首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, we have described a live recombinant BCG vaccine (rBCG30) overexpressing the 30 kDa major secretory protein of Mycobacterium tuberculosis that induces greater protective immunity against tuberculosis than the current vaccine in the demanding guinea pig model of pulmonary tuberculosis. In this study, we have investigated the impact of vaccine dose on the development of cell-mediated and protective immunity in the guinea pig model. We found that the protective efficacy against M. tuberculosis aerosol challenge of both BCG and rBCG30 was essentially dose-independent over a dose range of 10(1)-10(6) live organisms. As previously observed, rBCG30 was more potent, reducing colony-forming units (CFU) below the level observed in animals immunized with the parental BCG vaccine by 0.7 logs in the lungs and 1.0 logs in the spleen (P<0.0001). To gain a better understanding of the influence of dose on bacterial clearance and immunity, we assessed animals immunized with 10(1), 10(3), or 10(6)CFU of rBCG30. The higher the dose, the higher the peak CFU level achieved in animal organs. However, whereas humoral immune responses to the 30 kDa protein reflected the disparate CFU levels, cell-mediated immune responses did not; high and low doses of rBCG30 ultimately induced comparable peak lymphocyte proliferative responses and cutaneous delayed-type hypersensitivity responses to the 30 kDa protein. We estimate that the amount of the 30 kDa protein required to induce a strong cell-mediated immune response when delivered via 10 rBCG30 organisms is about 9 orders of magnitude less than that required when the protein is delivered in a conventional protein/adjuvant vaccine. This study demonstrates that a very low inoculum of rBCG30 organisms has the capacity to induce strong protective immunity against tuberculosis and that rBCG30 is an extremely potent delivery system for mycobacterial antigens.  相似文献   

2.
Developing an efficacious vaccine is one of the highest priorities in tuberculosis research. A vaccine based on T cell epitopes representing multiple antigens is an ideal approach to generate effective cellular immunity against the disease. In the present study, we have selected four T cell epitopes from four well defined Mycobacterium tuberculosis antigens, Ag85C (Rv2903c), 10-kDa culture filtrate protein (CFP-10) (Rv3874), PPE68 (Rv3873) and INV (Rv1478). The epitope encoding genes were grafted into a Cpn 10 based epitope delivery system. The cpn 10-epitope chimeras were further cloned and expressed in BCG to obtain four rBCGs (BCG::CFP, BCG::FBP, BCG::PPE and BCG::INV). Both cellular and humoral immune responses induced by these r-BCG strains were evaluated in BALB/c mice after subcutaneous injection of a single dose of 1×10(6)CFU of the individual rBCGs. Compared to the parent BCG immunized animals the splenocytes derived from rBCG vaccinated groups showed greater antigen specific proliferation, characterized with higher IFN-γ response and reduced IL-4 secretion. Also rBCG vaccination was able to induce specific humoral immune response with an enhanced IgG2a/IgG1 ratio. The rBCGs therefore favor an epitope specific Th1 type response, which is known to be important for mycobacterial immunity. Further when two of the rBCGs (BCG::CFP and BCG::FBP) were tested for their protective efficacy both the rBCGs were comparable to BCG in a H37Rv challenge study performed in guinea pigs.  相似文献   

3.
The potency of genetic immunization observed in the mouse has demonstrated the utility of DNA vaccines to induce cell-mediated and humoral immune responses. However, it has been relatively difficult to generate comparable responses in non-rodent species. The use of molecular adjuvants may increase the magnitude of these suboptimal responses. In this study, we demonstrate that the co-administration of plasmid-encoded GM-CSF and CD80/CD86 with a novel ESAT-6:CFP10 DNA vaccine against bovine tuberculosis enhances antigen-specific cell-mediated immune responses. ESAT-6:CFP10+GM-CSF+CD80/CD86 DNA vaccinated animals exhibited significant (p<0.01) antigen-specific proliferative responses compared to other DNA vaccinates. Increased expression (p< or =0.05) of CD25 on PBMC from ESAT-6:CFP10+GM-CSF+CD80/CD86 DNA vaccinates was associated with increased proliferation, as compared to control DNA vaccinates. Significant (p<0.05) numbers of ESAT-6:CFP10-specific IFN-gamma producing cells were evident from all ESAT-6:CFP10 DNA vaccinated animals compared to control DNA vaccinates. However, the greatest increase in IFN-gamma producing cells was from animals vaccinated with ESAT-6:CFP10+GM-CSF+CD80/CD86 DNA. In a low-dose aerosol challenge trial, calves vaccinated as neonates with Mycobacterium bovis BCG and ESAT-6:CFP10+GM-CSF+CD80/CD86 DNA exhibited decreased lesion severity in the lung and lung-associated lymph nodes following viruluent M. bovis challenge compared to other vaccinated animals or non-vaccinated controls. These data suggest that a combined vaccine regimen of M. bovis BCG and a candidate ESAT-6:CFP10 DNA vaccine may offer greater protection against tuberculosis in cattle than vaccination with BCG alone.  相似文献   

4.
C Zheng  P Xie  Y Chen 《Vaccine》2001,20(5-6):914-919
Mycobacterium bovis bacillus Calmette-Guerin (BCG) has been used as a live bacterial vaccine to immunize >3 billion people against tuberculosis. In an attempt to use this vaccinal strain as a vehicle for protective antigens, the recombinant BCG (rBCG), expressing merozoite surface antigen 2 (MSA2) from Plasmodium falciparum under the control of an expression cassette carrying the promoter of heat shock protein 70 (HSP70) from M. tuberculosis, was constructed and used to immunize BABL/c mice. The administration of rBCG producing MSA2 (BCG-MSA2) resulted in the induction of a strong humoral and cellular response directed against MSA2. These results encourage the further protection testing of BCG-MSA2 vaccines in primate models.  相似文献   

5.
It is generally accepted that cellular immunity plays a critical role in the protection against Mycobacterium tuberculosis, an intracellular pathogen. Recently, however, an increasing number of reports indicate the important contribution of humoral immunity against mycobacterial infection. Since M. tuberculosis establishes its primary lesion in the lung, induction of humoral immunity in the airway tract by mucosal immunization regime could provide protective immunity against tuberculosis. In this study, mycobacterial heparin-binding haemagglutinin adhesin (HBHA) was used as an immunization antigen because HBHA is an essential virulence factor required for the infection of lung epithelial cells and extrapulmonary dissemination of mycobacteria. The effects of intranasal immunization with a yeast-expressed recombinant (r) HBHA co-administered with a mucosal adjuvant cholera toxin (CT) on the induction of humoral and cellular immunity were examined, and its protective efficacy against pulmonary challenge infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG) was evaluated. HBHA-specific antibodies were induced in serum and airway tract of immunized mice, which specifically recognized native HBHA expressed on M. bovis BCG. Th1-type immunity against mycobacterial antigens was also enhanced in the lung of immunized mice after pulmonary BCG infection. Furthermore, the immunization suppressed bacterial load in the spleen after pulmonary BCG infection. These results indicate that systemic and local humoral immunity induced by the HBHA-based mucosal vaccine impairs extrapulmonary dissemination, thus providing immune protection against mycobacterial infection.  相似文献   

6.
Cattle were given Mycobacterium bovis bacillus Calmette-Guerin (BCG) in a lipid-based formulation via the oral route and tested for immune responses and protection against a challenge with virulent M. bovis. Calves were vaccinated by orally administering a pellet containing 10(8) colony forming units (CFU) of BCG, or 10 pellets containing a total of 10(9) CFU of BCG, whereas positive controls were injected subcutaneously with 10(6) CFU of BCG. All of the subcutaneously vaccinated calves produced positive responses in the caudal fold tuberculin skin test at 8 weeks after vaccination, whereas only 3/9 of the low dose and 6/10 of the high dose orally-vaccinated animals produced positive reactions. None of the animals produced positive reactions to the mycobacterial antigens, ESAT-6 and CFP10 in the interferon-gamma (IFN-gamma) test and only a total of four of the BCG-vaccinated animals produced positive responses in either the standard IFN-gamma or comparative cervical skin test. Oral administration of 10 pellets of lipid-formulated BCG to cattle induced a significant level of protection against bovine tuberculosis compared to that observed in non-vaccinated animals and this level was similar to that seen in the BCG subcutaneously vaccinated animals. Oral vaccination of BCG in a lipid-formulation to calves was shown to induce some positive tuberculin skin test reactions, but could also induce protection against bovine tuberculosis.  相似文献   

7.
A method was developed for formulating Mycobacterium bovis bacille Calmette-Guerin (BCG) for oral vaccination against tuberculosis. Selected lipid-based formulations of BCG were tested in the brushtail possum for their ability to elicit immune responses and protection against bovine tuberculosis. Formulation of BCG in lipid matrices maintained bacteria in a dormant but viable state. Oral delivery of 2 x 10(8) colony forming units of formulated BCG to possums induced strong lymphocyte proliferation responses to bovine purified protein derivative (PPD) in peripheral blood lymphocytes. Oral vaccination of possums also reduced the severity of disease following aerosol challenge with virulent M. bovis compared with animals vaccinated with non-formulated BCG. In a second experiment, levels of protection with lipid-formulated oral BCG were similar to those seen with subcutaneous BCG vaccination. Our data shows that formulated oral BCG is an efficient means of inducing protection against bovine tuberculosis in possums and should be a practical means of vaccinating wildlife against tuberculosis.  相似文献   

8.
Logan KE  Chambers MA  Hewinson RG  Hogarth PJ 《Vaccine》2005,23(48-49):5526-5532
Tuberculosis caused by infection with Mycobacterium tuberculosis or Mycobacterium bovis remains one of the most important infectious diseases of man and animals. The current vaccine M. bovis Calmette-Guérin (BCG) demonstrates variable efficacy and so a more robust strategy to either replace, or more likely supplement it, is required. Prime-boost strategies where immunity induced by BCG is boosted by a second heterologous vaccine represent a promising avenue of research. We have evaluated the ability of a protein subunit vaccine using the antigen Rv3019c to either prime or boost immunity induced by BCG in a murine M. bovis challenge model. Despite the induction of anamnestic T cell responses, we report that antigen-independent immune stimulation with adjuvant in conjunction with BCG could enhance the level of protection induced by BCG alone. Importantly this improved protection correlated with pre-infection frequencies of ex vivo IFN-gamma producing cells in the spleen, providing a possible surrogate correlate of protection for future vaccination studies.  相似文献   

9.
《Vaccine》2018,36(19):2619-2629
Tuberculosis (TB) remains a major cause of mortality and morbidity worldwide, yet current control strategies, including the existing BCG vaccine, have had little impact on disease control. CysVac2, a fusion protein comprising stage-specific Mycobacterium tuberculosis antigens, provided superior protective efficacy against chronic M. tuberculosis infection in mice, compared to BCG. To determine if the delivery of CysVac2 in the context of BCG could improve BCG-induced immunity and protection, we generated a recombinant strain of BCG overexpressing CysVac2 (rBCG:CysVac2). Expression of CysVac2 in BCG was facilitated by the M. tuberculosis hspX promoter, which is highly induced inside phagocytic cells and induces strong cellular immune responses to antigens expressed under its regulation. Intradermal vaccination with rBCG:CysVac2 resulted in increased monocyte/macrophage recruitment and enhanced antigen-specific CD4+ T cell priming compared to parental BCG, indicating CysVac2 overexpression had a marked effect on rBCG induced-immunity. Further, rBCG:CysVac2 was a more potent inducer of antigen-specific multifunctional CD4+ T cells (CD4+IFN-γ+TNF+IL-2+) than BCG after vaccination of mice. This improved immunogenicity however did not influence protective efficacy, with both BCG and rBCG:CysVac2 affording comparable level of protection aerosol infection with M. tuberculosis. Boosting either BCG or rBCG:CysVac2 with the CysVac2 fusion protein resulted in a similar improvement in protective efficacy. These results demonstrate that the expression of protective antigens in BCG can augment antigen-specific immunity after vaccination but does not alter protection against infection, further highlighting the challenge of developing effective vaccines to control TB.  相似文献   

10.
Khare S  Hondalus MK  Nunes J  Bloom BR  Garry Adams L 《Vaccine》2007,25(10):1743-1755
Bovine tuberculosis is a chronic granulomatous disease caused by Mycobacterium bovis. Lack of definitive diagnostics and effective vaccines for domestic animals are major obstacles to the control and eradication of bovine tuberculosis. Auxotrophic mutants of Mycobacterium tuberculosis have shown promise as vaccine candidates for preventing human tuberculosis. Similarly, we constructed a leucine auxotroph of M. bovis, by using allelic exchange to delete leuD (encoding isopropyl malate isomerase), creating a strain requiring exogenous leucine for growth in vitro. We vaccinated 10 cattle subcutaneously with 10(9)CFU of M. bovis DeltaleuD and 10 age-matched, gender-matched controls were injected with phosphate-buffered saline. Vaccinated cattle had significantly increased in vitro antigen-specific T-cell-mediated responses. All cattle were challenged intranasally on day 160 post-immunization with 10(6)CFU of virulent M. bovis Ravenel S. On day 160 post-challenge vaccinated cattle had significantly reduced tissue mycobacterial burdens and 6 of 10 had complete clearance of the challenge strain and histopathological lesions were dramatically less severe in the vaccinated group. Thus, a single subcutaneous immunization of the M. bovis DeltaleuD mutant produced highly significantly protective immunity as measured by a reduction in tissue colonization, burden, bacilli dissemination, and histopathology caused by virulent M. bovis Ravenel S challenge.  相似文献   

11.
Babesia bovis is the causative agent of babesiosis, a tick-borne disease that is a major cause of loss to livestock production in Latin America. Vaccination against Babesia species represents a major challenge against cattle morbidity and mortality in enzootic areas. The aim of this study was to evaluate the capacity of Bacille Calmette-Guerin (BCG) to deliver the rhoptry associated protein (RAP-1) antigen of B. bovis and to stimulate specific cellular and humoral immune responses in mice. Two of five mycobacterial expression vectors efficiently expressed the antigen. These constructs were subsequently studied in vivo following three immunization protocols. The construct with the greatest in vivo stability proved to be the one that induced the strongest immune responses. Our data support the hypothesis that specific T lymphocyte priming by rBCG can be employed as a component of a combined vaccine strategy to induce long-lasting humoral and cellular immune responsiveness towards B. bovis and encourage further work on the application of rBCG to the development of Babesia vaccines.  相似文献   

12.
Bacille Calmette-Guerin (BCG) is the world's most widely used vaccine, but there are concerns that it provides little protection against pulmonary tuberculosis of humans in countries that have a high prevalence of environmental mycobacteria. Experiments in cattle provide a model to investigate this situation and to develop an improved tuberculosis vaccine. In the third of a series of BCG vaccination trials, calves had high interferon-gamma (IFN-gamma) responses to purified protein derivative (PPD) from Mycobacterium avium prior to vaccination, indicating that infection with environmental mycobacteria had occurred. The calves vaccinated with BCG had minimal protection against an experimental intratracheal challenge with virulent Mycobacterium bovis. In comparison, calves vaccinated with either of two newly-derived attenuated M. bovis strains had significantly better but not complete protection against the development of tuberculous lesions compared to both BCG-vaccinated and non-vaccinated animals. Vaccination with the newly-derived attenuated M. bovis strains induced strong IFN-gamma and interleukin-2 (IL-2) responses to PPD from M. bovis at 2 weeks after vaccination, while BCG vaccination induced only a weak response at this time. In association with the previous two trials, the results suggest that sensitisation of the calves to environmental mycobacteria adversely affected subsequent protective efficacy of BCG. However, the results of vaccination with the other two attenuated M. bovis strains indicated that improved tuberculosis vaccines could be developed for such sensitised animals.  相似文献   

13.
《Vaccine》2020,38(5):1241-1248
In the absence of biomarkers of protective immunity, newly developed vaccines against bovine tuberculosis need to be evaluated in virulent Mycobacterium bovis challenge experiments, which require the use of expensive and highly in demand Biological Safety Level 3 (BSL3) animal facilities. The recently developed bovine BCG challenge model offers a cheaper and faster way to test new vaccine candidates and additionally reduces the severity of the challenge compared to virulent M. bovis challenge in line with the remits of the NC3Rs. In this work we sought to establish the sensitivity of the BCG challenge model by testing a prime boost vaccine regimen that previously increased protection over BCG alone against M. bovis challenge. All animals, except the control group, were vaccinated subcutaneously with BCG Danish, and half of those were then boosted with a recombinant adenoviral vector expressing Antigen 85A, Ad85A. All animals were challenged with BCG Tokyo into the prescapular lymph node and the bacterial load within the lymph nodes was established. All vaccinated animals, independent of the vaccination regimen, cleared BCG significantly faster from the lymph node than control animals, suggesting a protective effect. There was however, no difference between the BCG and the BCG-Ad85A regimens. Additionally, we analysed humoral and cellular immune responses taken prior to challenge for possible predictors of protection. Cultured ELISpot identified significantly higher IFN-ɣ responses in protected vaccinated animals, relative to controls, but not in unprotected vaccinated animals. Furthermore, a trend for protected animals to produce more IFN-ɣ by quantitative PCR and intracellular staining was observed. Thus, this model can also be an attractive alternative to M. bovis challenge models for the discovery of protective biomarkers.  相似文献   

14.
Collins DM  de Lisle GW  Aldwell FE  Buddle BM 《Vaccine》2007,25(24):4659-4664
Vaccination of wildlife against bovine tuberculosis is being actively considered in countries that have wildlife reservoirs of Mycobacterium bovis infection. A newly attenuated strain of M. bovis (WAg533) was produced as part of a programme to develop a better vaccine than BCG to control tuberculosis in brushtail possums in New Zealand. The vaccine efficacy of WAg533 in possums was compared to BCG using three different methods of inoculation (conjunctival/intranasal, oral and sub-cutaneous) followed by aerosol challenge. Overall, WAg533 was a more potent vaccine than BCG and by two methods of inoculation gave more measures of protection that were significantly different from controls.  相似文献   

15.
Toxoplasmosis is a major parasitic disease, responsible for foetopathy in humans and domestic animals, especially sheep. Toxoplasma gondii infection generally protects immunocompetent hosts against subsequent reinfection, suggesting that efficacious vaccines can be developed against this disease. Excreted/secreted T. gondii antigens have previously been shown to provide immunoprotection in small rodents, and protective immunity is thought to be cell-mediated. Mycobacterium bovis BCG is known to be a good inducer of cellular immunity. In this study, we have developed a BCG strain which produces and secretes GRA1, one of the major excreted/secreted T. gondii antigens. This strain does not carry antibiotic-resistance determinants and is therefore safe for the environment. The intraperitoneal immunisation of OF1 outbred mice with this BCG strain failed to induce GRA1-specific humoral or cellular immune responses and only conferred a very limited degree of protection against challenge with virulent T. gondii. However, in sheep immunised subcutaneously and boosted intravenously, this recombinant BCG strain induced GRA1-specific cell-mediated responses, as evidenced by the proliferation of peripheral blood mononuclear cells and by the production of IFN-gamma, although it failed to elicit GRA1-specific antibody responses. Following oocyst challenge infection, sheep immunised with recombinant BCG exhibited an abbreviated temperature response compared with controls, suggesting partial protection.  相似文献   

16.
Tuberculosis caused by infection with Mycobacterium tuberculosis or M. bovis remains one of the most important infectious diseases of man and animals, and continues to inflict a huge cost in both health and financial terms. The current vaccine, BCG demonstrates variable efficacy and so a more robust vaccine strategy to either replace or supplement BCG is required. We have utilised a DNA prime-BCG boost strategy in a murine M. bovis challenge model using a cocktail of 3 DNA vaccines (encoding Hsp65, Hsp70 and Apa) followed by BCG. Controls were inoculated with vector DNA only, coding DNA only, BCG only or vector DNA followed by BCG boost. Analysis of immune responses by ELISpot prior to challenge, revealed that the coding DNA/BCG prime boost resulted in an increased frequency of antigen-specific IFNgamma producing cells compared to the other regimes. When spleen cell cytokine production to BCG antigens was analysed, significantly more IFNgamma and IL-12 was seen in those groups primed with DNA (coding or vector) prior to BCG than those receiving BCG alone. Analysis of bacterial counts revealed that DNA priming followed by BCG boost further improved the protective immunity induced by BCG alone. Surprisingly, inoculation with vector DNA was as efficacious as the coding DNA in enhancing BCG protection. Taken together these results indicate that whilst the coding DNA vaccines induce antigen specific responses, treatment with the vector DNA is sufficient for the increase in protective immunity over that induced by BCG, suggesting that the vector DNA may be acting as a non-specific adjuvant for BCG immunization.  相似文献   

17.
Palmer MV  Thacker TC  Waters WR 《Vaccine》2007,25(36):6589-6597
Wildlife reservoirs of Mycobacterium bovis represent serious obstacles to the eradication of tuberculosis in domestic livestock. In Michigan, USA tuberculous white-tailed deer transmit M. bovis to cattle. One approach in dealing with this wildlife reservoir is to vaccinate deer in order to interrupt the cycle of deer to deer and deer to cattle transmission. Thirty-one white-tailed deer were assigned to one of three groups; 2 SC doses of 10(7)CFU of M. bovis BCG (n=11); 1 SC dose of 10(7)CFU of M. bovis BCG (n=10); or unvaccinated deer (n=10). After vaccination, deer were inoculated intratonsilarly with 300 CFU of virulent M. bovis. Gross lesion severity scores of the medial retropharyngeal lymph node were significantly reduced in deer receiving 2 doses of BCG compared to unvaccinated deer. Vaccinated deer had fewer lymph node granulomas than unvaccinated deer, and most notably, fewer late stage granulomas characterized by coalescent caseonecrotic granulomas containing numerous acid-fast bacilli. BCG was isolated from 7/21 vaccinated deer as long as 249 days after vaccination. In one case BCG was transmitted from a vaccinated deer to an unvaccinated deer. In white-tailed deer BCG provides measurable protection against challenge with virulent M. bovis. However, persistence of vaccine within tissues as well as shedding of BCG from vaccinates remain areas for further investigation.  相似文献   

18.
BCG has been administered to over 4 billion persons worldwide, but its efficacy in preventing tuberculosis in adults has been highly variable. One hypothesis for its variability is that different strains of BCG vary in protective efficacy, and moreover, that evolutionarily early strains are more efficacious than the more attenuated evolutionarily late strains, which lack region of deletion 2. To examine this hypothesis, we tested six widely used BCG strains – the evolutionarily early strain BCG Japanese, two evolutionarily late strains in DU2 Group III (BCG Danish and Glaxo), and three evolutionarily late strains in DU2 Group IV (BCG Connaught, Pasteur, and Tice) – in the guinea pig model of pulmonary tuberculosis. With the exception of BCG Glaxo, which had relatively poor efficacy, we found no substantial differences in efficacy between the early strain and the late strains, and only small differences in efficacy among late strains. BCG Tice was the most efficacious BCG vaccine, with significantly fewer Mycobacterium tuberculosis in the lung and spleen than BCG Danish and BCG Japanese, although absolute differences in the organ burden of M. tuberculosis among these three vaccines were small (≤0.2 log). BCG Tice and Pasteur were not significantly different. rBCG30, a recombinant BCG Tice vaccine overexpressing the M. tuberculosis 30 kDa major secretory protein (Antigen 85B), was more potent than any BCG vaccine (P < 0.0001 for differences in organ burden). Our study shows that late strains are not less potent than an early strain and argues against strain differences as a major factor in the variability of outcomes in BCG vaccine trials.  相似文献   

19.
DNA vaccination is known to elicit robust cellular and humoral responses to encoded antigen. The co-administration of costimulatory molecules CD80 (B7-1), CD86 (B7-2) and CD154 (CD40L) has been shown to enhance immune responses in several murine models. The role of specific costimulatory molecules in non-rodent species remains incompletely characterized. In these studies, we demonstrate that the co-administration of CD80 and CD86, but not CD154, to an existing candidate subunit DNA vaccine (ESAT-6) against bovine tuberculosis, enhances protection after aerosol challenge with virulent Mycobacterium bovis. Additionally, we have shown that vaccination with M. bovis BCG is protective against tuberculosis following aerosol challenge in cattle. Two independent trials were conducted in cattle to determine the adjuvant effect of encoded antigen + CD80/CD86 and directly compare the adjuvant activities of CD80/CD86 to those of CD154. Co-administration of either CD80/CD86 or CD154 enhanced ESAT-6-specific IFN-gamma responses as compared to animals vaccinated with ESAT-6 DNA alone. However, following aerosol challenge, only animals vaccinated with CD80/CD86 possessed decreased pathology of the lungs and associated lymph nodes, as measured by gross examination, radiographic lesion morphometry and bacterial recovery. Collectively, these results demonstrate that the co-administration of costimulatory molecules with a protective antigen target enhances bovine immune responses to DNA vaccination, and that CD80/CD86 is superior to CD154 in augmenting DNA vaccine-induced protection in experimental bovine tuberculosis.  相似文献   

20.
《Vaccine》2020,38(51):8136-8144
Leptospirosis is a zoonotic disease worldwide and caused by the pathogenic spirochetes of the genus Leptospira. Bacterins make up the vaccines used against leptospirosis, but they only succeed in providing short-term and serovar-specific protection. The use of Mycobacterium bovis BCG as a live vaccine vector expressing leptospiral antigens is a promising alternative, particularly due to its adjuvant properties. Four distinct portions P1 (lipL32), P2 (ligAni), P3 (lemA:ligAni) and P4 (lipL32:lemA) of a recombinant chimera composed of the lipL32, lemA and ligANI genes from Leptospira interrogans were cloned individually according to the BioBricks® strategy in the plasmid pUP500/PpAN. These constructs were individually transformed into a BCG Pasteur strain, and protein expression was detected by Western blot. For vaccination, 5 groups of 10 Golden Syrian hamsters were used, aged 4–6 weeks – group 1, rBCG (LipL32); group 2, rBCG (LigAni); group 3, rBCG (LemA:LigAni); group 4, (LipL32:LemA); group 5, wild-type BCG Pasteur (negative control). Two doses containing 106 CFU of rBCG were administered subcutaneously, the challenge was performed with 5 × LD50 of Leptospira interrogans serovar Copenhageni L1-130, and the animals were observed for a 30-day period until the endpoint was reached. Humoral immunity was assessed via indirect ELISA, while renal colonisation was assessed by culture and quantitative real-time PCR. All vaccinated groups were protected against lethal challenge and renal colonisation, in comparison with negative control group (P < 0.05). Recombinant vaccines were not effective at inducing significant humoral immunity, which suggests the induction of cellular immunity – a characteristic of M. bovis BCG. In conclusion, all formulations provide 100% significant protection against leptospirosis in hamsters with no renal colonisation. The use of rBCG as a vaccine vector represents a promising alternative for the control of animal leptospirosis, allowing for protection against clinical signs of leptospirosis and renal colonisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号