首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autosomal recessive nonsyndromic hearing impairment (ARNSHI) segregating in three unrelated, large consanguineous Pakistani families (PKDF528, PKDF859 and PKDF326) is linked to markers on chromosome 12q14.2-q15. This novel locus is designated DFNB74 . Maximum two-point limit of detection (LOD) scores of 5.6, 5.7 and 2.6 were estimated for markers D 12 S 313, D 12 S 83 and D 12 S 75 at θ = 0 for recessive deafness segregating in these three families. Haplotype analyses identified a critical linkage interval of 5.35 cM (5.36 Mb) defined by D 12 S 329 at 74.58 cM and D 12 S 313 at 79.93 cM. DFNB74 is the second ARNSHI locus mapped to chromosome 12, but the physical intervals do not overlap with one another. A locus contributing to the early onset, rapidly progressing hearing loss of A/J mice ( ahl4 , age-related hearing loss 4) was reported to map to chromosome 10 in a region of conserved synteny to DFNB74 , suggesting that ahl4 and DFNB74 may be due to mutations of the same gene in these two species.  相似文献   

2.
We report on a novel localization for a recessive form of deafness (DFNB), by linkage analysis in an Iranian consanguineous family. Affected individuals suffer from prelingual profound sensorineural hearing loss. Genome-wide analysis led to the characterization of a new locus, DFNB40, which maps to an approximately 9 Mb interval between markers D22S427 and D22S1144 at chromosome 22q11.21-12.1. Maximum lod score of 3.09 was obtained with D22S1174. Since the Bronx waltzer (bv) mouse mutant, characterized by waltzing behavior, deafness, and degeneration of cochlear inner hair cells, has been mapped to the syntenic region on murine chromosome 5, we suggest that DFNB40 and bv may result from orthologous gene defects.  相似文献   

3.
We report the identification of a novel locus responsible for an autosomal recessive form of hearing loss (DFNB) segregating in a Palestinian consanguineous family from Jordan. The affected individuals suffer from profound prelingual sensorineural hearing impairment. A genetic linkage with polymorphic markers surrounding D9S1776 was detected, thereby identifying a novel deafness locus, DFNB31. This locus could be assigned to a 9q32-34 region of 15 cM between markers D9S289 and D9S1881. The whirler (wi) mouse mutant, characterised by deafness and circling behaviour, maps to the corresponding region on the murine chromosome 4, thus suggesting that DFNB31 and whirler may result from orthologous gene defects.  相似文献   

4.
Mutations in the human cadherin 23 (CDH23) gene cause deafness, neurosensory, autosomal recessive 12 (DFNB12) nonsyndromic hearing loss or Usher syndrome, type 1D (characterized by hearing impairment, vestibular dysfunction, and visual impairment). Reported waltzer mouse strains each harbor a Cdh23-null mutation and present with hearing loss and vestibular dysfunction. Two additional Cdh23 mouse mutants, salsa and erlong, each carry a homozygous Cdh23 missense mutation and have progressive hearing loss. We report the identification of a novel mouse strain, jera, with inherited hearing loss caused by an N-ethyl-N-nitrosourea-induced c.7079T>A mutation in the Cdh23 gene. The mutation generates a missense change, p.V2360E, in Cdh23. Affected mice have profound sensorineural deafness, with no vestibular dysfunction. The p.V2360E mutation is semidominant because heterozygous mice have milder and more progressive hearing loss in advanced age. The mutation affects a highly conserved Ca(2+)-binding motif in extracellular domain 22, thought to be important for Cdh23 structure and dimerization. Molecular modeling suggests that the Cdh23(V2360E/V2360E) mutation alters the structural conformation of the protein and affects Ca(2+)-binding properties. Similar to salsa mice, but in contrast to waltzer mice, hair bundle development is normal in jera and hearing loss appears to be due to the loss of tip links. Thus, jera is a novel mouse model for DFNB12.  相似文献   

5.
Autosomal recessive non-syndromic hearing impairment (ARNSHI) is the most common form of prelingual inherited hearing impairment (HI). Here is described the mapping of a novel ARNSHI locus in a consanguineous Pakistani family with profound congenital HI. Two-point and multipoint linkage analyses were performed for the genome scan and fine mapping markers. Haplotypes were constructed to determine the region of homozygosity. At theta = 0, the maximum two-point LOD score of 4.0 was obtained at marker AAC040. A maximum multipoint LOD score of 5.3 was derived at marker D12S320, with the three-unit support interval demarcated by D12S89 and D12S1042. The region of homozygosity is flanked by markers D12S358 and D12S1042, which corresponds to 22.4 cM according to the Rutgers combined linkage-physical map of the human genome and spans 15.0 Mb on the sequence-based physical map. A novel ARNSHI locus DFNB62 was mapped to chromosome 12p13.2-p11.23. DFNB62 represents the second ARNSHI locus to map to chromosome 12.  相似文献   

6.
Hereditary hearing impairment is the most genetically heterogeneous trait known in humans. So far, 50 published autosomal recessive non-syndromic hearing impairment (ARNSHI) loci have been mapped, and 23 ARNSHI genes have been identified. Here, we report the mapping of a novel ARNSHI locus, DFNB63 , to chromosome 11q13.3-q13.4 in a large consanguineous Tunisian family. A maximum LOD score of 5.33 was obtained with microsatellite markers D11S916 and D11S4207. Haplotype analysis defined a 5.55 Mb critical region between microsatellite markers D11S4136 and D11S4081. DFNB63 represents the sixth ARNSHI locus mapped to chromosome 11. We positionally excluded MYO7A from being the DFNB63-causative gene. In addition, the screening of two candidate genes, SHANK2 and KCNE3 , failed to reveal any disease-causing mutations.  相似文献   

7.

Background

Non‐syndromic hearing loss is among the most genetically heterogeneous traits known in humans. To date, at least 50 loci for autosomal dominant non‐syndromic sensorineural hearing loss (ADNSSHL) have been identified by linkage analysis.

Objective

To report the mapping of a novel autosomal dominant deafness locus on the long arm of chromosome 14 at 14q11.2‐q12, DFNA53, in a large multigenerational Chinese family with post‐lingual, high frequency hearing loss that progresses to involve all frequencies.

Results

A maximum multipoint LOD score of 5.4 was obtained for marker D14S1280. The analysis of recombinant haplotypes mapped DFNA53 to a 9.6 cM region interval between markers D14S581 and D14S1021. Four deafness loci (DFNA9, DFNA23, DFNB5, and DFNB35) have previously been mapped to the long arm of chromosome 14. The critical region for DFNA53 contains the gene for DFNA9 but does not overlap with the regions for DFNB5, DFNA23, or DFNB35. Screening of the COCH gene (DFNA9), BOCT, EFS, and HSPC156 within the DFNA53 interval did not identify the cause for deafness in this family.

Conclusions

Identifying the DFNA53 locus is the first step in isolating the gene responsible for hearing loss in this large multigeneration Chinese family.  相似文献   

8.
Hereditary hearing impairment (HI) is the most genetically heterogeneous trait known in humans. So far, 54 autosomal recessive non-syndromic hearing impairment (ARNSHI) loci have been mapped, and 21 ARNSHI genes have been identified. Here is reported the mapping of a novel ARNSHI locus, DFNB55, to chromosome 4q12-q13.2 in a consanguineous Pakistani family. A maximum multipoint LOD score of 3.5 was obtained at marker D4S2638. The region of homozygosity and the 3-unit support interval are flanked by markers D4S2978 and D4S2367. The region spans 8.2 cm on the Rutgers combined linkage-physical map and contains 11.5 Mb. DFNB55 represents the third ARNSHI locus mapped to chromosome 4.  相似文献   

9.
Approximately 80% of the hereditary hearing loss is nonsyndromic. Isolated deafness is the most genetically heterogeneous trait. We have ascertained 10 individuals from a large consanguineous Tunisian family with congenital profound autosomal recessive deafness. All affected individuals are otherwise healthy. Genotype analysis excluded linkage to known recessive deafness loci in this family. Following a genome wide screening, a linkage was detected only with locus D1S206 on chromosome 1, thereby defining a novel deafness locus, DFNB32. In order to confirm linkage and for fine mapping the genetic interval, 12 individuals belonging to this family were added and 19 microsatellite markers were tested. A maximum two-point lodscore of 4.96 was obtained at a new polymorphic marker D1S21401. Haplotype analysis defined a 16 Mb critical region between D1S2868 and afmb014zb9. The interval of DFNB32 locus overlap with DFNA37 locus and the Marshall and Stickler syndromes locus. The entire coding region of COL11A1, responsible of the later syndromes, was screened and no mutation was observed. Towards the identification of the DFNB32 gene, a search on the Human Cochlear cDNA Library and EST Database was done. The genes corresponding to the ESTs found in the DFNB32 interval are being screened for deafness-causing mutations.  相似文献   

10.
Autosomal recessive nonsyndromic deafness is one of the most frequent forms of inherited hearing impairment. Over 30 autosomal recessive nonsyndromic hearing loss loci have been mapped, and 15 genes have been isolated. Of the over 30 reported autosomal recessive nonsyndromic hearing loss (NSHL) loci, the typical phenotype is prelingual non-progressive severe to profound hearing loss with the exception of DFNB8, which displays postlingual onset and DFNB13, which is progressive. In this report we describe a large inbred kindred from a remote area of Pakistan, comprising six generations and segregating autosomal recessive nonsyndromic prelingual deafness. DNA samples from 24 individuals were used for genome wide screen and fine mapping. Linkage analysis indicates that in this family the NSHL locus, (DFNB35) maps to a 17.54 cM region on chromosome 14 flanked by markers D14S57 and D14S59. Examination of haplotypes reveals a region that is homozygous for 11.75 cM spanning between markers D14S588 and D14S59. A maximum two-point LOD score of 5.3 and multipoint LOD score of 7.6 was obtained at marker D14S53. The interval for DFNB35 does not overlap with the regions for DFNA9, DFNA23 or DFNB5.  相似文献   

11.
This article describes the identification of a novel locus (DFNB39) responsible for an autosomal recessive form of hearing loss segregating in a Pakistani consanguineous family. The hearing impaired members of this family present with profound prelingual sensorineural hearing impairment and use sign language for communications. Linkage was established to microsatellite markers located on chromosome 7q with a maximum multipoint lod score of 3.8. The region of homozygosity spans a 19 cM region that is bounded by markers D7S3046 and D7S644.  相似文献   

12.
Autosomal recessive nonsyndromic hearing loss (ARNSHL) is the most common form of hereditary hearing impairment (HHI). To date, 16 different loci have been reported, making ARNSHL an extremely heterogeneous disorder. One of these loci, DFNB4, was mapped to a 5-cM interval of 7q31 in a large Middle-Eastern Druze family. This interval also includes the gene for Pendred syndrome. We report on three new families with HHI from the Madras region of southern India that demonstrate linkage to 7q. Their pedigrees are compatible with autosomal recessive inheritance. Furthermore, the largest family identifies a novel locus (DFNB17) telomeric to the DFNB4 and Pendred intervals. A 3-cM region of homozygosity by descent between markers D7S486 and D7S2529 is present in all affected individuals in this family and generates a multipoint LOD score of 4.24. The two other families map to the previously reported DFNB4 region but have insufficient power to attain significant LOD scores. However, mutations in the Pendred syndrome gene are present in one of these families. Am. J. Med. Genet. 78:107–113, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Autosomal recessive non-syndromal hearing impairment (NSRD) is genetically heterogeneous. Five loci have been identified to date which map to chromosomes 13 (DFNB1), 11 (DFNB2), 17 (DFNB3), 7 (DFNB4) and 14 (DFBN5). We report definite linkage of NSRD to the locus DFNB1 in a single family of 27 families studied of Pakistani origin. Haplotype analysis of markers in the pericentromeric region of chromosome 13q revealed a recombination event which maps DFNB1 proximal to the marker D13S175 and in the vicinity of D13S143.   相似文献   

14.
Non-syndromal, recessive deafness (NSRD) is the most common form of inherited deafness or hearing impairment in humans. NSRD is genetically heterogeneous and it has been estimated that as many as 35 different loci may be involved. We report the mapping of a novel locus for autosomal recessive, non-syndromal deafness (DFNB16) in three consanguineous families originating from Pakistan and the Middle East. Using multipoint analysis (HOMOZ/MAPMAKER) a maximum combined lod score of 6.5 was obtained for the interval D15S1039-D15S123. Recombination events and haplotype analysis define a 12-14 cM critical region between the markers D15S1039 and D15S155 on chromosome 15q15-q21.  相似文献   

15.
Autosomal recessive nonsyndromic hearing impairment (ARNSHI) is the most frequent form of prelingual hereditary hearing loss in humans. Between 75 and 80% of all nonsyndromic deafness is inherited in an autosomal recessive pattern. Using linkage analysis, we have mapped a novel gene responsible for this form of nonsyndromic hearing impairment, DFNB65, in a consanguineous family from the Azad Jammu and Kashmir regions, which border Pakistan and India. A maximum multipoint LOD score of 3.3 was obtained at marker D20S840. The three-unit support interval is contained between markers D20S902 and D20S430, while the region of homozygosity is flanked by markers D20S480 and D20S430. The novel locus maps to a 10.5-cM region on chromosome 20q13.2–q13.32 and corresponds to a physical map distance of 4.3 Mb. DFNB65 represents the first ARNSHI locus to map to chromosome 20.  相似文献   

16.
Usher type II syndrome is defined by the association of retinitis pigmentosa, appearing in the late second to early third decade of life, with congenital moderate to severe non-progressive hearing loss. This double sensory impairment is not accompanied by vestibular dysfunction. To date, only one Usher type II locus, USH2A, at chromosome band 1q41, has been defined. Here, we demonstrate by linkage analysis, that the gene responsible for Usher type II syndrome in a Tunisian consanguineous family maps to chromosome 3 at position p23-24.2, thus providing definitive evidence for the genetic heterogeneity of the syndrome. A maximum lod score of 4.3 was obtained with the polymorphic microsatellite markers corresponding to loci D3S1578, D3S3647 and D3S3658. This maps the gene underlying USH2B to a chromosomal region which overlaps the interval defined for the non-syndromic sensorineural recessive deafness DFNB6, raising the possibility that a single gene underlies both defects. However, the audiometric features in the patients affected by USH2B and DFNB6 are very different.  相似文献   

17.
We studied a consanguineous family (Family A) from the island of Newfoundland with an autosomal recessive form of prelingual, profound, nonsyndromic sensorineural hearing loss. A genome-wide scan mapped the deafness trait to 10q21-22 (max LOD score of 4.0; D10S196) and fine mapping revealed a 16 Mb ancestral haplotype in deaf relatives. The PCDH15 gene was mapped within the critical region and was an interesting candidate because truncating mutations cause Usher syndrome type IF (USH1F) and two missense mutations have been previously associated with isolated deafness (DFNB23). Sequencing of the PCDH15 gene revealed 33 sequencing variants. Three of these variants were homozygous exclusively in deaf siblings but only one of them was not seen in ethnically matched controls. This novel c.1583 T>A transversion predicts an amino-acid substitution of a valine with an aspartic acid at codon 528 (V528D). Like the two DFNB23 mutations, the V528D mutation in Family A occurs in a highly conserved extracellular cadherin (EC) domain of PCDH15 and is predicted to be more deleterious than the previously identified DFNB23 missense mutations (R134G and G262D). Physical assessment, vestibular and visual function testing in deaf adults ruled out syndromic deafness because of Usher syndrome. This study validates the DFNB23 designation and supports the hypothesis that missense mutations in conserved motifs of PCDH15 cause nonsyndromic hearing loss. This emerging genotype–phenotype correlation in USH1F is similar to that in several other USH1 genes and cautions against a prognosis of a dual sensory loss in deaf children found to be homozygous for hypomorphic mutations at the USH1F locus.  相似文献   

18.
Mutations in the CDH23 gene are known to be responsible for both Usher syndrome type ID (USH1D) and non-syndromic hearing loss (DFNB12), and the molecular confirmation of the CDH23 gene has become important in the diagnosis of these conditions. The present study was performed to find whether the CDH23 mutations are also responsible for non-syndromic hearing loss in patients in the Japanese population. A total of 51 sequence variants were found in 64 Japanese probands with non-syndromic sensorineural hearing impairment from autosomal recessive families. Among them, at least four missense mutations in six patients from five families were confirmed to be responsible for deafness by segregation study. All mutations detected were missense mutations, corroborating the previous reports regarding DFNB12. The present data confirmed that CDH23 mutations are frequently found and significantly responsible in Japanese. Interestingly, the CDH23 mutation spectrum in Japanese is very different from that found in Caucasians. This Japanese spectrum may be representative of those in Eastern Asian populations and its elucidation is expected to facilitate the molecular diagnosis of DFNB12 and USH1D.  相似文献   

19.
Hildebrand MS, Thorne NP, Bromhead CJ, Kahrizi K, Webster JA, Fattahi Z, Bataejad M, Kimberling WJ, Stephan D, Najmabadi H, Bahlo M, Smith RJH. Variable hearing impairment in a DFNB2 family with a novel MYO7A missense mutation. Myosin VIIA mutations have been associated with non‐syndromic hearing loss (DFNB2; DFNA11) and Usher syndrome type 1B (USH1B). We report clinical and genetic analyses of a consanguineous Iranian family segregating autosomal recessive non‐syndromic hearing loss (ARNSHL). The hearing impairment was mapped to the DFNB2 locus using Affymetrix 50K GeneChips; direct sequencing of the MYO7A gene was completed. The Iranian family (L‐1419) was shown to segregate a novel homozygous missense mutation (c.1184G>A) that results in a p.R395H amino acid substitution in the motor domain of the myosin VIIA protein. As one affected family member had significantly less severe hearing loss, we used a candidate approach to search for a genetic modifier. This novel MYO7A mutation is the first reported to cause DFNB2 in the Iranian population and this DFNB2 family is the first to be associated with a potential modifier. The absence of vestibular and retinal defects, and less severe low frequency hearing loss, is consistent with the phenotype of a recently reported Pakistani DFNB2 family. Thus, we conclude this family has non‐syndromic hearing loss (DFNB2) rather than USH1B, providing further evidence that these two diseases represent discrete disorders.  相似文献   

20.
Recent genetic and genomic studies have greatly advanced our knowledge of the structure and function of genes involved in hearing loss. We are starting to recognize, however, that many of these genes do not appear to follow traditional Mendelian expression patterns and are subject to the effects of allelism and modifier genes. This review presents two genes illustrative of this concept that have varied expression pattern such that they may produce either syndromic or nonsyndromic hearing loss. One of these genes, cadherin 23, produces a spectrum of phenotypic traits, including presbycusis, nonsyndromic prelingual hearing loss (DFNB12), and syndromic hearing loss as part of Usher syndrome (Usher 1D). Missense mutations in CDH23 have been associated with presbycusis and DFNB12, whereas null alleles cause the majority of Usher 1D. Modifier gene products that interact with cadherin 23 also affect the phenotypic spectrum. Similarly, allelsim in the gene encoding wolframin (WFS1) causes either a nonsyndromic dominant low-frequency hearing loss (DFNA6/14/38) or Wolfram syndrome. Missense mutations within a defined region are associated with DFNA6/14/38, while more severe mutations spanning WFS1 are found in Wolfram syndrome patients. The phenotypic spectrum of Wolfram syndrome is also hypothesized to be influenced by modifier genes products. These studies provide increasing evidence for the importance of modifier genes in elucidating the functional pathways of primary hearing loss genes. Characterizing modifier genes may result in better treatment options for patients with hearing loss and define new diagnostic and therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号