药物载体设计策略,特别是对于延长半衰期、靶向输送、跨生物膜及抗原递呈等多方面的功能应用进行展望。FcRn在不同组织内的分布和生物学功能,为未来基于FcRn的新型药物递送系统研究和免疫治疗方面等提供更广阔的思路。 相似文献
13.
14.
Developing a new drug molecule is not only time-consuming and expensive, but also mostly a failing process. However, improving bioavailability, targetability, efficacy or safety of old drugs could be more effective way to use them in clinic. For these purposes, so many strategies including individualising drug therapy, nanoparticle-based drug delivery systems, drug conjugates, therapeutic drug monitoring, stimuli-sensitive targeted therapy are investigated intensely. Depending on the desired application or targeted site, nanoparticles can be administrated as orally, locally, topically and systemically. Currently, the Food and Drug Administration and the European Medicines Agency approved nanoparticles are mostly aimed to treat cancer. Although some of these formulations were approved by Food and Drug Administration and/or European Medicines Agency to use in clinic, most of them have fell down to pass either pre-clinical or clinical trials. To have high approval rate, failure reasons need to be better understand. 相似文献
15.
16.
自组装药物传递系统 总被引:2,自引:0,他引:2
金义光 《国外医学(药学分册)》2010,(3):165-169,186
自组装药物传递系统(SADDS)是基于药质体提出的新概念和新给药系统,融合了前药、分子自组装和纳米技术,是两亲前药形成的自组装纳米体系。其突出的特点是自组装体几乎没有辅料的参与,载药量大,稳定性好,在体内可获得靶向、控释效果,特别适合于抗病毒和抗肿瘤治疗。SADDS是学科交叉的产物,是药剂学研究的新方向。本文阐述了SADDS概念的来源、特点和研究进展,并展望了SADDS的研究前景。 相似文献
17.
壳聚糖微/纳米粒在定向给药系统中的应用研究 总被引:8,自引:0,他引:8
目的:介绍壳聚糖微/纳米粒在新型定向给药系统中的应用,为发展安全高效的壳聚糖微/纳米粒定向给药系统提供参考。方法:综合近年来出版的有关文献,对壳聚糖基本性质,定位给药于各组织部位进行了探讨。结果:壳聚糖微/纳米粒可应用于脑、眼、鼻、口、肺、胃、小肠、结肠等器官靶向给药。结论:壳聚糖微/纳米粒作为一种新型药用辅料,在定位给药系统中已经得到了开发和应用。 相似文献
18.
19.
Masumeh Zamanlu Mehdi Farhoudi Morteza Eskandani Javad Mahmoudi Jaleh Barar Mohammad Rafi 《Journal of drug targeting》2018,26(2):95-109
Tissue plasminogen activator (tPA) is the only FDA approved medical treatment for the ischaemic stroke. However, it associates with some inevitable limitations, including: short therapeutic window, extremely short half-life and low penetration in large clots. Systemic administration may lead to complications such as haemorrhagic conversion in the brain and relapse in the form of re-occlusion. Furthermore, ultrasound has been utilised in combination with contrast agents, echogenic liposome, microspheres or nanoparticles (NPs) carrying tPA for improving thrombolysis – an approach that has resulted in slight improvement of tPA delivery and facilitated thrombolysis. Most of these delivery systems are able to extend the circulating half-life and clot penetration of tPA. Various technologies employed for ameliorated thrombolytic therapy are in different phases, some are in final steps for clinical applications while some others are under investigations for their safety and efficacy in human cases. Here, recent progresses on the thrombolytic therapy using novel nano- and micro-systems incorporating tPA are articulated. Of these, liposomes and microspheres, polymeric NPs and magnetic nanoparticles (MNPs) are discussed. Key technologies implemented for efficient delivery of tPA and advanced thrombolytic therapy and their advantages/disadvantages are further expressed. 相似文献
20.
Zhe Wang Xiangping Deng Jinsong Ding Wenhu Zhou Xing Zheng Guotao Tang 《International journal of pharmaceutics》2018,535(1-2):253-260
During the past decades, chemotherapy has been regarded as the most effective method for tumor therapy, but still faces significant challenges, such as poor tumor selectivity and multidrug resistance. The development of targeted drug delivery systems brings certain dramatic advantages for reducing the side effects and improving the therapeutic efficacy. Coupling a specific stimuli-triggered drug release mechanism with these delivery systems is one of the most prevalent approaches for targeted therapy. Among these approaches, pH-sensitive micelles are regarded as the most general strategy with advantages of increasing solubility of water-insoluble drugs, pH-sensitive release, high drug loading, etc.This review will focus on the potential of pH-sensitive micelles in tumor therapy, analyze four types of drug-loaded micelles and mechanisms of drug release and give an exhaustive collection of recent investigations. Sufficient understanding of these mechanisms will help us to design more efficient pH-sensitive drug delivery system to address the challenges encountered in targeted drug delivery systems for tumor therapy. 相似文献