首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xie L  Zhao Y  Zhai X  Li P  Liu C  Li Y  Gong P 《Archiv der Pharmazie》2011,344(10):631-638
Three series of novel artemisinin–guanidine hybrids 4a–4f , 8a–8h and 9a–9h have been facilely synthesized via four‐component reaction (aza‐Wittig reaction) and evaluated for their anti‐tumor activities against A549, HT‐29 and MDA‐MB‐231 cell lines in vitro. All of the tested compounds showed enhanced anti‐tumor activities with IC50 values ranging from 0.02 µM to 12.0 µM as compared to DHA (dihydroartemisinin). Among them, artemisinin derived dimers, compounds 9b (IC50 = 0.05 µM), 9d (IC50 = 0.06 µM) and 9f (IC50 = 0.02 µM) were found to be most active against HT29 cells.  相似文献   

2.
Liu Y  Zhang S  Li Y  Wang J  Song Y  Gong P 《Archiv der Pharmazie》2012,345(4):287-293
A new series of 1,4‐disubstituted phthalazinylpiperazine derivatives 7a–f , 12a–f and 20a–f were designed and synthesized in order to develop potent and selective antitumor agents. The target compounds were screened for their cytotoxic activities against A549, HT‐29 and MDA‐MB‐231 cancer cell lines in vitro. Among them, compounds 7a–f exhibited excellent selectivity for MDA‐MB‐231 with IC50 values ranging from 0.013 µM to 0.079 µM. The most promising compound, 7e (IC50 = 2.19 µM, 2.19 µM, 0.013 µM), was 9.3, 10, and 4.9 × 103 times more active than vatalanib (IC50 = 20.27 µM, 21.96 µM, 63.90 µM), respectively.  相似文献   

3.
A series of 6‐hydrazinyl‐2,4‐bismorpholino pyrimidine and 1,3,5‐triazine derivatives ( 5a – 5l and 8a – 8o ) were synthesized and their chemical structures as well as the relative stereochemistry were confirmed. All the synthesized compounds were evaluated for antiproliferative activity against three cancer cell lines (H460, HT‐29, and MDA‐MB‐231). Several potent compounds were further evaluated against two other cell lines (U87MG, H1975). Most of the prepared compounds, particularly compounds 5c and 5j with IC50 values (0.07 and 0.05 µM, respectively) in the nM range, exhibited moderate to excellent antiproliferative activity and high selectivity against the H460 cancer cell line as compared with compound 1 . The most promising compound 5j , possessing a cyano group at the 3‐position of the benzene ring, showed strong antiproliferative activity against H460, HT‐29, and MDA‐MB‐231 cell lines with IC50 values of 0.05, 6.31, and 6.50 µM, which were 4.6‐ to 190.4‐fold more active than compound 1 (9.52, 29.24, and 36.21 µM), respectively.  相似文献   

4.
Wang S  Zhao Y  Zhu W  Liu Y  Guo K  Gong P 《Archiv der Pharmazie》2012,345(1):73-80
A novel series of indolin‐2‐one derivatives containing the 4‐thiazolidinone moiety ( 5a—5p ) was synthesized and the cytotoxicity of these derivatives was evaluated in vitro against three human cancer cell lines (HT‐29, H460 and MDA‐MB‐231) by standard MTT assay. Some prepared compounds exhibited significant cytotoxicity against different human cancer cell lines. Several potent compounds were further evaluated against one normal cell line (WI‐38). In particular, the promising compound 5h showed remarkable cytotoxicity and selectivity against the HT‐29 and H460 cancer cell lines (IC50 = 0.016 µmol/L, 0.0037 µmol/L, respectively).  相似文献   

5.
A series of nitraquazone analogs with a pyrimidindione core was synthesized and tested for inhibitory activity on PDE4, selectivity versus PDE3 and PDE5 and for affinity towards the rolipram high‐affinity binding site (HARBS). The 5‐anilino derivatives 13–18 showed the best profile combining appreciable PDE4 inhibitory activity (IC50 = 5–14 µM) with a good selectivity toward PDE3 and PDE5. The same compounds demonstrate low affinity for the HARBS site with IC50 values of 12–69 µM (IC50 for Rolipram = 3.6 nM). Drug Dev Res 72: 274–288, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
In continuation of our previous work on cancer and inflammation, 15 novel pyrazole–pyrazoline hybrids ( WSPP1 – 15 ) were synthesized and fully characterized. The formation of the pyrazoline ring was confirmed by the appearance of three doublets of doublets in 1H nuclear magnetic resonance spectra exhibiting an AMX pattern for three protons (HA, HM, and HX) of the pyrazoline ring. All the synthesized compounds were screened for their in vitro anticancer activity against five cell lines, that is, MCF‐7, A549, SiHa, COLO205, and HepG2 cells, using the MTT growth inhibition assay. 5‐Fluorouracil was taken as the positive control in the study. It was observed that, among them, WSPP11 was found to be active against A549, SiHa, COLO205, and HepG2 cells, with IC50 values of 4.94, 4.54, 4.86, and 2.09 µM. All the derivatives were also evaluated for their cytotoxicity against HaCaT cells. WSPP11 was also found to be nontoxic against normal cells (cell line HaCaT), with an IC50 value of more than 50 µM. The derivatives were also evaluated for their in vitro anti‐inflammatory activity by the protein (egg albumin) denaturation assay and the red blood cell membrane stabilizing assay, using diclofenac sodium and celecoxib as standard. Compounds that showed significant anticancer and anti‐inflammatory activities were further studied for COX‐2 inhibition. The manifestation of a higher COX‐2 selectivity index of WSPP11 as compared with other derivatives and an in vitro anticancer activity against four cell lines further established that compounds that were more selective toward COX‐2 also exhibited a better spectrum of activity against various cancer cell lines.  相似文献   

7.
In accordance with our antiviral drug development attempt, acylhydrazone derivatives bearing amino acid side chains were synthesized for the evaluation of their antiviral activity against various types of viruses. Among these compounds, 8 S , 11 S , and 12 S showed anti‐HIV‐1 activity with a 50% inhibitory concentration (IC50) = 123.8 µM (selectivity index, SI > 3), IC50 = 12.1 µM (SI > 29), IC50 = 17.4 µM (SI > 19), respectively. Enantiomers 8 R , 11 R , and 12 R were inactive against the HIV‐1 strain IIIB. Hydrazones 8 S , 11 S , and 12 S which were active against HIV‐1 wild type showed no inhibition against a double mutant NNRTI‐resistant strain (K103N;Y181C). Molecular docking calculations of R‐ and S‐enantiomers of 8 , 11 , and 12 were performed using the hydrazone‐bound novel site of HIV‐1 RT.  相似文献   

8.
New quinolines substituted with various heterocycles and chalcone moieties were synthesized and evaluated as antitumor agents. All the synthesized compounds were in vitro screened against 60 human cancer cell lines. Compound 13 showed the highest cytotoxicity toward 58 cell lines, exhibiting distinct growth inhibition values (GI50) against the majority of them, including SR, HL‐60 (TB) strains (leukemia), and MDA‐MB‐435 strains (melanoma), with GI50 values of 0.232, 0.260, and 0.300 µM, respectively. It exhibited great selectivity toward cancer cell lines, with less toxic effect against normal cells represented by skin fibroblast (BJ) and breast epithelial cell lines (MCF‐10F). The enzyme inhibitory activity of compound 13 was evaluated against topoisomerase 1 (Topo 1), epidermal growth factor receptor and vascular endothelial growth factor receptor 2, where it displayed worthy Topo 1 inhibition activity with an IC50 value of 0.278 µM compared with camptothecin as a reference drug (IC50 0.224 µM). Docking studies were performed to investigate the recognition profile of compound 13 with the Topo 1 enzyme binding site.  相似文献   

9.
This study reports the synthesis of two series of new purine bioisosteres comprising a pyrazolo[3,4‐d]pyrimidine scaffold linked to piperazine moiety through different amide linkages. The newly synthesized compounds were evaluated for anticancer activity against four cell lines (MDA‐MB‐231, MCF‐7, SF‐268, B16F‐10) and cyclooxygenase (COX‐2) protein expression inhibition in lipopolysaccharide (LPS)‐activated rat monocytes. The results revealed that most of the synthesized compounds showed moderate‐to‐high cytotoxic activity against at least one cell line, with compound 10b being the most active against all used cell lines (IC50 values 5.5–11 μg/ml) comparable to cisplatin. In addition, six of these compounds ( 7b, 10a–d, and 12c ) demonstrated inhibition of LPS‐induced COX‐2 protein expression at low concentration (25 μg/ml) as compared to the control non‐stimulated cells and showed a COX‐2 selectivity index range comparable to diclofenac sodium. The overall results indicate that many of these pyrazolopyrimidine derivatives possess in vitro anti‐inflammatory and anticancer activities at varying doses, and the most active compounds will be subjected to in vivo pharmacological evaluation.  相似文献   

10.
A novel series of benzoxazole/benzothiazole derivatives 4a–c – 11a–e were designed, synthesized, and evaluated for anticancer activity against HepG2, HCT‐116, and MCF‐7 cells. HCT‐116 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 4c was found to be the most potent derivative against HepG2, HCT‐116, and MCF‐7 cells, with IC50 values = 9.45 ± 0.8, 5.76 ± 0.4, and 7.36 ± 0.5 µM, respectively. Compounds 4b, 9f , and 9c showed the highest anticancer activities against HepG2 cells with IC50 values of 9.97 ± 0.8, 9.99 ± 0.8, and 11.02 ± 1.0 µM, respectively, HCT‐116 cells with IC50 values of 6.99 ± 0.5, 7.44 ± 0.4, and 8.15 ± 0.8 µM, respectively, and MCF‐7 cells with IC50 values of 7.89 ± 0.7, 8.24 ± 0.7, and 9.32 ± 0.7 µM, respectively, in comparison with sorafenib as reference drug with IC50 values of 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively. The most active compounds 4a–c, 9b,c,e,f,h , and 11c,e were further evaluated for their VEGFR‐2 inhibition. Compounds 4c and 4b potently inhibited VEGFR‐2 at IC50 values of 0.12 ± 0.01 and 0.13 ± 0.02 µM, respectively, which are nearly equipotent to the sorafenib IC50 value (0.10 ± 0.02 µM). Furthermore, molecular docking studies were performed for all synthesized compounds to assess their binding pattern and affinity toward the VEGFR‐2 active site.  相似文献   

11.
A new series of 1,2‐diaryl‐4‐substituted‐benzylidene‐5(4H)‐imidazolone derivatives 4a–l was synthesized. Their structures were confirmed by different spectroscopic techniques (IR, 1H NMR, DEPT‐Q NMR, and mass spectroscopy) and elemental analyses. Their cytotoxic activities in vitro were evaluated against breast, ovarian, and liver cancer cell lines and also normal human skin fibroblasts. Cyclooxygenase (COX)‐1, COX‐2 and lipoxygenase (LOX) inhibitory activities were measured. The synthesized compounds showed selectivity toward COX‐2 rather than COX‐1, and the IC50 values (0.25–1.7 µM) were lower than that of indomethacin (IC50 = 9.47 µM) and somewhat higher than that of celecoxib (IC50 = 0.071 µM). The selectivity index for COX‐2 of the oxazole derivative 4e (SI = 3.67) was nearly equal to that of celecoxib (SI = 3.66). For the LOX inhibitory activity, the new compounds showed IC50 values of 0.02–74.03 µM, while the IC50 of the reference zileuton was 0.83 µM. The most active compound 4c (4‐chlorobenzoxazole derivative) was found to have dual COX‐2/LOX activity. All the synthesized compounds were docked inside the active site of the COX‐2 and LOX enzymes. They linked to COX‐2 through the N atom of the azole scaffold, while C?O of the oxazolone moiety was responsible for the binding to amino acids inside the LOX active site.
  相似文献   

12.
In an attempt to develop potent and selective anti‐tumor drugs, a series of novel 2‐amino‐thiazole‐5‐carboxylic acid phenylamide derivatives were designed based on the structure of dasatinib. All compounds were synthesized by a systematic combinatorial chemical approach. Biological evaluation revealed that N‐(2‐chloro‐6‐methylphenyl)‐2‐(2‐(4‐methylpiperazin‐1‐yl)acetamido)thiazole‐5‐carboxamide ( 6d ) exhibited high antiproliferative potency on human K563 leukemia cells comparable to dasatinib. Against mammary and colon carcinoma cells 6d was either inactive (MDA‐MB 231) or distinctly less active (MCF‐7 and HT‐29: IC50 = 20.2 and 21.6 µM, respectively). Dasatinib showed at each cell line IC50 < 1 µM. The results of this structure activity relationship study clearly documented that the pyrimidin‐4‐ylamino core of dasatinib is responsible for the anti‐tumor activity against non‐leukemia cell lines.  相似文献   

13.
A new series of N-substituted pyrazoline derivatives 6a–g , 7a–g , 8a–g , and 9a–g was synthetized by reaction of hydrazine derivatives and chalcone–thiazole hybrids bearing nitrogen mustard 5a–g . The chalcones 5a–g were obtained by Claisen–Schmidt condensation of thiazole-2-nitrogen mustard 3 and selected acetophenones 4a–g . These new compounds 6/7/8/9a–g were screened for their antifungal activity against Cryptococcus neoformans, with IC50 values of 3.9–7.8 µg/ml for the N-3,5-dichlorophenyl pyrazolines 9e – g . Interestingly, those compounds show low cytotoxic effects toward erythrocytes (RBC). In addition, N-acetyl ( 6a,b ) and N-formyl pyrazolines ( 7a , 7b , 7c , and 7g ) showed inhibitory activity against methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus, and vancomycin-intermediate S. aureus, with the most important minimum inhibitory concentration values ranging from 31.25 to 125 µg/ml. Regarding the antiprotozoal activity, thiazolyl-pyrazolines 9g , 8f , and 7c display high activity against Plasmodium falciparum, Leishmania (V) panamensis, and Trypanosoma cruzi, with EC50 values of 11.80, 6.46, and 4.98 μM, respectively, and with 7c being approximately 2.6-fold more potent than benznidazole with a selectivity index of 1.61 on U-937 human cells, showing promising potential as a novel antitrypanosomal agent.  相似文献   

14.
Sixteen novel coumarin‐based compounds are reported as potent acetylcholinesterase (AChE) inhibitors. The most active compound in this series, 5a (IC50 0.04 ± 0.01 µM), noncompetitively inhibited AChE with a higher potency than tacrine and galantamine. Compounds 5d , 5j , and 5 m showed a moderate antilipid peroxidation activity. The compounds showed cytotoxicity in the same range as the standard drugs in HEK‐293 cells. Molecular docking demonstrated that 5a acted as a dual binding site inhibitor. The coumarin moiety occupied the peripheral anionic site and showed π‐π interaction with Trp278. The tertiary amino group displayed significant cation‐π interaction with Phe329. The aromatic group showed π‐π interaction with Trp83 at the catalytic anionic site. The long chain of methylene lay along the gorge interacting with Phe330 via hydrophobic interaction. Molecular docking was applied to postulate the selectivity toward AChE of 5a in comparison with donepezil and tacrine. Structural insights into the selectivity of the coumarin derivatives toward huAChE were explored by molecular docking and 3D QSAR and molecular dynamics simulation for 20 ns. ADMET analysis suggested that the 2‐(2‐oxo‐2H‐chromen‐4‐yl)acetamides showed a good pharmacokinetic profile and no hepatotoxicity. These coumarin derivatives showed high potential for further development as anti‐Alzheimer agents.  相似文献   

15.
A series of nitrogen mustard‐linked chalcones were synthesized and evaluated for their antitumor activity in vitro against the K562 and HepG2 cell lines. The aldol condensation of [N,N‐bis(chloroethyl)‐3‐amino]‐acetophenone ( 2 ) with aromatic aldehydes afforded the nitrogen mustard‐linked chalcones. Among the analogs tested, compounds 5e and 5k exhibited significant anti‐proliferation activities against K562 cells with IC50 values of 2.55 and 0.61 µM, respectively, which revealed higher cell toxicity than the standard drugs cisplatin (IC50 > 200 µM) and adriamycin (IC50 = 14.88 µM). The methoxyl and N,N‐dimethyl groups on the B‐ring of the chalcone frame enhanced the inhibitory activities against both the K562 and HepG2 cell lines. The structure–activity relationship study indicated that the inhibitory activities significantly varied with the position(s) and species of the substituted group(s).  相似文献   

16.
Herein we report design, synthesis, and anticancer activity of compounds 6a–h and 11a–j . Compounds 6a–f were designed based on 3‐aminomethyl pyridine attached to different acetamide derivatives and in compounds 6g–h it was attached to coumarin moiety. Coumarin containing compounds 6g–h showed very poor anticancer activity against both A549 (Lungs cancer cell line), and MCF‐7 (Breast cancer cell line) cell lines in MTT assay. Compounds 11a–j were designed as derivatives of 3‐aminomethyl pyridine and 4‐amino chalcones. A series of chalcone derivatives of 3‐aminomethyl pyridine 11a–j have been synthesized and screened for their in vitro anticancer activity and DNA binding affinity. Most of the compounds showed very good antimitotic activity against A549 cell line as compared to fluorouracil. Compounds 11g and 11i were selected for DNA‐binding studies as they showed excellent activity against cancer cell lines in MTT assay. CT‐DNA binding affinity of compounds 11g and 11i have been investigated by UV based DNA titration and fluorescence emission study against DNA‐EtBr complex. Interestingly, compound 11i has displayed excellent antiproliferative activity, with IC50 0.0067 ± 0.0002 μm , against MCF‐7 cell line. Compound 11i has been studied for its cytotoxicity using MTT, LDH, as well as EtBr/AO assay and was found to induce apoptosis in the cancerous cell line.  相似文献   

17.
New 4‐arylazo‐3,5‐diamino‐1H‐pyrazole derivatives substituted in the 4‐aryl ring with the acetyl moiety were designed and synthesized. The antiproliferative activity of the novel arylazopyrazoles was examined against the MCF‐7 cell line. Among all target compounds, 8b (IC50 3.0 µM) and 8f (IC50 4.0 µM) displayed higher cytotoxicity as compared with the reference standard imatinib (IC50 7.0 µM). Further studies to explore the mechanism of action were performed on the most active hit of our library, 8b , via anti‐CDK2 kinase activity. It demonstrated good inhibitory effects for CDK2 (IC50 0.24 µM) with 62.5% inhibition, compared with imatinib. The cell cycle analysis in the MCF‐7 cell line revealed apoptosis induction by 8b and cell cycle arrest at the S phase. Docking in the CDK2 active site and pharmacophore modeling confirmed the affinity of 8b to the CDK2 active site. Absorption, distribution, metabolism, and excretion studies revealed that our target compounds are orally bioavailable, with no permeation through the blood–brain barrier.  相似文献   

18.
Synthesis, characterization and investigation of antiproliferative activity of nine triazene salts against human cancer cells lines (MV-4-11, MCF-7, JURKAT, HT-29, Hep-G2, HeLa, Du-145 and DAUDI), and normal human mammary epithelial cell line (MCF7-10A) is presented. The structures of novel compounds were determined using 1H and 13C NMR, and GC-APCI-MS analyses. Among the derivatives, compound 2c, 2d, 2e and 2f has very strong activity against biphenotypic B myelomonocytic leukemia MV4-11, with IC50 values from 5.42 to 7.69?µg/ml. The cytotoxic activity of compounds 2c-2f against normal human mammary gland epithelial cells MCF-10A is 6–11 times lower than against cancer cell lines. Our results also show that compounds 2c and 2f have very strong activity against DAUDI and HT-29 with IC50 4.91?µg/ml and 5.59?µg/ml, respectively. Their lipophilicity was determined using reversed-phase ultra-performance liquid chromatography and correlated with antiproliferative activity. Our UV–Vis spectroscopic results indicate also that triazene salts tends to interact with negatively charged DNA phosphate chain. To support the experiment, theoretical calculations of the 1H NMR shifts were carried out within the Density Functional Theory.  相似文献   

19.
Zhai X  Li W  Chen D  Lai R  Liu J  Gong P 《Archiv der Pharmazie》2012,345(5):360-367
A new series of 2,5‐diaryliminothiazolidin‐4‐ones were designed and synthesized as potent antiproliferative agents. The antiproliferative activities of the 25 target compounds were evaluated against three cancer cell lines (A549, H460 and HT29) by MTT assay. Pharmacological data indicated that most of the compounds possessed moderate activity, some showed remarkable activity against one or more cell lines. As the most promising compound, 8s (with IC50 values of 1.1, 0.01 and 1.3 µM against the A549, H460 and HT29 cell lines) was 1.1‐ to 270‐fold more potent than the reference drug sorafenib. Furthermore, preliminary structure–activity relationships (SARs) were summarized to provide guidance for further design and discovery of 2‐iminothiazolidin‐4‐one‐based antiproliferative agents.  相似文献   

20.
A novel series of 1-benzylquinazoline-2,4(1H,3H)-dione derivatives, 6a , b to 11a – e , was designed, synthesized, and evaluated for their anticancer activity against HepG2, HCT-116, and MCF-7 cells. Compounds 11b , 11e , and 11c were found to be the most potent derivatives of all tested compounds against the HepG2, HCT-116, and MCF-7 cancer cell lines, with GI50 = 9.16 ± 0.8, 5.69 ± 0.4, 5.27 ± 0.2 µM, 9.32 ± 0.9, 6.37 ± 0.7, 5.67 ± 0.5 µM, and 9.39 ± 0.5, 6.87 ± 0.7, 5.80 ± 0.4 µM, respectively. These compounds exhibited nearly the same activity as sorafenib against HepG2 and HCT-116 cells and a higher activity against MCF-7 cells (GI50 = 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively). Also, these compounds displayed a lower activity than doxorubicin against HepG2 cells and a higher activity against HCT-116 and MCF-7 cells (GI50 = 7.94 ± 0.6, 8.07 ± 0.8, and 6.75 ± 0.4 µM, respectively). The most active antiproliferative derivatives, 6a , b , 8 , 9 , and 11a – e , were selected to evaluate their enzymatic inhibitory activity against VEGFR-2. Compounds 11b , 11e , and 11c potently inhibited VEGFR-2 at IC50 values of 0.12 ± 0.02, 0.12 ± 0.02, and 0.13 ± 0.02 µM, respectively, which are nearly equipotent as sorafenib IC50 value (0.10 ± 0.02 µM). Furthermore, molecular docking studies were performed for all synthesized compounds to assess their binding pattern and affinity toward the VEGFR-2 active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号