首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
While the effects of bisphosphonates on bone-resorbing osteoclasts have been well documented, the effects of bisphosphonates on other cell types are not as well studied. Recently, we reported that bisphosphonates have direct effects on bone-forming human fetal osteoblast cells (hFOB) [1]. In this report, the role of the mevalonate pathway in the actions of bisphosphonates on hFOB, and MDA-MB-231 human breast cancer cells was examined. These studies included a novel bisphosphonate analog, the anhydride formed between arabinocytidine 5 phosphate and etidronate (Ara-CBP). Ara-CBP was the most potent inhibitor of hFOB and MDA-MB-231 cell proliferation, and stimulator of hFOB cell mineralization compared to etidronate, the anhydride formed between AMP and etidronate (ABP), pamidronate, and zoledronate. Inhibition of hFOB cell proliferation by Ara-CBP and zoledronate was partially reversed by mevalonate pathway intermediates, and stimulation of hFOB cell mineralization was completely reversed by mevalonate pathway intermediates. These results suggest that zoledronate and Ara-CBP act, at least in part, via inhibition of the mevalonate pathway in hFOB cells. In contrast, none of the mevalonate pathway intermediates reversed the inhibition of MDA-MB-231 cell proliferation by the bisphosphonates, or the effects of pamidronate on hFOB cells. As a positive control, the effects of mevastatin on hFOB and MDA-MB-231 cells were completely reversed by mevalonate. In summary, these data suggest that zoledronate and Ara-CBP induce human osteoblast differentiation via inhibition of the mevalonate pathway. In contrast, the inhibition of MDA-MB-231 cell proliferation by the bisphosphonates appears to be through mechanisms other than inhibition of the mevalonate pathway.  相似文献   

2.
Bisphosphonates (BPs) are in clinical use for the treatment of breast cancer patients with bone metastases. Their anti-resorptive effect is mainly explained by inhibition of osteoclast activity, but recent evidence also points to a direct action of BPs on bone-forming osteoblasts. However, the mechanisms how BPs influence osteoblasts and their interactions with breast cancer cells are still poorly characterized. Human osteoblasts isolated from bone specimens were characterized in depth by their expression of osteogenic marker genes. The influence of the nitrogen-containing BPs zoledronate (Zol), ibandronate (Iban), and pamidronate (Pam) on molecular and cellular functions of osteoblasts was assessed focusing on cell proliferation and viability, apoptosis, cytokine secretion, and osteogenic-associated genes. Furthermore, effects of BPs on osteoblast–breast tumor cell interactions were examined in an established in vitro model system. The BPs Zol and Pam inhibited cell viability of osteoblasts. This effect was mediated by an induction of caspase-dependent apoptosis in osteoblasts. By interfering with the mevalonate pathway, Zol also reduces the proliferation of osteoblasts. The expression of phenotypic markers of osteogenic differentiation was altered by Zol and Pam. In addition, both BPs strongly influenced the secretion of the chemokine CCL2 by osteoblasts. Breast cancer cells also responded to Zol and Pam with a reduced cell adhesion to osteoblast-derived extracellular matrix molecules and with a decreased migration in response to osteoblast-secreted factors. BPs revealed prominent effects on human osteoblasts. Zol and Pam as the most potent BPs affected not only the expression of osteogenic markers, osteoblast viability, and proliferation but also important osteoblast–tumor cell interactions. Changing the osteoblast metabolism by BPs modulates migration and adhesion of breast cancer cells as well.  相似文献   

3.
Bisphosphonate treatment inhibits the growth of prostate cancer cells   总被引:21,自引:0,他引:21  
The presence of skeletal metastases in patients suffering from cancer leads to a variety of clinical complications. Bisphosphonates are a class of drugs with a potent bone resorption inhibition activity that have found increasing utility in treating and managing patients with metastatic bone disease. Several clinical trials have demonstrated that bisphosphonates have clinical value in the treatment and management of skeletal metastases derived from advanced prostate cancer. Currently, the mechanism(s) through which bisphosphonates exert their activity is only beginning to be understood. We have studied the effects of bisphosphonate treatment on the growth of prostate cancer cell lines in vitro. Treatment of PC3, DU145, and LNCaP cells with pamidronate or zoledronate significantly reduced the growth of all three cell lines. Using flow cytometry, pamidronate treatment (100 microM) was shown to induce significant amounts of cell death in all three cell lines studied. In contrast, treatment with zoledronate (100 microM) did not induce cell death, instead exerting dramatic effects on cell proliferation, as evidenced by a major increase in cells present in the G0-G1 and S phase. Although both drugs reduced prostate cancer cell growth in the presence of serum, zoledronate was more potent under these conditions, disrupting growth at doses as low as 25 microM in the presence of 5% fetal bovine serum. These results raise the intriguing possibility that the observed clinical utility of bisphosphonates in managing skeletal metastases may in part derive from direct inhibition of prostate cancer cell growth in the bone microenvironment.  相似文献   

4.
Cutaneous melanoma is one of the highly malignant human tumours, due to its tendency to generate early metastases and its resistance to classical chemotherapy. We recently demonstrated that pamidronate, a nitrogen-containing bisphosphonate, has an antiproliferative and proapoptotic effect on different melanoma cell lines. In the present study, we compared the in vitro effects of three different bisphosphonates on human melanoma cell lines and we demonstrated that the two nitrogen-containing bisphosphonates pamidronate and zoledronate inhibited the proliferation of melanoma cells and induced apoptosis in a dose- and time-dependent manner. Moreover, cell cycle progression was altered, the two compounds causing accumulation of the cells in the S phase of the cycle. In contrast, the nonaminobisphosphonate clodronate had no effect on melanoma cells. These findings suggest a direct antitumoural effect of bisphosphonates on melanoma cells in vitro and further support the hypothesis of different intracellular mechanisms of action for nitrogen-containing and nonaminobisphosphonates. Our data indicate that nitrogen-containing bisphosphonates may be a useful novel therapeutic class for treatment and/or prevention of melanoma metastases.  相似文献   

5.
Paterson AH 《Clinical breast cancer》2002,3(3):206-16; discussion 217-8
Bone recurrence constitutes one third of initial sites of relapse and one half of distant sites of relapse at 10 years from diagnosis of breast cancer. Bone pain, fracture (including vertebral fracture resulting from increased bone resorption following chemotherapy-induced menopause), and hypercalcemia are components of skeletal morbidity. The pathophysiology of malignant osteopathy occurs because of the secretion of substances (such as parathyroid hormone-related peptide), by the malignant cell, which stimulate osteoclast function; this in turn feeds further growth, which causes a vicious cycle. Interruption of this cycle by bisphosphonates may inhibit the growth of malignant cells. Bisphosphonates are drugs that inhibit bone turnover by decreasing bone resorption. Side effects of bisphosphonates include upper gastrointestinal symptoms (in oral nitrogen-containing bisphosphonates) and diarrhea (in oral non-nitrogen-containing bisphosphonates) and an acute phase-like reaction with intravenous (I.V.) pamidronate. Bisphosphonates have different molecular mechanisms of action: Nitrogen-containing bisphosphonates (eg, pamidronate and alendronate) inhibit the mevalonate-signaling pathway while the non-nitrogen-containing drugs (eg, clodronate) incorporate into adenosine triphosphate analogues. There is in vitro evidence that these drugs also possess anticancer properties. In hypercalcemia patients, treatment with pamidronate and zoledronate produce prompt and efficient normocalcemia. Intravenous pamidronate and zoledronate, oral clodronate, and ibandronate reduce skeletal complications in patients with bone metastases; I.V. pamidronate and clodronate are useful for bone pain relief. Three adjuvant bisphosphonate trials are discussed herein: 2 small open-label studies giving conflicting results and a large placebo-controlled trial of oral clodronate. This latter trial shows a reduction in the incidence of skeletal metastases (while the patients are on therapy) and an improved survival at 5 years.  相似文献   

6.
《Bulletin du cancer》2010,97(8):937-949
Zoledronate, just as other bisphosphonates, inhibit osteoclast mediated bone resorption. This is the reason why they are used in the treatment of bone metastasis, in order to block osteolysis. Zoledronate and some other bisphosphonates (clodronate, pamidronate, ibandronate, alendronate, risédronate, minodronate) also exhibit antitumor properties in vitro. They act directly on tumor cells by blocking tumor cell adhesion, invasion and proliferation, and by inducing tumor cell apoptosis. However, their high bone mineral affinity decreases their bioavailability to a significant extent and, thus, should weaken their in vivo antitumor potential. Despite of this, several studies (most of them being performed with zoledronate) show that bisphosphonates have an in vivo antitumor activity. This review focuses on zoledronate and on results obtained in several experimental models showing that this bisphosphonate interferes with the growth of tumors and metastases which are thriving in tissues others than the skeletal tissue. The significance of these findings is discussed in the light of several ongoing clinical trials which examine the benefits of using zoledronate and other bisphosphonates in the adjuvant treatment of cancers at an early stage of the disease.  相似文献   

7.
Bisphosphonates induce apoptosis in human breast cancer cell lines   总被引:23,自引:0,他引:23  
Breast cancer has a prodigious capacity to metastasize to bone. In women with advanced breast cancer and bone metastases, bisphosphonates reduce the incidence of hypercalcaemia and skeletal morbidity. Recent clinical findings suggest that some bisphosphonates reduce the tumour burden in bone with a consequent increase in survival, raising the possibility that bisphosphonates may have a direct effect on breast cancer cells. We have investigated the in vitro effects of bisphosphonates zoledronate, pamidronate, clodronate and EB 1053 on growth, viability and induction of apoptosis in three human breast cancer cell lines (MDA-MB-231, Hs 578T and MCF-7). Cell growth was monitored by crystal violet dye assay, and cell viability was quantitated by MTS dye reduction. Induction of apoptosis was determined by identification of morphological features of apoptosis using time-lapse videomicroscopy, identifying morphological changes in nucleis using Hoechst staining, quantitation of DNA fragmentation, level of expression of bcl-2 and bax proteins and identification of the proteolytic cleavage of Poly (ADP)-ribose polymerase (PARP). All four bisphosphonates significantly reduced cell viability in all three cell lines. Zoledronate was the most potent bisphosphonate with IC50 values of 15, 20 and 3 microM respectively in MDA-MB-231, MCF-7 and Hs 578T cells. Corresponding values for pamidronate were 40, 35 and 25 microM, whereas clodronate and EB 1053 were more than two orders of magnitude less potent. An increase in the proportion of cells having morphological features characteristic of apoptosis, characteristic apoptotic changes in the nucleus, time-dependent increase in the percentage of fragmented chromosomal DNA, down-regulation in bcl-2 protein and proteolytic cleavage of PARP, all indicate that bisphosphonates have direct anti-tumour effects on human breast cancer cells.  相似文献   

8.
The anti-tumour activity of bisphosphonates   总被引:3,自引:0,他引:3  
Bisphosphonates are stable analogues of pyrophosphate (PPi), an endogenous regulator of bone mineralisation. A number of placebo-controlled trials have demonstrated their positive impact on skeletal-related events (SRE) that occur as a consequence of metastatic or myelomatous bone disease. Based upon their chemical structure bisphosphonates can be classified into nitrogen-containing bisphosphonates, (N-bisphosphonates) (for example zoledronate and pamidronate) and non-nitrogen containing (for example, clodronate and etidronate), which more closely resemble PPi. Clinical trials investigating bisphosphonates in the preventative setting have shown bisphosphonates to not only delay occurrence of bone metastases in certain cancers, but in one trial, occurrence of non-osseous lesions was delayed, and survival was prolonged. Other trials however have shown the opposite. Likewise, in animal models of cancer and metastases, conflicting results have been obtained. In vitro work has concentrated on bisphosphonates direct action upon tumour cells and has found a variety of anti-tumour effects such as apoptosis induction, inhibition of cell growth, inhibition of invasive behaviour and inhibition of angiogenic factors. Furthermore it would appear that bisphosphonates have the potential to enhance anti-tumour activity of known cytotoxic drugs. Ongoing research aims to assess this further, in addition to determining more precisely the role of adjuvant bisphosphonates in cancers such as breast and prostate cancer.  相似文献   

9.
A prospective study was performed in 80 patients receiving bisphosphonates in order to determine frequency of occurrence, risk factors, clinical presentation, radiology, pathology and proper treatment of osteonecrosis of the jaw (ONJ). Of 80 patients, 22 (28%) developed ONJ. There were 11 male and 11 female patients. Median age was 65 years. Ten patients (46%) had multiple myeloma (MM), 5 (23%) had breast cancer and 7 (32%) had other malignancies. Of 22 patients with ONJ, 14 patients (64%) received zoledronate, 3 (14%) received pamidronate, 4 (18%) received pamidronate later followed by zoledronate and 1 patient received ibandronate later followed by zoledronate. The median time of exposure in ONJ group was 32 months compared with 27 months in patients without ONJ. The mean induction time until bone exposure was 26 months for patients who received zoledronate, 54 months for pamidronate and 48 months for pamidronate followed by zoledronate. Thirteen patients (59%) had ONJ with bone exposure of mandible, 6 (27%) of maxilla and 3 (14%) of both jaws. ONJ occurred spontaneously in 5 patients (23%) and in 17 patients (77%) occurred after tooth extractions and surgical tooth removals (P<0.001). Nine patients (41%) had previous extractions of molars, 6 (27%) of premolars and 2 (9%) of front teeth. The cumulative hazard is significantly higher in zoledronate group (P=0.015). It was 3.48 times higher than the other group (pamidronate alone; pamidronate followed by zoledronate; ibandronate alone; etidronate alone; ibandronate followed by pamidronate; ibandronate followed by zoledronate; ibandronate followed by pamidronate and zoledronate). There was no association of ONJ with age, sex, use of high-dose or conventional chemotherapy or the use of corticosteroids, thalidomide or bortezomib (P>0.05). Patients diagnosed with multiple myeloma and breast cancer were found significantly associated with ONJ (P=0.001 and P=0.014, respectively). Long-term use of bisphosphonates (>2.5 years) increases the risk for development of ONJ. Intravenous application of zoledronate and previous dental extractions or surgical tooth removals are important risk factors of ONJ. Neither treatment with high-dose chemotherapy with autologous stem cell transplantation nor treatment with corticosteroids, thalidomide or bortezomib is a risk factor in this study.  相似文献   

10.
Prostate cancer cells metastasize to the bone where their interaction with osteoclasts and osteoblasts can lead to alterations in the structure of the bone. We determined whether the systemic administration of the bisphosphonate, zoledronate, could prevent bone lysis and halt the proliferation of human prostate cancer cells injected into the tibia of nude mice. Zoledronate did not affect the in vitro proliferation of human prostate cancer PC-3MM2 cells. The in vivo administration of zoledronate produced significant bone preservation but did not inhibit the progressive growth of PC-3MM2 cells. The systemic administration of STI571 (imatinib mesylate, Gleevec), an inhibitor of phosphorylation of the platelet-derived growth factor receptor, in combination with paclitaxel, produced apoptosis of tumor cells and bone- and tumor-associated endothelial cells. The systemic administration of zoledronate with STI571 and paclitaxel produced a significant preservation of bone structure, a decrease in tumor incidence and weight, and a decrease in incidence of lymph node metastasis. This therapeutic activity was correlated with inhibition of osteoclast function, inhibition of tumor cell proliferation, and induction of apoptosis in tumor-associated endothelial cells and tumor cells. Cancer is a heterogeneous disease that requires multimodality therapy. The present data recommend the combination of a bisphosphonate agent with protein tyrosine kinase inhibitor and an anticycling drug for the treatment of prostate cancer bone metastasis.  相似文献   

11.
The cancer patient with skeletal metastases now has a much improved range of treatment options with major advances in bone-specific drug therapy as well as radiotherapy and radiopharmaceuticals, orthopaedic surgery, and systemic anticancer therapy with cytotoxic and endocrine agents. Recent advances in the understanding of bone remodeling mechanisms and the interdependence of cancer cells and bone have been closely associated with development of the bisphosphonate drugs and newer agents such as osteoprotegerin (OPG). The bisphosphonates are potent inhibitors of osteoclast mediated bone resorption and appear to function either by induction of apoptosis in mature osteoclasts or by inhibition of formation of osteoclasts from progenitor cells. Bisphosphonates are the treatment of choice in tumor-induced hypercalcemia. Bisphosphonates have a clear role in reducing bone pain and skeletal complications, such as pathological fracture and are being evaluated in the prevention of bone metastases. Until recently, intravenous (IV) pamidronate has been the drug most commonly prescribed for oncological indications and oral clodronate has also been widely used in some countries outside the US. However, newer and more potent drugs, such as zoledronate, are increasingly having a major impact on routine therapy. Three of the largest ever bisphosphonate trials, using zoledronate in metastatic bone disease have recently been completed. In a breast and multiple myeloma trial in 1648 patients, zoledronate (4mg IV) was shown to be equivalent to pamidronate (90mg IV) in reducing skeletal events and was more convenient to administer. In trials in prostate cancer and a wide range of other solid tumor types affecting bone, both the number of patients with skeletal-related events and the rate of bone complications were reduced. The indications for bisphosphonates are, therefore, no longer constrained by tumor type. The assessment of response to therapy is a vital part of management of metastatic bone disease. Plain radiographs and the isotope bone scan remain widely used but have many limitations. Newer imaging techniques such as computerized tomography, magnetic resonance imaging, and positron emission tomography may be useful in selected situations. Recent research suggests that measurement of tumor markers and bone-specific markers will play an increasingly important role in assessment of response. In particular, bone resorption markers measuring collagen breakdown have potential as rapid, convenient, and inexpensive measures of response, with suppression of bone resorption into the normal range being an important aim of bone-specific treatments.  相似文献   

12.
Multiple myeloma is the malignant proliferation of plasma cells involving more than 10% of the bone marrow. The bone complications associated with multiple myeloma include bone pain, pathologic fractures, hypercalcemia of malignancy and cord compressions. The principal pathophysiology of bone disease in multiple myeloma is a shift in the balance of bone remodeling toward bone resorption. In recent years, bisphosphonates have become an important treatment for the bone complications of multiple myeloma. Potent inhibitors of osteoclast activity, bisphosphonates interfere with biochemical pathways and induce osteoclast apoptosis. Bisphosphonates also antagonize osteoclastogenesis and promote differentiation of osteoblasts, as well as inhibiting other aspects of osteoclast homeostasis and metabolism. Several studies have evaluated treatment with bisphosphonates in patients with multiple myeloma, and have demonstrated the efficacy of clodronate (Bonefos; Anthra Pharmaceuticals; Princeton, NJ; www.bonefos.com), pamidronate (Aredia; Novartis Pharmaceuticals Corp; East Hanover, NJ; www.pamidronate.com) and zoledronic acid (Zometa; Novartis Pharmaceuticals Corp; East Hanover, NJ; www.us.zometa.com) in reduction of pain, reduction of SREs and survival. Moreover, recent data suggest direct and indirect antimyeloma activity of pamidronate and zoledronic acid.  相似文献   

13.
In addition to inhibiting bone resorption, bisphosphonates have also been shown to exhibit antitumour effects. In vitro, bisphosphonates inhibit proliferation and induce apoptosis in cultured human breast cancer cells. In addition, bisphosphonate treatment interferes with breast cancer cell adhesion to bone matrix, and inhibits cell migration and invasion. The combination of bisphosphonates with other anticancer drugs such as the taxoids markedly enhances these effects. These newly recognized direct actions of bisphosphonates on breast cancer cells indicate that these agents may have a greater role to play in treatment of patients suffering from cancers with a propensity to metastasize to bone.  相似文献   

14.
There is increasing evidence that bisphosphonates have direct antitumor effects in vivo in addition to their therapeutic antiresorptive properties. Bisphosphonates inhibit proliferation and induce apoptosis of many cancer cell lines. They also exhibit anti-invasive properties in vitro and in vivo. We have previously shown that a novel non-nitrogen-containing bisphosphonate inhibited tumor growth of A431 human epidermoid carcinoma cells. In the present study, we investigated the antitumor properties of three nitrogen-containing bisphosphonates on A431 cells in vitro. We first compared the antiproliferative effects of pamidronate, alendronate and neridronate. Then, by matrigel invasion assay, the effect of alendronate on A431 cell invasiveness was studied. All three bisphosphonates were found to inhibit cell proliferation dose- and time-dependently. The most potent molecule was alendronate. The invasion test demonstrated that alendronate also inhibited cell invasion in a Boyden chamber. These data suggest that alendronate may have beneficial effects in the treatment of carcinomas exhibiting important angiogenesis.  相似文献   

15.
In addition to inhibiting bone resorption, bisphosphonates have also been shown to exhibit antitumour effects. In vitro, bisphosphonates inhibit proliferation and induce apoptosis in cultured human breast cancer cells. In addition, bisphosphonate treatment interferes with breast cancer cell adhesion to bone matrix, and inhibits cell migration and invasion. The combination of bisphosphonates with other anticancer drugs such as the taxoids markedly enhances these effects. These newly recognized direct actions of bisphosphonates on breast cancer cells indicate that these agents may have a greater role to play in treatment of patients suffering from cancers with a propensity to metastasize to bone.  相似文献   

16.
Multiple myeloma is a haematological malignancy characterized by an expansion of malignant plasma cells within the bone marrow and is frequently associated with bone disease involving the development of osteolytic bone lesions, pathological fractures, osteoporosis and hypercalcaemia. A class of anti-resorptive drugs known as bisphosphonates have been in use to treat osteoclast-mediated bone diseases for the past 3 decades, and are currently proving effective in the treatment of the bone disease associated with multiple myeloma. Recent studies have suggested that bisphosphonate treatment may also result in an improvement in survival in some patients with multiple myeloma. These effects on survival may reflect an indirect effect of the bisphosphonates on tumour growth, via inhibition of osteoclast activity and hence a reduction in the release of tumour growth factors. However, it is also possible that bisphosphonates may have a direct effect on myeloma cells. In support of this we have demonstrated that bisphosphonates can decrease cell proliferation and induce apoptosis in human myeloma cells in vitro, and this review discusses the possibility that bisphosphonates may have not only an anti-resorptive action, but may also have a direct anti-tumour activity.  相似文献   

17.
There is increasing evidence regarding the importance of osteoclast activation in the pathogenesis of bone metastases. Cancer cells produce osteoclast-activating factors which play an important role in the development of bone metastases. Bisphosphonates are drugs that inhibit bone turnover by decreasing bone resorption. In patients with bone metastases from breast cancer, the effectiveness of bisphosphonate is well established for reducing skeletal complications, such as bone pain, pathological fracture, bone surgery and hypercalcemia. Recent attention has focused on a possible preventive effect on bisphosphonates of bone metastases. Animal models have supported the prevention of bone metastasis by bishosphonate therapy, but three major adjuvant clinical trials of the oral bisphosphonate clodronate have yielded conflicting results. However, our preliminary trial of intravenous bisphosphonate with pamidronate showed effective inhibition of bone metastases. Use of bisphosphonates as adjuvant therapy is still investigational yet promising. Several more randomized trials are underway to further investigate adjuvant therapy with bisphosphonates.  相似文献   

18.
Breast cancer commonly metastasizes to bone, producing hypercalcemia, pathologic fractures, spinal compression, and pain that increase morbidity and affect the patient's mobility and quality of life. The use of bisphosphonates like pamidronate and zoledronic acid inhibits osteolytic activity caused by bone metastases. The use of bisphosphonates to prevent bone loss and preserve bone health in the adjuvant setting in women with breast cancer undergoing hormonal therapy with aromatase inhibitors or ovarian suppression is being actively investigated. Interestingly, clodronate, an oral bisphosphonate, has been shown in 2 trials to decrease the risk of recurrence in women with early-stage breast cancer, suggesting a direct or indirect antitumor effect of bisphosphonates. Trials to confirm the antitumor effects of bisphosphonates are currently ongoing. Prolonged intravenous bisphosphonate use has been associated with a rare risk of osteonecrosis of the jaw. Recommendations for management of this condition are discussed.  相似文献   

19.
Osteosarcoma is one of the most common primary malignant tumors of the bone in children and adolescents. Some patients continue to have a poor prognosis, as they have metastatic disease and frequent occurrence of drug resistance. Zoledronate is a nitrogen-containing bisphosphonate that has been used for the treatment of hypercalcemia and bone metastasis, because it induces apoptosis in osteoclasts and tumor cells by inhibiting the isoprenylation of intracellular small G proteins. Besides inhibiting isoprenylation, little is known about the manner by which bisphosphonates inhibit cellular proliferation and induce apoptosis. This prompted us to investigate the inhibitory effects of zoledronate in human osteosarcoma cell lines, HOS and MG63. HOS cells accumulated in S phase around 6 h after treatment with 10 microM zoledronate, followed by apoptosis. When HOS cells were treated with zoledronate, ATM kinase and its substrate, check-point kinase (Chk)1, were phosphorylated. Zoledronate also induced phosphorylation of cdc25a (Thr506) in HOS cells, which is a substrate of Chk1, and its phosphorylation is known to be critical for S phase arrest. Following treatment with zoledronate, phosphorylated histone H2AX (gamma-H2AX) displayed patterns of nuclear foci in HOS cells. As gamma-H2AX accumulates at dsDNA breaks, these results demonstrate that zoledronate induced DNA damage and S phase arrest, accompanied by activation of the ATM/Chk1/cdc25 pathway in a human osteosarcoma cell line.  相似文献   

20.
Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption and have demonstrated clinical utility in the treatment of patients with osteolytic bone metastases. They also exhibit direct antitumor activity in vitro and can reduce skeletal tumor burden and inhibit the formation of bone metastases in vivo. However, whether such effects are caused by a direct action of bisphosphonates on tumor cells or indirectly through inhibition of bone resorption remains unclear. To address this question, we used here a structural analog of the bisphosphonate risedronate, NE-58051, which has a bone mineral affinity similar to that of risedronate, but a 3000-fold lower bone antiresorptive activity. In vitro, risedronate and NE-58051 inhibited proliferation of breast cancer and melanoma cell lines. In vivo, risedronate and NE-58051 did not inhibit the growth of subcutaneous B02 breast tumor xenografts or the formation of B16F10 melanoma lung metastasis. In contrast to NE-58051, risedronate did inhibit B02 breast cancer bone metastasis formation by reducing both bone destruction and skeletal tumor burden, indicating that the antitumor effect of bisphosphonates is achieved mainly through inhibition of osteoclast-mediated bone resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号