首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spoken word recognition involves the activation of multiple word candidates on the basis of the initial speech input--the "cohort"--and selection among these competitors. Selection may be driven primarily by bottom-up acoustic-phonetic inputs or it may be modulated by other aspects of lexical representation, such as a word's meaning [Marslen-Wilson, W. D. Functional parallelism in spoken word-recognition. Cognition, 25, 71-102, 1987]. We examined these potential interactions in an fMRI study by presenting participants with words and pseudowords for lexical decision. In a factorial design, we manipulated (a) cohort competition (high/low competitive cohorts which vary the number of competing word candidates) and (b) the word's semantic properties (high/low imageability). A previous behavioral study [Tyler, L. K., Voice, J. K., & Moss, H. E. The interaction of meaning and sound in spoken word recognition. Psychonomic Bulletin & Review, 7, 320-326, 2000] showed that imageability facilitated word recognition but only for words in high competition cohorts. Here we found greater activity in the left inferior frontal gyrus (BA 45, 47) and the right inferior frontal gyrus (BA 47) with increased cohort competition, an imageability effect in the left posterior middle temporal gyrus/angular gyrus (BA 39), and a significant interaction between imageability and cohort competition in the left posterior superior temporal gyrus/middle temporal gyrus (BA 21, 22). In words with high competition cohorts, high imageability words generated stronger activity than low imageability words, indicating a facilitatory role of imageability in a highly competitive cohort context. For words in low competition cohorts, there was no effect of imageability. These results support the behavioral data in showing that selection processes do not rely solely on bottom-up acoustic-phonetic cues but rather that the semantic properties of candidate words facilitate discrimination between competitors.  相似文献   

2.
Semantic processing is an amodal process with modality-specific information integrated in supramodal “convergence zones” or “semantic hub” with executive mechanisms that tailor semantic representation in a task-appropriate way. One unsolved question is how frontal control region dynamically interacts with temporal representation region in semantic integration. The present study addressed this issue by using inhibitory double-pulse transcranial magnetic stimulation over the left inferior frontal gyrus (IFG) or left posterior middle temporal gyrus (pMTG) in one of eight 40 ms time windows (TWs) (3 TWs before and 5 TWs after the identification point of speech), when human participants (12 females, 14 males) were presented with semantically congruent or incongruent gesture-speech pairs but merely identified the gender of speech. We found a TW-selective disruption of gesture-speech integration, indexed by the semantic congruency effect (i.e., a cost of reaction time because of semantic conflict), when stimulating the left pMTG in TW1, TW2, and TW7 but when stimulating the left IFG in TW3 and TW6. Based on the timing relationship, we hypothesize a two-stage gesture-speech integration circuit with a pMTG-to-IFG sequential involvement in the prelexical stage for activating gesture semantics and top-down constraining the phonological processing of speech. In the postlexical stage, an IFG-to-pMTG feedback signal might be implicated for the control of goal-directed representations and multimodal semantic unification. Our findings provide new insights into the dynamic brain network of multimodal semantic processing by causally revealing the temporal dynamics of frontal control and temporal representation regions.SIGNIFICANCE STATEMENT Previous research has identified differential functions of left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) in semantic control and semantic representation, respectively, and a causal contribution of both regions in gesture-speech integration. However, it remains largely unclear how the two regions dynamically interact in semantic processing. By using double-pulse transcranial magnetic stimulation to disrupt regional activity at specific time, this study for the first time revealed critical time windows when the two areas were causally involved in integrating gesture and speech semantics. Findings suggest a pMTG-IFG-pMTG neurocircuit loop in gesture-speech integration, which deepens current knowledge and inspires future investigation of the temporal dynamics and cognitive processes of the amodal semantic network.  相似文献   

3.
Cognitive models of word production correlate the word frequency effect (i.e., the fact that words which appear with less frequency take longer to produce) with an increased processing cost to activate the whole-word (lexical) phonological representation. We performed functional magnetic resonance imaging (fMRI) while subjects produced overt naming responses to photographs of animals and manipulable objects that had high name agreement but were of varying frequency, with the purpose of identifying neural structures participating specifically in activating whole-word phonological representations, as opposed to activating lexical semantic representations or articulatory-motor routines. Blood oxygen level-dependent responses were analyzed using a parametric approach based on the frequency with which each word produced appears in the language. Parallel analyses were performed for concept familiarity and word length, which provided indices of semantic and articulatory loads. These analyses permitted us to identify regions related to word frequency alone, and therefore, likely to be related specifically to activation of phonological word forms. We hypothesized that the increased processing cost of producing lower-frequency words would correlate with activation of the left posterior inferotemporal (IT) cortex, the left posterior superior temporal gyrus (pSTG), and the left inferior frontal gyrus (IFG). Scan-time response latencies demonstrated the expected word frequency effect. Analysis of the fMRI data revealed that activity in the pSTG was modulated by frequency but not word length or concept familiarity. In contrast, parts of IT and IFG demonstrated conjoint frequency and familiarity effects, and parts of both primary motor regions demonstrated conjoint effects of frequency and word length. The results are consistent with a model of word production in which lexical-semantic and lexical-phonological information are accessed by overlapping neural systems within posterior and anterior language-related cortices, with pSTG specifically involved in accessing lexical phonology.  相似文献   

4.
Event-related fMRI was used to investigate lexical decisions to words of high and low frequency of occurrence and to pseudowords. The results obtained strongly support dual-route models of visual word processing. By contrasting words with pseudowords, bilateral occipito-temporal brain areas and posterior left middle temporal gyrus (MTG) were identified as contributing to the successful mapping of orthographic percepts onto visual word form representations. Low-frequency words and pseudowords elicited greater activations than high-frequency words in the superior pars opercularis [Brodmann's area (BA) 44] of the left inferior frontal gyrus (IFG), in the anterior insula, and in the thalamus and caudate nucleus. As processing of these stimuli during lexical search is known to rely on phonological information, it is concluded that these brain regions are involved in grapheme-to-phoneme conversion. Activation in the pars triangularis (BA 45) of the left IFG was observed only for low-frequency words. It is proposed that this region is involved in processes of lexical selection.  相似文献   

5.
The brain networks supporting speech identification and comprehension under difficult listening conditions are not well specified. The networks hypothesized to underlie effortful listening include regions responsible for executive control. We conducted meta‐analyses of auditory neuroimaging studies to determine whether a common activation pattern of the frontal lobe supports effortful listening under different speech manipulations. Fifty‐three functional neuroimaging studies investigating speech perception were divided into three independent Activation Likelihood Estimate analyses based on the type of speech manipulation paradigm used: Speech‐in‐noise (SIN, 16 studies, involving 224 participants); spectrally degraded speech using filtering techniques (15 studies involving 270 participants); and linguistic complexity (i.e., levels of syntactic, lexical and semantic intricacy/density, 22 studies, involving 348 participants). Meta‐analysis of the SIN studies revealed higher effort was associated with activation in left inferior frontal gyrus (IFG), left inferior parietal lobule, and right insula. Studies using spectrally degraded speech demonstrated increased activation of the insula bilaterally and the left superior temporal gyrus (STG). Studies manipulating linguistic complexity showed activation in the left IFG, right middle frontal gyrus, left middle temporal gyrus and bilateral STG. Planned contrasts revealed left IFG activation in linguistic complexity studies, which differed from activation patterns observed in SIN or spectral degradation studies. Although there were no significant overlap in prefrontal activation across these three speech manipulation paradigms, SIN and spectral degradation showed overlapping regions in left and right insula. These findings provide evidence that there is regional specialization within the left IFG and differential executive networks underlie effortful listening.  相似文献   

6.
OBJECTIVE: Our purpose was to study the effect of semantic priming at varying semantic distances on brain activation during a lexical decision experiment, using functional magnetic resonance imaging (fMRI). BACKGROUND: Neuroimaging studies have demonstrated decreased brain activation for primed versus unprimed stimuli in language areas due to semantic priming, suggesting facilitated semantic retrieval. However, the effect of varying semantic distances on brain activation has not been studied. Therefore we examined direct and indirect priming effects on cerebral activation to provide information regarding spread of activation in the semantic network. METHODS: Participants were presented with closely, distantly, and unrelated word pairs during fMRI, and asked to make a lexical decision on the second word. RESULTS: Behavioral measurements demonstrated significant priming effects for all semantic distances. Imaging results showed modulation of brain activation due to different semantic relationships in the left inferior frontal gyrus, bilateral middle frontal gyrus and anterior temporal lobe, and consisted of decreased magnitude of activation when primed stimuli were processed compared with unprimed stimuli, with the greatest effect observed for closely related words. CONCLUSIONS: This study demonstrates graduated effects of semantic priming on fMRI in semantic but not attentional brain regions, contributing to explain how semantic knowledge is organized and retrieved. These findings support the network model for organization of the semantic lexicon.  相似文献   

7.
Emotions influence our everyday life in several ways. With the present study, we wanted to examine the impact of emotional information on neural correlates of semantic priming, a well-established technique to investigate semantic processing. Stimuli were presented with a short SOA of 200 ms as subjects performed a lexical decision task during fMRI measurement. Seven experimental conditions were compared: positive/negative/neutral related, positive/negative/neutral unrelated, nonwords (all words were nouns). Behavioral data revealed a valence specific semantic priming effect (i.e., unrelated > related) only for neutral and positive related word pairs. On a neural level, the comparison of emotional over neutral relations showed activation in left anterior medial frontal cortex, superior frontal gyrus, and posterior cingulate. Interactions for the different relations were located in left anterior part of the medial frontal cortex, cingulate regions, and right hippocampus (positive > neutral + negative) and left posterior part of medial frontal cortex (negative > neutral + positive). The results showed that emotional information have an influence on semantic association processes. While positive and neutral information seem to share a semantic network, negative relations might induce compensatory mechanisms that inhibit the spread of activation between related concepts. The neural correlates highlighted a distributed neural network, primarily involving attention, memory and emotion related processing areas in medial fronto-parietal cortices. The differentiation between anterior (positive) and posterior part (negative) of the medial frontal cortex was linked to the type of affective manipulation with more cognitive demands being involved in the automatic processing of negative information.  相似文献   

8.
The neural basis underlying implicit semantic priming was investigated using event-related fMRI. Prime-target pairs were presented auditorily for lexical decision (LD) on the target stimulus, which was either semantically related or unrelated to the prime, or was a nonword. A tone task was also administered as a control. Behaviorally, all participants demonstrated semantic priming in the LD task. fMRI results showed that for all three conditions of the LD task, activation was seen in the superior temporal gyrus (STG), the middle temporal gyrus (MTG), and the inferior parietal lobe, with greater activation in the unrelated and nonword conditions than in the related condition. Direct comparisons of the related and unrelated conditions revealed foci in the left STG, left precentral gyrus, left and right MTGs, and right caudate, exhibiting significantly lower activation levels in the related condition. The reduced activity in the temporal lobe suggests that the perception of the prime word activates a lexical-semantic network that shares common elements with the target word, and, thus, the target can be recognized with enhanced neural efficiency. The frontal lobe reductions most likely reflect the increased efficiency in monitoring the activation of lexical representations in the temporal lobe, making a decision, and planning the appropriate motor response.  相似文献   

9.
Functional studies in schizophrenia demonstrate prominent abnormalities within the left inferior frontal gyrus (IFG) and also suggest the functional connectivity abnormalities in language network including left IFG and superior temporal gyrus during semantic processing. White matter connections between regions involved in the semantic network have also been indicated in schizophrenia. However, an association between functional and anatomical connectivity disruptions within the semantic network in schizophrenia has not been established. Functional (using levels of processing paradigm) as well as diffusion tensor imaging data from 10 controls and 10 chronic schizophrenics were acquired and analyzed. First, semantic encoding specific activation was estimated, showing decreased activation within the left IFG in schizophrenia. Second, functional time series were extracted from this area, and left IFG specific functional connectivity maps were produced for each subject. In an independent analysis, tract‐based spatial statistics (TBSS) was used to compare fractional anisotropy (FA) values between groups, and to correlate these values with functional connectivity maps. Schizophrenia patients showed weaker functional connectivity within the language network that includes left IFG and left superior temporal sulcus/middle temporal gyrus. FA was reduced in several white matter regions including left inferior frontal and left internal capsule. Finally, left inferior frontal white matter FA was positively correlated with connectivity measures of the semantic network in schizophrenics, but not in controls. Our results indicate an association between anatomical and functional connectivity abnormalities within the semantic network in schizophrenia, suggesting further that the functional abnormalities observed in this disorder might be directly related to white matter disruptions. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Modality independence of word comprehension   总被引:3,自引:0,他引:3  
Functional magnetic resonance imaging (fMRI) was used to examine the functional anatomy of word comprehension in the auditory and visual modalities of presentation. We asked our subjects to determine if word pairs were semantically associated (e.g., table, chair) and compared this to a reference task where they were asked to judge whether word pairs rhymed (e.g., bank, tank). This comparison showed task-specific and modality-independent activation for semantic processing in the heteromodal cortices of the left inferior frontal gyrus (BA 46, 47) and left middle temporal gyrus (BA 21). There were also modality-specific activations in the fusiform gyrus (BA 37) for written words and in the superior temporal gyrus (BA 22) for spoken words. Our findings are consistent with the hypothesis that word form recognition (lexical encoding) occurs in unimodal cortices and that heteromodal brain regions in the anterior as well as posterior components of the language network subserve word comprehension (semantic decoding).  相似文献   

11.
To understand the meanings of words and objects, we need to have knowledge about these items themselves plus executive mechanisms that compute and manipulate semantic information in a task-appropriate way. The neural basis for semantic control remains controversial. Neuroimaging studies have focused on the role of the left inferior frontal gyrus (LIFG), whereas neuropsychological research suggests that damage to a widely distributed network elicits impairments of semantic control. There is also debate about the relationship between semantic and executive control more widely. We used TMS in healthy human volunteers to create "virtual lesions" in structures typically damaged in patients with semantic control deficits: LIFG, left posterior middle temporal gyrus (pMTG), and intraparietal sulcus (IPS). The influence of TMS on tasks varying in semantic and nonsemantic control demands was examined for each region within this hypothesized network to gain insights into (i) their functional specialization (i.e., involvement in semantic representation, controlled retrieval, or selection) and (ii) their domain dependence (i.e., semantic or cognitive control). The results revealed that LIFG and pMTG jointly support both the controlled retrieval and selection of semantic knowledge. IPS specifically participates in semantic selection and responds to manipulations of nonsemantic control demands. These observations are consistent with a large-scale semantic control network, as predicted by lesion data, that draws on semantic-specific (LIFG and pMTG) and domain-independent executive components (IPS).  相似文献   

12.
Spoken word production is assumed to involve stages of processing in which activation spreads through layers of units comprising lexical-conceptual knowledge and their corresponding phonological word forms. Using high-field (4T) functional magnetic resonance imaging (fMRI), we assessed whether the relationship between these stages is strictly serial or involves cascaded-interactive processing, and whether central (decision/control) processing mechanisms are involved in lexical selection. Participants performed the competitor priming paradigm in which distractor words, named from a definition and semantically related to a subsequently presented target picture, slow picture-naming latency compared to that with unrelated words. The paradigm intersperses two trials between the definition and the picture to be named, temporally separating activation in the word perception and production networks. Priming semantic competitors of target picture names significantly increased activation in the left posterior temporal cortex, and to a lesser extent the left middle temporal cortex, consistent with the predictions of cascaded-interactive models of lexical access. In addition, extensive activation was detected in the anterior cingulate and pars orbitalis of the inferior frontal gyrus. The findings indicate that lexical selection during competitor priming is biased by top-down mechanisms to reverse associations between primed distractor words and target pictures to select words that meet the current goal of speech.  相似文献   

13.
Xiao Z  Zhang JX  Wang X  Wu R  Hu X  Weng X  Tan LH 《Human brain mapping》2005,25(2):212-221
After Newman and Twieg and others, we used a fast event-related functional magnetic resonance imaging (fMRI) design and contrasted the lexical processing of pseudowords and real words. Participants carried out an auditory lexical decision task on a list of randomly intermixed real and pseudo Chinese two-character (or two-syllable) words. The pseudowords were constructed by recombining constituent characters of the real words to control for sublexical code properties. Processing of pseudowords and real words activated a highly comparable network of brain regions, including bilateral inferior frontal gyrus, superior, middle temporal gyrus, calcarine and lingual gyrus, and left supramarginal gyrus. Mirroring a behavioral lexical effect, left inferior frontal gyrus (IFG) was significantly more activated for pseudowords than for real words. This result disconfirms a popular view that this area plays a role in grapheme-to-phoneme conversion, as such a conversion process was unnecessary in our task with auditory stimulus presentation. An alternative view was supported that attributes increased activity in left IFG for pseudowords to general processes in decision making, specifically in making positive versus negative responses. Activation in left supramarginal gyrus was of a much larger volume for real words than for pseudowords, suggesting a role of this region in the representation of phonological or semantic information for two-character Chinese words at the lexical level.  相似文献   

14.
When speech intelligibility is reduced, listeners exploit constraints posed by semantic context to facilitate comprehension. The left angular gyrus (AG) has been argued to drive this semantic predictability gain. Taking a network perspective, we ask how the connectivity within language‐specific and domain‐general networks flexibly adapts to the predictability and intelligibility of speech. During continuous functional magnetic resonance imaging (fMRI), participants repeated sentences, which varied in semantic predictability of the final word and in acoustic intelligibility. At the neural level, highly predictable sentences led to stronger activation of left‐hemispheric semantic regions including subregions of the AG (PGa, PGp) and posterior middle temporal gyrus when speech became more intelligible. The behavioural predictability gain of single participants mapped onto the same regions but was complemented by increased activity in frontal and medial regions. Effective connectivity from PGa to PGp increased for more intelligible sentences. In contrast, inhibitory influence from pre‐supplementary motor area to left insula was strongest when predictability and intelligibility of sentences were either lowest or highest. This interactive effect was negatively correlated with the behavioural predictability gain. Together, these results suggest that successful comprehension in noisy listening conditions relies on an interplay of semantic regions and concurrent inhibition of cognitive control regions when semantic cues are available.  相似文献   

15.
Although there has been great interest in the neuroanatomical basis of reading, little attention has been focused on auditory language processing. The purpose of this study was to examine the differential neuroanatomical response to the auditory processing of real words and pseudowords. Eight healthy right-handed participants performed two phoneme monitoring tasks (one with real word stimuli and one with pseudowords) during a functional magnetic resonance imaging (fMRI) scan with a 4.1 T system. Both tasks activated the inferior frontal gyrus (IFG), the posterior superior temporal gyrus (pSTG) and the inferior parietal lobe (IPL). Pseudoword processing elicited significantly more activation within the posterior cortical regions compared with real word processing. Previous reading studies have suggested that this increase is due to an increased demand on the lexical access system. The left inferior frontal gyrus, on the other hand, did not reveal a significant difference in the amount of activation as a function of stimulus type. The lack of a differential response in IFG for auditory processing supports its hypothesized involvement in grapheme to phoneme conversion processes. These results are consistent with those from previous neuroimaging reading studies and emphasize the utility of examining both input modalities (e.g., visual or auditory) to compose a more complete picture of the language network.  相似文献   

16.
The current study investigated the neural correlates that underlie the processing of ambiguous words and the potential effects of semantic competition on that processing. Participants performed speeded lexical decisions on semantically related and unrelated prime-target pairs presented in the auditory modality. The primes were either ambiguous words (e.g., ball) or unambiguous words (e.g., athlete), and targets were either semantically related to the dominant (i.e., most frequent) meaning of the ambiguous prime word (e.g., soccer) or to the subordinate (i.e., less frequent) meaning (e.g., dance). Results showed increased activation in the bilateral inferior frontal gyrus (IFG) for ambiguous-related compared to unambiguous-related stimulus pairs, demonstrating that prefrontal areas are activated even in an implicit task where participants are not required to explicitly analyze the semantic content of the stimuli and to make an overt selection of a particular meaning based on this analysis. Additionally, increased activation was found in the left IFG and the left cingulate gyrus for subordinate meaning compared to dominant meaning conditions, suggesting that additional resources are recruited in order to resolve increased competition demands in accessing the subordinate meaning of an ambiguous word.  相似文献   

17.
The basic steps in building up language involve binding words of different categories into a hierarchical structure. To what extent these steps are universal or differ across languages is an open issue. Here we examine the neural dynamics of phrase structure building in Chinese—a language that in contrast to other languages heavily depends on contextual semantic information. We used functional magnetic resonance imaging and dynamic causal modeling to identify the relevant brain regions and their dynamic relations. Language stimuli consisted of syntax‐driving determiners, semantics‐embedded classifiers, and nonverbal symbols making up for two‐component sequences manipulated by the factors structure (phrase/list) and number of words (2‐word/1‐word). Processing phrases compared with word lists elicited greater activation in the anterior part of Broca's area, Brodmann area (BA) 45, and the left posterior superior/middle temporal gyri (pSTG/pMTG), while processing two words against one word led to stronger involvement of the left BA 45, BA 44, and insula. Differential network modulations emerging from subparts of Broca's area revealed that phrasal construction in particular highly modulated the direct connection from BA 44 to left pMTG, suggesting BA 44’s primary role in phrase structure building. Conversely, the involvement of BA 45 rather appears sensitive to the reliance on lexico‐semantic information in Chinese. Against the background of previous findings from other languages, the present results indicate that phrase structure building has a universal neural basis within the left fronto‐temporal network. Most importantly, they provide the first evidence demonstrating that the structure‐building network may be modulated by language‐specific characteristics.  相似文献   

18.
Neuropsychological evidence regarding grammatical category suggests that deficits affecting verbs tend to localize differently from those affecting nouns, but previous functional imaging studies on healthy subjects fail to show consistent results that correspond to the clinical dissociation. In the current imaging study, we addressed this issue by manipulating not only the grammatical category but also the processing mode, using auditory presentation of Hebrew words. Subjects were presented with verbs and nouns and were instructed to make either a semantic decision (“Does the word belong to a given semantic category?”) or a morphological decision (“Is the word inflected in plural?”). The results showed different patterns of activation across distinct regions of interest. With respect to grammatical category effects, we found increased activation for verbs in the posterior portion of the left superior temporal sulcus, left dorsal premotor area, and posterior inferior frontal gyrus. In each of these regions, the effect was sensitive to task. None of the ROIs showed noun advantage. With respect to task effects, we found a semantic advantage in left anterior inferior frontal gyrus, as well as in left posterior middle temporal gyrus. The results suggest that cerebral verb‐noun dissociation is a result of localized and subtle processes that take place in a set of left frontal and temporal regions, and that the cognitive and neural processes involved in analyzing grammatical category depend on the lexical characteristics of the stimuli, as well as on task requirements. The discrepancy between functional imaging and patient data is also discussed. Hum. Brain Mapp, 2007. © 2006 Wiley‐Liss, Inc.  相似文献   

19.
Gestures are an important component of interpersonal communication. Especially, complex multimodal communication is assumed to be disrupted in patients with schizophrenia. In healthy subjects, differential neural integration processes for gestures in the context of concrete [iconic (IC) gestures] and abstract sentence contents [metaphoric (MP) gestures] had been demonstrated. With this study we wanted to investigate neural integration processes for both gesture types in patients with schizophrenia. During functional magnetic resonance imaging‐data acquisition, 16 patients with schizophrenia (P) and a healthy control group (C) were shown videos of an actor performing IC and MP gestures and associated sentences. An isolated gesture (G) and isolated sentence condition (S) were included to separate unimodal from bimodal effects at the neural level. During IC conditions (IC > G ∩ IC > S) we found increased activity in the left posterior middle temporal gyrus (pMTG) in both groups. Whereas in the control group the left pMTG and the inferior frontal gyrus (IFG) were activated for the MP conditions (MP > G ∩ MP > S), no significant activation was found for the identical contrast in patients. The interaction of group (P/C) and gesture condition (MP/IC) revealed activation in the bilateral hippocampus, the left middle/superior temporal and IFG. Activation of the pMTG for the IC condition in both groups indicates intact neural integration of IC gestures in schizophrenia. However, failure to activate the left pMTG and IFG for MP co‐verbal gestures suggests a disturbed integration of gestures embedded in an abstract sentence context. This study provides new insight into the neural integration of co‐verbal gestures in patients with schizophrenia. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Previous positron emission tomography (PET) studies have shown that various cortical areas are activated to process speech signal in cochlear implant (CI) users. Nonetheless, differences in task dimension among studies and low statistical power preclude from understanding sound processing mechanism in CI users. Hence, we performed activation likelihood estimation meta‐analysis of PET studies in CI users and normal hearing (NH) controls to compare the two groups. Eight studies (58 CI subjects/92 peak coordinates; 45 NH subjects/40 peak coordinates) were included and analyzed, retrieving areas significantly activated by lexical and nonlexical stimuli. For lexical and nonlexical stimuli, both groups showed activations in the components of the dual‐stream model such as bilateral superior temporal gyrus/sulcus, middle temporal gyrus, left posterior inferior frontal gyrus, and left insula. However, CI users displayed additional unique activation patterns by lexical and nonlexical stimuli. That is, for the lexical stimuli, significant activations were observed in areas comprising salience network (SN), also known as the intrinsic alertness network, such as the left dorsal anterior cingulate cortex (dACC), left insula, and right supplementary motor area in the CI user group. Also, for the nonlexical stimuli, CI users activated areas comprising SN such as the right insula and left dACC. Previous episodic observations on lexical stimuli processing using the dual auditory stream in CI users were reconfirmed in this study. However, this study also suggests that dual‐stream auditory processing in CI users may need supports from the SN. In other words, CI users need to pay extra attention to cope with degraded auditory signal provided by the implant. Hum Brain Mapp 36:1982–1994, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号