首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomimetic and bioactive biomaterials are desirable as tissue engineering scaffolds by virtue of their capability to mimic natural environments of the extracellular matrix. Biomimeticity has been achieved by the incorporation of synthetic short peptide sequences into suitable materials either by surface modification or by bulk incorporation. Research in this area has identified several novel synthetic peptide segments, some of them with cell-specific interactions, which may serve as potential candidates for use in explicit tissue applications. This review focuses on the developments and prospective directions of incorporating short synthetic peptide sequences onto scaffolds for tissue engineering, with emphasis on the chemistry of peptide immobilization and subsequent cell responses toward modified scaffolds. The article provides a decision-tree-type flow chart indicating the most probable cellular events on a given peptide-modified scaffold along with the consolidated list of synthetic peptide sequences, supports as well as cell types used in various tissue engineering studies, and aims to serve as a quick reference guide to peptide chemists and material scientists interested in the field.  相似文献   

2.
In nature, proteins are the machinery that accomplish many functions through their specific recognition and interactions in biological systems from single-celled to multicellular organisms. Biomolecule–material interaction is accomplished via molecular specificity, leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, molecular recognition and, consequently, functions developed through successive cycles of mutation and selection. Using biology as a guide, we can now understand, engineer and control peptide–material interactions and exploit these to tailor novel materials and systems for practical applications. We adapted combinatorial biology protocols to display peptide libraries, either on the cell surface or on phages, to select short peptides specific to a variety of practical materials systems. Following the selection step, we determined the kinetics and stability of peptide binding experimentally to understand the bound peptide structure via modeling and its assembly via atomic force microscopy. The peptides were further engineered to have multiple repeats or their amino acid sequences varied to tailor their function. Both nanoparticles and flat inorganic substrates containing multimaterials patterned at the nano- and microscales were used for self-directed immobilization of molecular constructs. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems with wide ranging applications, from tissue engineering, drug delivery and biosensors, to nanotechnology and bioremediation. Here we give examples of protein-mediated functional materials in biology, peptide selection and engineering with affinity to inorganics, demonstrate potential utilizations in materials science, engineering and medicine, and describe future prospects.  相似文献   

3.
Natural extracellular matrix (ECM) proteins possess critical biological characteristics that provide a platform for cellular adhesion and activation of highly regulated signaling pathways. However, ECM-based biomaterials can have several limitations, including poor mechanical properties and risk of immunogenicity. Synthetic biomaterials alleviate the risks associated with natural biomaterials but often lack the robust biological activity necessary to direct cell function beyond initial adhesion. A thorough understanding of receptor-mediated cellular adhesion to the ECM and subsequent signaling activation has facilitated development of techniques that functionalize inert biomaterials to provide a biologically active surface. Here we review a range of approaches used to modify biomaterial surfaces for optimal receptor-mediated cell interactions, as well as provide insights into specific mechanisms of downstream signaling activation. In addition to a brief overview of integrin receptor-mediated cell function, so-called “biomimetic” techniques reviewed here include (i) surface modification of biomaterials with bioadhesive ECM macromolecules or specific binding motifs, (ii) nanoscale patterning of the materials and (iii) the use of “natural-like” biomaterials.  相似文献   

4.
Molecular self-assembly has paved the way to create novel, supramolecular, functional biomaterials. Peptide-based biomaterials are gaining interest as a result of their programmability, biodegradability, and bioresorbability. Further, unlike polymeric materials, peptides can be made monodisperse with precise control over sequence, chain length, and stereochemistry. Peptide-based viscoelastic matrices have been designed and characterized for various biomedical applications, such as tissue engineering scaffolds or drug delivery vehicles. The 'holy grail' in designing an ideal tissue engineering scaffold lies in mimicking the cues of the tissue's natural extracellular matrix (ECM). Some of the key elements of ECM that are incorporated into these peptide scaffolds include cell-adhesive and protease-sensitive sequences for enhanced cell-cell and cell-biomaterial interactions. Peptide-based viscoelastic matrices can also be engineered with drug carrying protease-sensitive sequences for controlled and site-specific drug delivery. Molecular-level engineering of simple oligopeptide modules can be used to control the position and density of the bio-mimetic functionalities in the supramolecular structures, which demonstrates the power of the 'bottom-up' approach in self-assembly.  相似文献   

5.
In nature, proteins are the machinery that accomplish many functions through their specific recognition and interactions in biological systems from single-celled to multicellular organisms. Biomolecule-material interaction is accomplished via molecular specificity, leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, molecular recognition and, consequently, functions developed through successive cycles of mutation and selection. Using biology as a guide, we can now understand, engineer and control peptide-material interactions and exploit these to tailor novel materials and systems for practical applications. We adapted combinatorial biology protocols to display peptide libraries, either on the cell surface or on phages, to select short peptides specific to a variety of practical materials systems. Following the selection step, we determined the kinetics and stability of peptide binding experimentally to understand the bound peptide structure via modeling and its assembly via atomic force microscopy. The peptides were further engineered to have multiple repeats or their amino acid sequences varied to tailor their function. Both nanoparticles and flat inorganic substrates containing multimaterials patterned at the nano- and microscales were used for self-directed immobilization of molecular constructs. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems with wide ranging applications, from tissue engineering, drug delivery and biosensors, to nanotechnology and bioremediation. Here we give examples of protein-mediated functional materials in biology, peptide selection and engineering with affinity to inorganics, demonstrate potential utilizations in materials science, engineering and medicine, and describe future prospects.  相似文献   

6.
Stem cells are often cultured on substrates that present extracellular matrix (ECM) proteins; however, the heterogeneous and poorly defined nature of ECM proteins presents challenges both for basic biological investigation of cell-matrix investigations and translational applications of stem cells. Therefore, fully synthetic, defined materials conjugated with bioactive ligands, such as adhesive peptides, are preferable for stem cell biology and engineering. However, identifying novel ligands that engage cellular receptors can be challenging, and we have thus developed a high throughput approach to identify new adhesive ligands. We selected an unbiased bacterial peptide display library for the ability to bind adult neural stem cells (NSCs), and 44 bacterial clones expressing peptides were identified and found to bind to NSCs with high avidity. Of these clones, four contained RGD motifs commonly found in integrin binding domains, and three exhibited homology to ECM proteins. Three peptide clones were chosen for further analysis, and their synthetic analogs were adsorbed on tissue culture polystyrene (TCPS) or grafted onto an interpenetrating polymer network (IPN) for cell culture. These three peptides were found to support neural stem cell self-renewal in defined medium as well as multi-lineage differentiation. Therefore, bacterial peptide display offers unique advantages to isolate bioactive peptides from large, unbiased libraries for applications in biomaterials engineering.  相似文献   

7.
Collagen for bone tissue regeneration   总被引:7,自引:0,他引:7  
In the last decades, increased knowledge about the organization, structure and properties of collagen (particularly concerning interactions between cells and collagen-based materials) has inspired scientists and engineers to design innovative collagen-based biomaterials and to develop novel tissue-engineering products. The design of resorbable collagen-based medical implants requires understanding the tissue/organ anatomy and biological function as well as the role of collagen's physicochemical properties and structure in tissue/organ regeneration. Bone is a complex tissue that plays a critical role in diverse metabolic processes mediated by calcium delivery as well as in hematopoiesis whilst maintaining skeleton strength. A wide variety of collagen-based scaffolds have been proposed for different tissue engineering applications. These scaffolds are designed to promote a biological response, such as cell interaction, and to work as artificial biomimetic extracellular matrices that guide tissue regeneration. This paper critically reviews the current understanding of the complex hierarchical structure and properties of native collagen molecules, and describes the scientific challenge of manufacturing collagen-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of innovative techniques for scaffold and material manufacturing that are currently opening the way to the preparation of biomimetic substrates that modulate cell interaction for improved substitution, restoration, retention or enhancement of bone tissue function.  相似文献   

8.
Tissue engineering is a rapidly evolving interdisciplinary field that aims to regenerate new tissue to replace damaged tissues or organs. The extracellular matrix (ECM) of animal tissues is a complex mixture of macromolecules that play an essential instructional role in the development of tissues and organs. Therefore, tissue engineering approaches rely on the need to present the correct cues to cells, to guide them to maintain tissue-specific functions. Recent research efforts have allowed us to mine various sequences and motifs, which play key roles in these guidance functions, from the ECM. Small conserved peptide sequences mined from ECM molecules can mimic some of the biological functions of their large parent molecules. In addition, these peptide sequences can be linked to various biomaterial scaffolds that can provide the cells with mechanical support to ensure appropriate cell growth and aid the formation of the correct tissue structure. The tissue engineering field will continue to benefit from the advent of these mined ECM sequences which have two major advantages over recombinant ECM molecules: material consistency and scalability.  相似文献   

9.
10.
The conventional approach to biomaterial design and development typically focuses upon the mechanical and material properties with long-term objectives that include an inert host immune response and long-lasting mechanical and structural support. The emergence of and interest in tissue engineering and regenerative medicine have driven the development of novel cell-friendly biomaterials, materials with tailored degradation rates, materials with highly specific architectures and surfaces, and vehicles for delivery of bioactive molecules, among numerous other advancements. Each of these biomaterial developments supports specific strategies for tissue repair and reconstruction. These advancements in biomaterial form and function, combined with new knowledge of innate and acquired immune system biology, provide an impetus for re-examination of host–biomaterial interactions, including host–biomaterial interface events, spatial and temporal patterns of in vivo biomaterial remodeling, and related downstream functional outcomes. An examination of such issues is provided herein with a particular focus on macrophage polarization and its implications in tissue engineering and regenerative medicine.  相似文献   

11.
Mann BK  Gobin AS  Tsai AT  Schmedlen RH  West JL 《Biomaterials》2001,22(22):3045-3051
Photopolymerizable polyethylene glycol (PEG) derivatives have been investigated as hydrogel tissue engineering scaffolds. These materials have been modified with bioactive peptides in order to create materials that mimic some of the properties of the natural extracellular matrix (ECM). The PEG derivatives with proteolytically degradable peptides in their backbone have been used to form hydrogels that are degraded by enzymes involved in cell migration, such as collagenase and elastase. Cell adhesive peptides, such as the peptide RGD, have been grafted into photopolymerized hydrogels to achieve biospecific cell adhesion. Cells seeded homogeneously in the hydrogels during photopolymerization remain viable, proliferate, and produce ECM proteins. Cells can also migrate through hydrogels that contain both proteolytically degradable and cell adhesive peptides. The biological activities of these materials can be tailored to meet the requirements of a given tissue engineering application by creating a mixture of various bioactive PEG derivatives prior to photopolymerization.  相似文献   

12.
Integrins provide the primary link between mesenchymal stem cells (MSCs) and their surrounding extracellular matrix (ECM), with different integrin pairs having specificity for different ECM molecules or peptide sequences contained within them. It is widely acknowledged that the type of ECM present can influence MSC differentiation; however, it is yet to be determined how specific integrin-ECM interactions may alter this or how they change during differentiation. We determined that human bone marrow-derived mesenchymal stem cells (hMSCs) express a broad range of integrins in their undifferentiated state and show a dramatic, but transient, increase in the level of α5 integrin on day 7 of osteogenesis and an increase in α6 integrin expression throughout adipogenesis. We used a nonfouling polystyrene-block-poly(ethylene oxide)-copolymer (PS-PEO) surface to present short peptides with defined integrin-binding capabilities (RGD, IKVAV, YIGSR, and RETTAWA) to hMSCs and investigate the effects of such specific integrin-ECM contacts on differentiation. hMSCs cultured on these peptides displayed different morphologies and had varying abilities to differentiate along the osteogenic and adipogenic lineages. The peptide sequences most conducive to differentiation (IKVAV for osteogenesis and RETTAWA and IKVAV for adipogenesis) were not necessarily those that were bound by those integrin subunits seen to increase during differentiation. Additionally, we also determined that presentation of RGD, which is bound by multiple integrins, was required to support long-term viability of hMSCs. Overall we confirm that integrin-ECM contacts change throughout hMSC differentiation and show that surfaces presenting defined peptide sequences can be used to target specific integrins and ultimately influence hMSC differentiation. This platform also provides information for the development of biomaterials capable of directing hMSC differentiation for use in tissue engineering therapies.  相似文献   

13.
Koh HS  Yong T  Chan CK  Ramakrishna S 《Biomaterials》2008,29(26):3574-3582
Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly(L-lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications.  相似文献   

14.
Current approaches in tissue engineering and regenerative medicine have focused on controlling the presentation of various factors that influence cellular behavior and tissue formation. Numerous biomaterials have been utilized as sites for new tissue growth by migrating or transplanted cells, nanoscale control of cellular behavior through the presentation of specific peptide sequences, and depots for growth factor release. More recently, the development of bioresponsive materials has emerged as a promising approach to cede control of temporal macromolecule presentation and material degradation to invading cell populations. Biomaterials now have the potential of possessing multiple functions in the process of tissue regeneration. This review summarizes some of the recent advances in the use of multifunctional biomaterials in the arena of tissue engineering. Specifically, the potential of various materials is described as it pertains to the control of cellular behavior, integration of engineered materials with host or transplanted tissue, and inductive factor presentation.  相似文献   

15.
背景:选择合适的表面修饰材料,有针对性的对基质支架材料进行表面改性和表面修饰,提高材料表面的细胞黏附性以及促进细胞的增生是骨组织工程支架材料研究的重要内容。 目的:概述骨组织工程支架材料的运用情况,支架材料表面修饰材料的运用以及修饰方法或途径。 方法:由第一作者检索1995/2010 PubMed数据及万方数据库文章,选择与组织工程支架材料运用及表面修饰相关的文献。 结果与结论:成骨细胞与支架材料的作用依赖于材料的表面特性、局部形态、表面能或化学能等,这些表面特性决定了细胞怎样吸附到材料表面、细胞的定位以及细胞的功能行为等。因此生物材料的复杂性和细胞-生物材料表面的相互作用决定着进行生物支架材料表面修饰的重要性。理想的表面修饰应该兼顾表面拓扑结构、特异性识别、亲水与疏水平衡、蛋白质吸附等各个方面才能得到功能化的新生组织。目前,应用最多的表面修饰材料是Ⅰ型胶原,未来研究中将多种表面修饰材料进行复合发挥材料的互补作用,以及基因疗法和纳米材料的发展,将成为骨组织工程学领域研究的热点问题。  相似文献   

16.
《Acta biomaterialia》2014,10(4):1751-1760
The natural extracellular matrix (ECM), with its multitude of evolved cell-instructive and cell-responsive properties, provides inspiration and guidelines for the design of engineered biomaterials. One strategy to create ECM-mimetic materials is the modular design of protein-based engineered ECM (eECM) scaffolds. This modular design strategy involves combining multiple protein domains with different functionalities into a single, modular polymer sequence, resulting in a multifunctional matrix with independent tunability of the individual domain functions. These eECMs often enable decoupled control over multiple material properties for fundamental studies of cell–matrix interactions. In addition, since the eECMs are frequently composed entirely of bioresorbable amino acids, these matrices have immense clinical potential for a variety of regenerative medicine applications. This brief review demonstrates how fundamental knowledge gained from structure–function studies of native proteins can be exploited in the design of novel protein-engineered biomaterials. While the field of protein-engineered biomaterials has existed for over 20 years, the community is only now beginning to fully explore the diversity of functional peptide modules that can be incorporated into these materials. We have chosen to highlight recent examples that either (i) demonstrate exemplary use as matrices with cell-instructive and cell-responsive properties or (ii) demonstrate outstanding creativity in terms of novel molecular-level design and macro-level functionality.  相似文献   

17.
水凝胶如何为细胞、组织的生长提供三维微环境已成为组织工程和再生医学领域的研究热点,生物活性分子修饰获得的智能水凝胶是能够促进组织再生的重要生物材料。根据水凝胶的来源,可将其分为天然和合成水凝胶两种类型。水凝胶的设计策略主要包括凝胶降解敏感位点的设计、生物黏附性的获得、生长因子和细胞因子对凝胶的修饰以及再生组织的血管重建。此外,本文以智能水凝胶在软骨组织工程、神经组织工程等方面的应用为例,阐述了水凝胶在组织工程和再生医学领域的突出研究进展。  相似文献   

18.
One major weakness that all cardiovascular replacements have in common is the lack of endothelial cell (EC) growth and post-implant remodeling of the device. The emerging field of tissue engineering focuses on the in vitro generation of functional organ replacements using living endothelial cells and other vascular cells for which nondegradable or biodegradable scaffold base materials are used. In this paper, it is demonstrated that some of the cardiovascular device materials in clinical use lack the ability to promote endothelial cell growth in vitro. We previously established a biomimetic matrix composition which supports the growth of human umbilical vein endothelial cells (HUVECs) while maintaining normal physiology in vitro. Here the effectiveness of the same coating to preserve the normal antithrombotic phenotype of endothelial cells grown on biomaterials was evaluated. The up/down-regulation of two prothrombotic and two antithrombotic molecules by HUVECs grown on bare material surfaces were compared with that on composite-coated materials. The suitability of this approach for blood-contacting applications was investigated by in vitro blood compatibility studies as recommended in ISO10993 part 4, by putting an EC-seeded surface in contact with human whole blood. It is demonstrated that EC-seeded bare material surfaces are prothrombotic, whereas surfaces pre-coated with biomimetic molecules facilitated maintenance of the normal EC phenotype and reduced the risk of platelet adhesion and activation of blood coagulation. The results presented here suggest that matrix composed of biomimetic adhesive proteins and growth factors is suitable for cardiovascular tissue engineering to improve biological function, irrespective of the material chosen to meet the mechanical properties of the device.  相似文献   

19.
Mediation of biomaterial-cell interactions by adsorbed proteins: a review   总被引:9,自引:0,他引:9  
An appropriate cellular response to implanted surfaces is essential for tissue regeneration and integration. It is well described that implanted materials are immediately coated with proteins from blood and interstitial fluids, and it is through this adsorbed layer that cells sense foreign surfaces. Hence, it is the adsorbed proteins, rather than the surface itself, to which cells initially respond. Diverse studies using a range of materials have demonstrated the pivotal role of extracellular adhesion proteins--fibronectin and vitronectin in particular--in cell adhesion, morphology, and migration. These events underlie the subsequent responses required for tissue repair, with the nature of cell surface interactions contributing to survival, growth, and differentiation. The pattern in which adhesion proteins and other bioactive molecules adsorb thus elicits cellular reactions specific to the underlying physicochemical properties of the material. Accordingly, in vitro studies generally demonstrate favorable cell responses to charged, hydrophilic surfaces, corresponding to superior adsorption and bioactivity of adhesion proteins. This review illustrates the mediation of cell responses to biomaterials by adsorbed proteins, in the context of osteoblasts and selected materials used in orthopedic implants and bone tissue engineering. It is recognized, however, that the periimplant environment in vivo will differ substantially from the cell-biomaterial interface in vitro. Hence, one of the key issues yet to be resolved is that of the interface composition actually encountered by osteoblasts within the sequence of inflammation and bone regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号