首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Messenger RNAs and cDNAs for individual cloned P2Y(1), P2Y2 and P2Y(6) nucleotide receptors have been expressed by micro-injection into dissociated rat superior cervical sympathetic neurones and the effects of stimulating the expressed receptors on voltage-activated N-type Ca(2+) currents and M-type K(+) currents recorded. Both currents were reduced by stimulating all three receptors, with the following mean IC(50) values: P2Y(1) (agonist: ADP) - I(K(M)) 6.9 nM, I(Ca) 8.2 nM; P2Y(2) (agonist: UTP) - I(K(M)) 1.5 microM, I(Ca) 0.5 microM; P2Y(6) (agonist: UDP) - I(K(M)) 30 nM, I(Ca) 5.9 nM. Inhibition of I(K(M)) was voltage-independent and insensitive to Pertussis toxin; inhibition of I(Ca) showed both voltage-sensitive and insensitive, and Pertussis toxin-sensitive and insensitive components. It is concluded that these P2Y receptors can couple to more than one G protein and thereby modulate more than one ion channel. It is suggested that these effects on K(M) and Ca(N) channels may induce both postsynaptic excitory and presynaptic inhibitory responses.  相似文献   

2.
Alpha2-adrenoceptors inhibit Ca2+ influx through voltage-gated Ca2+ channels throughout the nervous system and Ca2+ channel function is modulated following activation of some G-protein coupled receptors. We studied the specific Ca2+ channel inhibited following alpha2-adrenoceptor activation in guinea-pig small intestinal myenteric neurons. Ca2+ currents (I(Ca2+)) were studied using whole-cell patch-clamp techniques. Changes in intracellular Ca2+ (delta[Ca2+]i) in nerve cell bodies and varicosities were studied using digital imaging where Ca2+ influx was evoked by KCl (60 mmol L(-1)) depolarization. The alpha2-adrenoceptor agonist, UK 14 304 (0.01-1 micromol L(-1)) inhibited I(Ca2+) and delta[Ca2+]i; maximum inhibition of I(Ca2+) was 40%. UK 14 304 did not affect I(Ca2+) in the presence of SNX-482 or NiCl2 (R-type Ca2+ channel antagonists). UK 14 304 inhibited I(Ca2+) in the presence of nifedipine, omega-agatoxin IVA or omega-conotoxin, inhibitors of L-, P/Q- and N-type Ca2+ channels. UK 14 304 induced inhibition of I(Ca2+) was blocked by pertussis toxin pretreatment (1 microg mL(-1) for 2 h). Alpha2-adrenoceptors couple to inhibition of R-type Ca2+ channels via a pertussis toxin-sensitive pathway in myenteric neurons. R-type channels may be a target for the inhibitory actions of noradrenaline released from sympathetic nerves on to myenteric neurons.  相似文献   

3.
We investigated the effect of zonisamide, a new antiepileptic drug, on voltage-dependent Ca2+ currents in cultured neurons of rat cerebral cortex. Whole-cell voltage-clamp recordings demonstrated at least two distinct voltage-dependent Ca2+ currents: (1) a low-threshold, rapidly inactivating component, T-type Ca2+ current, which is sensitive to 100 microM Ni2+, and (2) a high-threshold, slowly inactivating (long-lasting) component, L-type Ca2+ current. Zonisamide, a new anticonvulsant effective against maximal electroshock (MES) seizures in mice reduced T-type Ca2+ current in a dose-dependent manner. The mean percentage of reduction was 59.5 +/- 7.2% at 500 microM, but zonisamide had no effect on L-type Ca2+ current. A methylated analog of zonisamide, which is ineffective against MES seizures in mice, was tested at a concentration of 500 microM, and reduced neither T-type nor L-type Ca2+ current. These findings suggest that the effects of zonisamide against MES seizures might occur through the reduction of T-type Ca2+ current. Because drugs that are effective against MES seizures are thought to prevent seizure discharge spread, T-type Ca2+ channels could underlie a cellular mechanism of spreading activity in epileptic seizures.  相似文献   

4.
In the embryonic brain, post-mitotic cortical neurons migrate from their place of origin to their final location. Various external factors such as hormones, neurotransmitters or peptides regulate their migration. To date, however, only a few studies have investigated the effects of these external factors on the electrical properties of the newly formed embryonic cortical neurons. The aim of the present study was to determine whether glutamate and brain-derived neurotrophic factor (BDNF), known to regulate neuronal cell migration, could modulate currents through voltage-gated calcium channels (ICa) in cortical neurons isolated from embryonic day 13 (E13) mouse foetuses. Whole cell recordings of ICa showed that E13 cortical cells kept 1 day in vitro expressed functional low- and high-voltage activated (LVA and HVA) Ca2+ channels of T-, L- and N-types. A 1-day glutamate treatment non-specifically inhibited LVA and HVA ICa whereas BDNF down-regulated HVA with N-type ICa being more depressed than L-type ICa. The glutamate-induced ICa inhibition was mimicked by NMDA. BDNF exerted its action by recruiting trkB receptors and SKF-96365-sensitive channels. BAPTA prevented the glutamate- and the BDNF-dependent inhibition of Ica, indicating a Ca2+-dependent mechanism of action. It is proposed that an influx of Ca2+ through NMDA receptors depresses the expression of LVA and HVA Ca2+ channels whereas a Ca2+ influx through SKF-96365-sensitive TRPC (transient receptor potential protein of C subtype) channels preferentially inhibits the expression of HVA Ca2+ channels. Glutamate and BDNF appear as potent modulators of the electrical properties of early post-mitotic neurons. By down-regulating ICa they could exert a neuroprotective action on embryonic cortical neurons.  相似文献   

5.
Morphine and enkephalin were applied to myenteric neurons of the guinea pig ileum while recording membrane potential with intracellular electrodes. Both opioids caused a concentration-dependent (1 nM–1 μM) hyperpolarization. The hyperpolarization was usually associated with a fall in input resistance, and it reversed to a depolarization when the cell membrane was held more negative than −100 mV. The amplitude of the hyperpolarization caused by a given concentration of morphine or enkephalin was dependent on the extracellular potassium ion concentration. The amplitude of the hyperpolarization and the conductance increase were inversely dependent on the extracellular calcium ion concentration. The results indicate that opiates activate the resting potassium conductance of myenteric neurons, especially when extracellular calcium concentration is low.  相似文献   

6.
Sympathetic C neurons in lumbar paravertebral ganglia of the bullfrog have previously been shown to be vasomotor in function and to express neuropeptide Y (NPY). In the present experiments, a sensitive radioimmunoassay was used to measure the NPY content of ganglia and the descending abdominal aorta and to measure the overflow of NPY evoked by depolarizing concentrations of K+. Paravertebral ganglia 9 and 10 contain 3.1 pg NPY/micrograms protein and the aorta contains 0.18 pg NPY/micrograms protein. During 20-min depolarizations in high K+ (58 mM) Ringer, the ganglia released approximately 5% of their NPY content and the aorta released approximately 2% of its NPY content. Pretreatment of the tissues with Ringer containing 0.18 mM Ca2+, 8 mM Mg2+, and 1 mM Co2+ blocked the NPY release elicited by high K+. These findings provide further evidence that NPY is a postganglionic co-transmitter in sympathetic C neurons of the bullfrog.  相似文献   

7.
Whole-cell and single-channel voltage-clamp techniques were used to identify and characterize the ionic currents of insect olfactory receptor neurons (ORNs) in vitro. The cells were isolated from the antennae of male Manduca sexta pupae at stages 3-5 of adult development and maintained in primary cell culture. After 2-3 weeks in vitro, the presumptive ORNs had resting potentials of -62 +/- 12 mV (n = 18) and expressed at least 1 type of Na+ channel and at least 3 types of K+ channels. Na+ currents, recorded in the whole-cell mode, were reversibly blocked by 0.1 microM tetrodotoxin. The predominant type of K+ channel observed was a voltage-activated K+ channel (gamma = 30 pS) with characteristics similar to those of the delayed rectifier. The activity of the 30-pS K+ channel could be inhibited by the application of nucleotides to the cytoplasmic face of inside-out patches of membrane. The nucleotides had relative potencies as follows: ATP greater than cGMP greater than cAMP, with an inhibition constant for ATP of Ki = 0.18 mM. Raising the intracellular Ca2+ concentration from 0.1 to 5 microM induced the opening of a Ca2(+)-activated K+ channel (gamma = 66 pS at 0 mV) that had a low voltage sensitivity. A third, transient type of K+ channel (gamma = 12-18 pS) could be activated by depolarizing voltage steps from very negative resting potentials. Properties of this channel were similar to those of the "A-channel." These results support the conclusion that M. sexta ORNs differentiate in vitro and provide the basis for studying primary mechanisms of olfactory transduction.  相似文献   

8.
L-Glutamate rapidly and reversibly suppressed Ca channel current in freshly dissociated pyramidal neurons from the CA3 region of the rat hippocampus. L-Glutamate inhibition of Ca channel current could be distinguished from activation of background conductance by appropriate ionic conditions and by distinct pharmacological profiles. Ca channel inhibition by glutamate was mimicked by quisqualate, ibotenate, racem?ct-ACPD and 1S,3R-ACPD but not by kainate, AMPA, L-aspartate, NMDA, L-2-amino-4-phosphonobutyric acid, or 1R,3S-ACPD; 6-cyano-7-nitroquinoxaline-2,3-dione did not inhibit the response. All agonists inhibited a similar fraction of high-voltage-activated Ca channel current, typically approximately 30%. Concentration-response relations for the agonists were consistent with mediation by a metabotropic glutamate receptor. The stereospecific agonist 1S,3R-ACPD was especially useful since it did not activate background conductances. The fraction of Ca channel current sensitive to 1S,3R-ACPD was partially blocked by omega-conotoxin GVIA but was not sensitive to dihydropyridine antagonists or agonists. The suppression of Ca channels by 1S,3R-ACPD became irreversible when cells were dialyzed with GTP-gamma-S. 1S,3R-ACPD suppressed Ca channel currents in outside-out membrane patches but not in cell-attached patches when applied outside the patch. These results suggest that metabotropic glutamate receptors suppress the activity of N-type Ca channels in CA3 neurons by a mechanism involving G-proteins but not readily diffusible second messengers.  相似文献   

9.
10.
Inorganic mercury (Hg2+) reduced voltage-gated calcium channel currents irreversibility in two different preparations. In cultured rat dorsal root ganglion (DRG) neurons, studied with the whole cell patch clamp technique, a rapid concentration-dependent decrease in the L/N-type currents to a steady state was observed with an IC50 of 1.1 μM and a Hill coefficient of 1.3 T-currents were blocked with Hg2+ in the same concentration range (0.5–2 μM). With increasing Hg2+ concentrations a slow membrane current was additionally activated most obviously at concentrations over 2 μM Hg2+. This current was irreversible and might be due to the opening of other (non-specific) ion channels by Hg2+. The current-voltage (I–V) relation of DRG neurons shifted to more positive values, suggesting a binding of Hg2+ to the channel protein and/or modifying its gating properties. In neurons of the abdominal ganglion of Aplysia californica, studied with the two electrode voltage clamp technique, a continous decrease of calcium channel currents was seen even with the lowest used concentration of Hg2+ (5 μM). A steady state was not reached and the effect was irreversible without any change on resting membrane currents, even with high concentrations (up to 50 μM). No shift of the I–V relation of the calcium channel currents was observed. Effects on voltage-activated calcium channel currents with Hg2+ concentrations such low have not been reported before. We conclude that neurotoxic effects of inorganic mercury could be partially due to the irreversible blockade of voltage-activated calcium channels.  相似文献   

11.
Li C  Chen P  Smith MS 《Brain research》2000,854(1-2):122-129
In the present study, anterograde tracing combined with triple label immunofluorescent staining was conducted to examine the possible anatomical interactions between Neuropeptide Y (NPY) neurons in the arcuate nucleus of the hypothalamus (ARH) and the corticotropin releasing hormone (CRH) system in the paraventricular nucleus of the hypothalamus (PVH). The anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHA-L), was iontophresed into the ARH of female rats and triple label immunofluorescence staining with three different fluorophores was performed to visualize PHA-L, NPY and CRH, with the aid of confocal microscopy. In PVH, NPY and PHA-L double-labeled fibers were found mainly in the parvocellular part of the PVH (PVHp). Confocal analysis demonstrated that NPY/PHA-L double-labeled fibers came in close apposition to CRH perikarya. In the median eminence, NPY/PHA-L double-labeled fibers were found both in the inner and the outer zones of the median eminence. However, very few double-labeled fibers were found in the proximity of CRH neuronal fibers in the median eminence. Double label staining was also performed to determine if NPY Y1 receptors were expressed in CRH neurons. Two different fluorophores were used to visualize CRH neurons and Y1 receptor. No convincing Y1-positive staining was found in CRH cell bodies in the PVH, even though Y1-positive staining in numerous fibers and cell bodies was observed throughout the region. However, Y1-positive fibers were shown to make close contact with CRH cell bodies in the PVH. In the ME, the majority of the Y1-positive fibers were located in the lateral portion of the ME, whereas the CRH fibers were found mainly in the medial portion of the external zone of the ME. The results of the present study suggest that ARH NPY neurons provide direct input into CRH cell bodies in the PVH region. However, the direct effects of NPY must be mediated by some receptor subtype other than Y1. Y1 receptor involvement in NPY modulation of CRH neuronal function in the PVH appears to be indirect through modulation of neuronal afferents making contact with CRH neurons.  相似文献   

12.
We characterized the development and pharmacology of Ca(2+) channel currents in NGF-treated embryonic day 21 cultured rat septal cells. Using standard whole-cell voltage clamp techniques, cells were held at -80 mV and depolarized to construct current-voltage relations in conditions that eliminated Na(+) or K(+) currents. Barium (10 mM) was used as the charge carrier. Maximum current was produced when cells were depolarized to 0 or +10 mV. Recordings from 77 cells revealed that Ca(2+) channel current density increases over time in culture from nearly 0 pA/pF on day 2 in vitro (0.65+/-0.65 pA/pF) to (6.95+/-1.59 pA/pF) on days 6-8. This was followed by a period where currents became nearly 3 times more dense (21.05+/-7.16 pA/pF) at days 9-17. There was little or no evidence for low voltage activated currents. Bath application of 50-100 microM CdCl(2) abolished approximately 95% of the current. Application of 10 microM nimodipine produced a 50.5+/-3.22% reduction in current, 2 microM omega-CTx-GVIA produced a 32.4+/-7.3% reduction, and application of 4 microM omega-Aga-IVA produced a 29.5+/-5.73% reduction in current. When all three inhibitors (10 microM nimodipine, 2 microM omega-CTx-GVIA, and 4 microM omega-Aga-IVA) were applied simultaneously, a residual current remained that was 18.0+/-4.9% of the total current and was completely abolished by application of CdCl(2). This is the first report to characterize Ca(2+) channel currents in cultured embryonic septal cells. These data indicate that there is a steady increase in Ca(2+) channel expression over time in vitro, and show that like other cultured neuronal cells, septal cells express multiple Ca(2+) channel types including L, N, P/Q and R-type channels.  相似文献   

13.
14.
Application of GABA to rat neocortical neurons maintained in cell culture produced a response that declined over several seconds, even in the continued presence of agonist. The decrement could be attributed to both a redistribution of Cl- and a true decline in GABA-induced membrane conductance, or desensitization. The extent and rate of desensitization were dose dependent in a manner similar to the dose dependence of the GABA-induced current, but were not related to the absolute magnitude of the current or to the charge transfer. Bicuculline slowed desensitization while diazepam enhanced the rate of desensitization, consistent with a localization of desensitization to the agonist-receptor binding site. When measured in the whole-cell recording mode, desensitization was voltage dependent, becoming much slower as the membrane was depolarized. Changes in extracellular or intracellular [Ca2+] did not appear to grossly affect the desensitization process or its voltage dependence. GABA-activated single channels, recorded in the outside-out configuration, also desensitized in the continued presence of agonist. However, desensitization differed from that seen in the same neurons in the whole-cell mode. Desensitization was considerably more rapid and did not show any voltage sensitivity. Moreover, single-channel responses often failed to recover after only a few exposures to agonist. Desensitization of GABA responses may play a role in the regulation of cortical inhibition, especially under conditions of intense excitatory and inhibitory synaptic activation.  相似文献   

15.
The effects of bolus intravenous injections of neuropeptide Y (NPY) on increases in pulse interval (PI) evoked reflexly by arterial chemoreceptor and baroreceptor stimulation were investigated in anaesthetised dogs. The arterial chemoreceptors were stimulated by rapid injections of small volumes of CO2 into the carotid sinus or brief episodes of tracheal occlusion. Intravenous injections of NPY produced a prolonged attenuation of the reflex prolongation of PI induced by both methods. Two methods of testing the arterial baroreceptor reflex were used: steady-state increases in PI evoked in response to maintained step increases in systolic arterial blood pressure (SABP) from inflation of an aortic balloon-tipped catheter, and beat-by-beat increases in PI evoked reflexly by 'ramp' increases in blood pressure caused by intravenous injections of phenylephrine. In both methods the relationship between SABP and PI is linear over the range tested (up to SABP 200 mmHg), the slope of the line indicating the sensitivity of the reflex response. Intravenous injections of NPY produced a prolonged attenuation of the baroreceptor-cardiodepressor reflex measured by both methods. No significant differences were observed between the NPY-mediated inhibition of the direct effects on PI of electrical stimulation of a vagus nerve, and its inhibition of the reflex responses of PI to chemoreceptor or baroreceptor stimulation. The results indicate that the attenuation of reflex PI responses to arterial chemoreceptor and baroreceptor stimulation following an intravenous injection of NPY can be accounted for in terms of the action of NPY on vagal nerve endings at the heart, although additional sites of action cannot be ruled out.  相似文献   

16.
一氧化氮供体SNP和DEA对培养海马神经元L-型钙电流的影响   总被引:1,自引:0,他引:1  
目的观察NO供体DEA和SNP对大鼠海马培养神经元L-型钙电流的影响并对其机理进行初步探讨。方法L-型钙电流用膜片钳的全细胞模式进行记录。结果DEA和SNP这二种NO供体的主要效应为抑制作用。3 mmol/L DEA可抑制L-型钙电流,当电压去极化至10mV时,电流被抑制了29%。SNP对通道也主要起抑制作用,并且呈现剂量依赖性。当用NEM预处理以阻断S-亚硝化通路后,SNP仍对L-型钙电流产生相似的抑制作用,表明S-亚硝化机制不参与该调控作用。用10μmol/L ODQ预处理以阻断cGMP途径后,SNP仍对通道有抑制作用,表明存在另一种非cGMP通路的抑制性机制。结论上述结果表明,NO供体DEA和SNP对海马神经元L-型钙电流具有抑制作用,其作用机理主要是通过与cGMP途径和S-亚硝化修饰无关的途径。  相似文献   

17.
Enkephalin- and neuropeptide Y-expressin neurons which offer commissural axons or axons toward auditory thalamus were identified in the rat inferior colliculus. These neurons exhibited a differential distribution pattern. The results provide evidence for regional specificity and chemical heterogeneity of neurons in the auditory midbrain.  相似文献   

18.
In this study, we investigated the effects of delta-opioid receptor antagonists on the G protein-coupled inwardly rectifying potassium (GIRK) channel currents induced by serotonin (5-HT) and noradrenaline (NAd) in the dorsal raphe and the locus coeruleus neurons, respectively. Perforated patch and conventional whole-cell patch clamp recording techniques were used for the study. Neurons were acutely dissociated from neonatal rats. Both naltrindole (NTI) and naltriben (NTB), which are selective delta-antagonists possessing antitussive activity in in vivo animal studies, reversibly inhibited the 5-HT-induced GIRK channel currents (I(5-HT)) in dorsal raphe neurons. This inhibition was concentration-dependent and voltage-independent. The half-maximum inhibitory concentration (IC(50)) on I(5-HT) was 9.84x10(-5) M for NTI and 1.28x10(-5) M for NTB. The inhibition was not reversed by 10(-5) M DPDPE, a selective delta-opioid receptor agonist. NTI did not affect 50% effective concentration (EC(50)) on the concentration-response relationship for 5-HT but inhibited the maximum response. In neurons internally perfused with GTPgammaS, both NTI and NTB also inhibited the GIRK channel currents irreversibly activated by 5-HT. Furthermore, these antagonists concentration dependently inhibited 10(-6) M NAd-induced currents (I(NAd)) in locus coeruleus neurons. The IC(50) of NTI on I(NAd) was 8.44x10(-5) M, which was close to that on I(5-HT). The results suggest that NTI and NTB, which are delta-opioid receptor antagonists possessing antitussive activity, may inhibit GIRK channel currents through a non-opioid action, and give further support to our idea previously proposed that centrally acting non-narcotic antitussives have a common characteristic of the inhibitory action on GIRK channels.  相似文献   

19.
Neuropeptide Y (NPY) Y1 receptor (Y1-R) agonists influence cardiovascular regulation. These actions may involve NPY- and catecholamine-containing neurons in the medial nucleus of the solitary tract (mNTS), at the level of the area postrema. The cellular sites through which Y1-R agonists may interact with NPY and catecholamines in the mNTS, however, are not known. To determine potential sites of action for Y1-R agonists, and their relationship to NPY or catecholamines in the mNTS, we used electron microscopic immunocytochemistry for the detection of sequence-specific antipeptide antisera against Y1-R alone or in combination with antisera against NPY or the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH). Analyses were conducted in the rat mNTS, at the level of the area postrema. Y1-R was found mainly in small unmyelinated axons and axon terminals but also in some somata and dendrites as well as a small number of glia. Within axon terminals, labeling for Y1-R was often present on dense core vesicles and small synaptic vesicles as well as extrasynaptic areas of the plasmalemma. Some Y1-R-labeled terminals also contained NPY or TH, suggesting that agonists of Y1-R may influence the release of NPY or catecholamines in the mNTS. In addition, Y1-R was found in dendrites that received asymmetric excitatory-type synapses from unlabeled axon terminals. Some of these dendrites contained NPY or TH, which indicates that Y1-R may be targeted for functional activation within NPY- or catecholamine-expressing neurons in the mNTS. These results demonstrate that Y1-R is a presynaptic receptor in NPY- or catecholamine-containing axon terminals within the mNTS as well as a postsynaptic receptor on NPY- or catecholamine-containing neurons that are contacted by axon terminals that likely contain excitatory amino acid transmitters. Agonists of Y1-R in the mNTS may thus affect cardiovascular regulation by modulating NPY, catecholamine, and excitatory amino acid transmission.  相似文献   

20.
Sympathetic ganglion precursors were used to test the role of non-neuronal cell-derived factors in the establishment of mature neuronal phenotypes. In control conditions, characteristic neuronal populations with and without neuropeptide Y (NPY) expression developed after 1 week, but following removal of non-neuronal cells, virtually all neurons expressed NPY. Thus, ganglionic non-neuronal cells downregulated NPY expression in some but not all neurons in vitro. Conditioned medium from non-neuronal cells restored heterogeneous NPY expression, a finding that suggests the factors are soluble. A non-neuronal cell-derived cytokine, leukemia inhibitory factor, dramatically reduced NPY expression in all neurons, but no concentration tested could recapitulate heterogeneous neuronal NPY expression. Sympathetic precursors that incorporated BrdU early in the culture were more likely to develop NPY expression than neurons that became postmitotic later in vitro. Together, these findings support the notion that the environment in which neurons become postmitotic contributes to neuronal phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号