首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxyl radical, ascorbate free radical, superoxide dismutase (SOD) activities, Cu,Zn-SOD protein, Mn-SOD protein, 8-hydroxy-2' -deoxyguanosine (8-OHdG) and metals were compared in red blood cells (RBC), plasma and/or cerebrospinal fluid (CSF) between patients with sporadic amyotrophic lateral sclerosis (SALS), familial ALS (FALS) showing the Leu126Ser mutation in the Cu, Zn-SOD gene and controls. In patients with FALS or SALS, concentrations of hydroxyl radical in blood and ascorbate free radical and 8-OHdG in CSF were higher than control group values, while SOD activities in RBC and CSF were lower. In contrast, Cu, Zn-SOD protein concentrations in RBC were low only in FALS patients. Concentrations of Cu in CSF of SALS patients were higher than in controls. Thus, the pathogenesis of increased oxidative stress differs between SALS patients and FALS patients with a mutant Leu126Ser SOD1 gene.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that involves mainly the motor neuron system. Five to 10 percent of the ALS cases are familial; most others are sporadic. Several mutations in the superoxide dismutase-1 (SOD1) gene have recently been shown to be associated with about 20% of familial ALS patients. The reduced enzyme activity of many mutant SOD1 points to the possibility that a loss-of-function effect of the mutant enzyme is responsible for the pathogenesis of the disease. However, this conflicts with the autosomal dominant inheritance of SOD1 mutation-associated ALS and the normal SOD1 activity in homozygous patients in a SOD1-linked ALS family. Current biochemical investigations have provided evidence that mutant SOD1 may catalyze the peroxynitrite-mediated nitration of protein tyrosine residues, release copper and zinc ions, facilitate apoptosis of neurons and have enhanced peroxidase activity. Immunocytochemical studies demonstrated the presence of intense SOD1 immunoreactivity in Lewy body-like inclusions, which are characteristic features of a certain form of familial ALS with posterior column involvement, in the lower motor neurons of patients in ALS families with different SOD1 mutations. More recently, strains of transgenic mice expressing mutant SOD1 have been established. These mice clinicopathologically develop a motor neuron disease mimicking human ALS with the exception of pronounced intraneuronal vacuolar degeneration. The overexpression of wild-type SOD1 in mice has failed to give rise to the disease. Only one transgene for mutant SOD1 is enough to cause motor neuron degeneration and the severity of clinical course correlates with the transgene copy number. These observations in SOD1-linked familial ALS and its transgenic mouse model suggest a novel neurotoxic function of mutant SOD1.  相似文献   

3.
We employed a mouse model of ALS, in which overexpression of a familial ALS-linked Cu/Zn-SOD mutation leads to progressive MN loss and a clinical phenotype remarkably similar to that of human ALS patients, to directly test the excitotoxicity hypothesis of ALS. Under basal culture conditions, MNs in mixed spinal cord cultures from the Cu/Zn-SOD mutant mice exhibited enhanced oxyradical production, lipid peroxidation, increased intracellular calcium levels, decreased intramitochondrial calcium levels, and mitochondrial dysfunction. MNs from the Cu/Zn-SOD mutant mice exhibited greatly increased vulnerability to glutamate toxicity mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors. The increased vulnerability of MNs from Cu/Zn-SOD mutant mice to glutamate toxicity was associated with enhanced oxyradical production, sustained elevations of intracellular calcium levels, and mitochondrial dysfunction. Pretreatment of cultures with vitamin E, nitric oxide-suppressing agents, peroxynitrite scavengers, and estrogen protected MNs from Cu/Zn-SOD mutant mice against excitotoxicity. Excitotoxin-induced degeneration of spinal cord MNs in adult mice was more extensive in Cu/Zn-SOD mutant mice than in wild-type mice. The mitochondrial dysfunction associated with Cu/Zn-SOD mutations may play an important role in disturbing calcium homeostasis and increasing oxyradical production, thereby increasing the vulnerability of MNs to excitotoxicity.  相似文献   

4.
Amyotrophic lateral sclerosis is a fatal paralytic disorder of unknown cause. Recent evidence implicated the role of free radicals in the death of motor neurons in this disease. To investigate this hypothesis further, we measured the activity of the main free radical scavenging enzymes copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, and glutathione peroxidase in postmortem brain samples from 9 patients with sporadic amyotrophic lateral sclerosis and from 9 control subjects. We examined samples from the precentral gyrus of the cerebral cortex, a region affected in amyotrophic lateral sclerosis, and from the cerebellar cortex, a region not affected. The two groups did not differ in age or postmortem delay. In the precentral gyrus from amyotrophic lateral sclerosis samples, glutathione peroxidase activity as measured by spectrophotometric assay (13.8 & 2.6 nmol/min/mg protein [mean & standard error of mean]) was reduced significantly compared to the activity in the precentral gyrus from control samples (22.7 & 0.5 nmol/min/ mg protein). In contrast, glutathione peroxidase activity was not significantly altered in the cerebellar cortex from amyotrophic lateral sclerosis patients compared to controls. Copper/zinc superoxide dismutase, manganese superoxide dismutase (corrected or not corrected for citrate synthase), and catalase were not significantly altered in the precentral gyrus or cerebellar cortex in the patient samples. This study indicated that glutathione peroxidase activity is reduced in a brain region affected in amyotrophic lateral sclerosis, thus suggesting that free radicals may be implicated in the pathogenesis of the disease.  相似文献   

5.
《Neurodegeneration》1995,4(4):391-396
There have been no reports of changes in free radical inactivating enzymes in the anterior horn of the spinal cord in ALS despite great interest in the possibility that free radicals might be important in the aetiology of the disease. In this study we have measured copper/zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD) and glutathione peroxidase (GSHPX) activities in anterior horn tissue obtained from patients with ALS and from controls. Total SOD activity was no different in the anterior horn of ALS cases compared to controls, but Cu/ZnSOD activity was reduced, and that of MnSOD increased, at thoracic cord level only. No detectable activity of GSHPX or cytochrome P450(unpublished data) was found. These latter negative findings are important because they suggest that generation of free radicals from exogenous chemicals is not important in ALS and further that the neurone (as compared to other cell types) is poorly protected against the toxicity of hydrogen peroxide.  相似文献   

6.
The roles of free radicals in amyotrophic lateral sclerosis   总被引:5,自引:0,他引:5  
The mutations of the Cu,Zn superoxide dismutase (Cu,Zn-SOD) gene observed in amyotrophic lateral sclerosis (ALS) patients suggest that free radicals play a role in this fatal disease. Free radicals trigger oxidative damage to proteins, membrane lipids, and DNA, thereby destroying neurons. Mutations of the SOD gene may reduce its superoxide dismutase activity, thereby elevating free radical levels. In addition, the mutant SOD protein may function as a peroxidase to oxidize cellular components, and it may also react with peroxynitrite—a product of the reaction between superoxide and nitric oxide—to ultimately form nitrate proteins. The selective degeneration of motor neurons in ALS may be caused by the high level of Cu,Zn-SOD present in and the large number of glutamatergic synapses projecting to these neurons. Free radical-triggered and age-accumulated oxidation may modify the program controlling motor neuron death, thereby initiating apoptosis of motor neurons in young adults.  相似文献   

7.
The pathogenesis of neuronal degeneration in both sporadic and familial amyotrophic lateral sclerosis (ALS) associated with mutations in superoxide dismutase may involve oxidative stress. A leading candidate as a mediator of oxidative stress is peroxynitrite, which is formed by the reaction of superoxide with nitric oxide. 3-Nitrotyrosine is a relatively specific marker for oxidative damage mediated by peroxynitrite. In the present study, biochemical measurements showed increased concentrations of 3-nitrotyrosine and 3-nitro-4-hydroxyphenylacetic acid in the lumbar and thoracic spinal cord of ALS patients. Increased 3-nitrotyrosine immunoreactivity was observed in motor neurons of both sporadic and familial ALS patients. Neurologic control patients with cerebral ischemia also showed increased 3-nitrotyrosine immunoreactivity. These findings suggest that peroxynitrite-mediated oxidative damage may play a role in the pathogenesis of both sporadic and familial ALS.  相似文献   

8.
The aim of this study was to investigate the effects of different stress models on copper, zinc-superoxide dismutase (Cu,Zn-SOD), catalase (CAT) and selenium-dependent glutathione peroxidase (Se-GSH-Px) activities, and reduced glutathione (GSH), protein carbonyl (PC) and lipid peroxidation marker (conjugated diene (CD) and thiobarbituric acid-reactive substances (TBARS)) levels in brain of rats, and to determine the most effective stress model according to each parameter. Rats were divided into four groups as following: control group (C), immobilization stress group (IS), cold stress group (CS) and immobilization-cold stress group (ICS). All stress models increased brain Cu,Zn-SOD and CAT activities, PC, CD and TBARS levels, plasma corticosterone levels and decreased brain GSH concentrations. Se-GSH-Px activity was increased in CS and ICS groups. When all stress models were taken into consideration, the highest increases in Cu,Zn-SOD and Se-GSH-Px activities were found in CS group. The lowest GSH level was seen in IS group. The highest increases in PC and TBARS levels were found in ICS group. The highest increase of CD concentration was seen in IS and ICS groups. Our results suggest that different stress models have different degrees of influences on enzymatic and non-enzymatic antioxidant defense systems, protein oxidation and lipid peroxidation in the brain.  相似文献   

9.
Oxidative stress plays an important role in the pathogenesis of Alzheimer's disease. To determine which mechanisms cause the origin of oxidative damage, we analyzed enzymatic antioxidant defense (Cu/Zn-superoxide dismutase Cu/Zn-SOD, glutathione peroxidase GPx and glutathione reductase GR) and lipid peroxidation products malondialdehyde MDA and 4-hydroxynonenal HNE in two different APP transgenic mouse models at 3-4 and 12-15 months of age. No changes in any parameter were observed in brains from PDGF-APP695(SDL) mice, which have low levels of Abeta and no plaque load. In contrast, Thy1-APP751(SL) mice show high Abeta accumulation with aging and plaques from an age of 6 months. In brains of these mice, HNE levels were increased at 3 months (female transgenic mice) and at 12 months (both gender), that is, before and after plaque deposition, and the activity of Cu/Zn-SOD was reduced. Interestingly, beta-amyloidogenic cleavage of APP was increased in female Thy1-APP751(SL) mice, which also showed increased HNE levels with simultaneously reduced Cu/Zn-SOD activity earlier than male Thy1-APP751(SL) mice. Our results demonstrate that impaired Cu/Zn-SOD activity contributes to oxidative damage in Thy1-APP751(SL) transgenic mice, and these findings are closely linked to increased beta-amyloidogenic cleavage of APP.  相似文献   

10.
It has been suggested that amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder resulting in motor neuron death, is associated with oxidative damage induced by free radicals. Our study aimed to get an assessment of the blood oxidative stress status in a population of 167 ALS patients (aged 59+/-13 years), treated or not with riluzole, compared with 62 age-matched healthy control subjects (aged 60+/-11 years) simultaneously included in the study. We determined the level of plasma lipid peroxidation (thiobarbituric acid-reactive substances, TBARS); the status of the major lipophilic plasma antioxidant defenses (vitamin E, vitamin A and beta-carotene); the activities of erythrocyte Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and of plasma and erythrocyte glutathione peroxidase (GSH-Px). Plasma selenium was also determined as a trace element essential to the activity of the GSH-Px. In comparison with controls, we observed in ALS patients (mean+/-S.D.) significantly higher TBARS values (ALS=1.34+/-0.28 micromol/l; controls=1.11+/-0. 20 micromol/l) and a significant enhancement of the erythrocyte SOD activity (ALS=710+/-114 U/g Hb; controls=667+/-93 U/g Hb). No differences were observed for selenium level, GSH-Px activity, plasma vitamin E, beta-carotene and vitamin A concentrations. These data confirm the presence of an oxidative stress in blood of ALS patients. The elevated plasma TBARS, without any deficiency in plasma lipophilic antioxidants such as vitamin E, vitamin A and beta-carotene, suggest an enhancement in the production of free radicals. No correlation was found in our study between the level of any of the blood oxidative stress markers and the disease duration. Comparison between patients treated or not with riluzole did not display any modification of the plasma TBARS concentration, but we observed a slight decrease of erythrocyte SOD activity in treated patients (treated=705+/-113 U/g Hb; not treated=725+/-118 U/g Hb), suggesting a possible activity of riluzole on the oxygenated free radical production.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a paralytic disorder characterized by degeneration of large motor neurons of the brain and spinal cord. A subset of ALS is inherited (familial ALS, FALS) and is associated with more than 70 different mutations in the SOD1 gene. Here we report that lymphoblast cell lines derived from FALS patients with 16 different mutations in SOD1 gene exhibit significant increase of intracellular reactive oxygen species (ROS) compared with sporadic ALS (SALS) and normal controls (spouses of ALS patients). The ROS generation did not correlate with SOD1 activity. Further, cells incubated with vitamin C, catalase or the flavinoid quercetin significantly reduced ROS in all groups. The catalase inhibitor 3-amino-1,2,4-triazole resulted in a ten-fold increase of ROS in all groups. Neither L-nitroarginine, a nitric oxide synthase inhibitor or vitamin E altered the ROS levels. Thus, these studies suggest that hydrogen peroxide (H(2)O(2)) is a major ROS elevated in FALS lymphoblasts and it may contribute to the degeneration of susceptible cells. Further, we postulate a mechanism by which increased H(2)O(2) could be generated by mutant SOD1.  相似文献   

12.
Oxidative stress may play a role in the pathogenesis of familial amyotrophic lateral sclerosis (FALS). Superoxide dismutases (SODs) are enzymes that can influence free radical processes in irradiated cells and there is some evidence that manipulation of SODs can affect survival of cells after radiation treatments. SOD-1 associated FALS mutants may have an altered radiation response due to an enhanced generation of hydroxyl radicals or a compromised ability to neutralize free radicals. We have investigated the ability of the lymphoblastoid cell lines from FALS patients with SOD-1 gene mutations, patients with sporadic ALS and controls to handle oxidative stress induced by ionising radiation by measuring levels of intracellular reactive oxygen species and production of DNA double-strand breaks. Levels of reactive oxygen species, expressed as the slope of the relative fluorescence of a radical-reactive fluorochrome, in the cells from familial ALS patients with SOD-1 gene mutations (2.14+/-1.06 Gy(-1)) and patients with sporadic ALS (1.38+/-0.21 Gy(-1)) were not significantly different from the controls (1.54+/-0.39 Gy(-1)). No significant difference was observed in the production of DNA double-strand breaks between three groups. The ability of lymphoblastoid cells from FALS patients with SOD-1 gene mutations to scavenge radiation-induced free radicals is not compromised nor is their ability to protect DNA damage induced by ionising radiation.  相似文献   

13.
We performed a genetic analysis of the Cu/Zn superoxide dismutase gene (SOD1) in Spanish patients with sporadic or familial amyotrophic lateral sclerosis (ALS). We found mutations in 2 of 11 families (18%) with ALS. In addition, 1 of the 87 sporadic ALS patients studied harbored a mutation in the same gene. We identified G37R in exon 2 of the SOD1 gene in 1 family. Another patient, with sporadic ALS, showed a novel N65S in exon 3. In addition, we found a novel I112M in exon 4 in another family. Our data highlight the genetic heterogeneity of patients with ALS harboring mutations in the SOD1 gene and confirm that families with autosomal dominant inheritance of the trait, regardless of their ethnic background, are more likely to carry mutations in such a gene.  相似文献   

14.
The cause of selective degeneration of motor neurons in the ventral horn of the spinal cord associated with amyotrophic lateral sclerosis (ALS) has still not been elucidated. Recently, so-called oxidative stress has been suggested to be a significant factor in the pathogenesis of this disease. We measured the antioxidant actions of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and cytochrome c oxidase (CO) of the human spinal cord in patients with ALS in comparison with those in control patients. Total SOD activity in spinal cord transections from patients with sporadic ALS was not significantly different from the controls in ventral, lateral, or dorsal regions, although enzymic activity was relatively higher in the ventral compared with the dorsal region. GSH-Px activity in the spinal cord of ALS patients was not very different from that in the control tissue. In contrast, CO activity was significantly reduced in all three regions of the spinal cord in patients with ALS, although the reduction was more marked in the ventral region. These results suggest that reactive oxygen species may attack the mitochondrial respiratory chain, leading eventually to the degeneration of vulnerable motor neurons in the spinal cord, even though no obvious changes in the activity of antioxidant enzymes are detectable. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a motor neuron degenerative disorder caused in a proportion of cases by missense mutations in the gene encoding Cu/Zn superoxide dismutase (Cu/Zn-SOD) which result in unknown, lethal enzymatic activity. Based on a differential screening approach, we show here that the gene encoding the cellular prion protein (PrP(C)) was specifically repressed in a transgenic model of ALS overexpressing the mutant G86R Cu/Zn-SOD. Analysis by Northern blot, semiquantitative RT-PCR, and Western blot revealed that PrP(C) down-regulation, which appeared early in the asymptomatic phase of the pathology, occurred preferentially in those tissues primarily affected by the disease (spinal cord, sciatic nerve, and gastrocnemius muscle). This down-regulation was not accompanied by refolding of the aberrant PrP(Sc) isoform, the agent which causes transmissible spongiform encephalopathies. Furthermore, modification of PrP(C) expression was specifically linked to the presence of the G86R mutant since no changes were observed in transgenic mice overexpressing wild-type Cu/Zn-SOD. PrP(C) has been shown to play a role in the protection against oxidative stress, and we therefore propose that its down-regulation may contribute at least in part to ALS pathogenesis.  相似文献   

16.
Familial amyotrophic lateral sclerosis (FALS) is an inherited disorder of motor neurons, which is associated with missense mutations in the Cu,Zn-super-oxide dismutase (Cu,Zn-SOD) gene. Mice from the G93A transgenic line was reported to develop a syndrome of FALS. The fact that the symptoms occurred against a background of normal mouse Cu,Zn-SOD activity suggests that dominant, gain-of-function mutations in SOD play a role in the pathogenesis of FALS. We investigated the nature of this gain-of-function of FALS mutants. We have previously reported that Cu,Zn-SOD has the free radical-generating function in addition to normal dismutation activity. These two enzymic activities were compared by using mutants (G93A and A4V) and the wild-type Cu,Zn-SOD prepared by recombinant method. Our results showed that the wild-type, G93A, and A4V enzymes have identical dismutation activity. However, the free radical-generating function of the G93A and A4V mutants, as measured by the spin trapping and EPR method, is enhanced relative to that of the wild-type enzyme (wild-type < G93A < A4V), particularly at lower H2O2 concentrations. This is due to the decrease in the Km value for H2O2, wild-type > G93A > A4V. The catalytic activity to generate free radicals is correlated to the clinical severity of the disorder induced by these mutant enzymes. Furthermore, we found that intact FALS mutants failed to enhance tyrosine nitration. Together, our results indicate that the amyotrophic lateral sclerosis symptoms are not caused by the reduction of Cu,Zn-SOD dismutation activity with the mutant enzymes; rather, it is induced in part by enhancement of the free radical-generating function.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, which affects the anterior horn cells of the spinal cord and cortical motor neurons. A pathophysiological role for mtDNA mutations was postulated based on the finding that cybrids obtained from mitochondria of sporadic ALS patients exhibited impaired respiratory chain activities, increased free radical scavenging enzymes, and altered calcium homeostasis. To date, however, no distinct mtDNA alterations associated with ALS have been reported. Therefore, we reexamined the hypotheses that mtDNA mutations accumulate in ALS and that cybrids generated from ALS patients' blood have impaired mitochondrial respiration. Cybrid cell lines were generated from 143B osteosarcoma rho(0) cells and platelet mitochondria of sporadic ALS patients or age-matched controls. We found no statistically significant differences in mitochondrial respiration between ALS and control cybrids, even when the electron transport chain was stressed with low concentrations of respiratory chain inhibitors. Mitochondrial respiratory chain enzyme activities were also normal in ALS cybrids, and there was no increase in free radical production. Therefore, we showed that mtDNA from platelets of ALS patients was able to restore normal respiratory function in rho(0) cells, suggesting that the presence of mtDNA mutations capable of affecting mitochondrial respiration was unlikely.  相似文献   

18.
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most widely used herbicides due to its relatively moderate toxicity and to its biodegradability in the soil. In toxic concentrations, 2,4-D displays strong neurotoxicity, partly due to generation of free radicals. Since melatonin has remarkable antioxidant properties, the objective of this study was to assess to what extent it was effective in preventing the 2,4-D effect on redox balance of rat cerebellar granule cells (CGC) in vitro. Cellular viability, generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), reduced glutathione (GSH) levels, and the activities of the antioxidant enzymes Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, selenium-glutathione peroxidase (Se-GPx) and catalase (CAT) were measured in CGC exposed to 2,4-D and/or melatonin for 48 h. In CGC cultures exposed to 2,4-D, cell viability, GSH levels and CAT activity decreased significantly whereas ROS generation and Se-GPx activities were augmented. Except for Se-GPx activity, all these changes were counteracted by the concomitant addition of 0.1 or 0.5 mM melatonin. In addition, incubation of CGC with melatonin alone resulted in augmentation of cell viability, GSH levels and Se-GPx activity. RNS generation and SOD activity remained unaffected by either treatment. Since melatonin was able to counteract most of redox changes produced by 2,4-D in CGC in culture, the experimental evidence reported further support the efficacy of melatonin to act as a neuroprotector.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving motor neuron degeneration, occurring in sporadic and familial forms. Mutations in Cu/Zn superoxide dismutase gene (SOD-1) play a key role in the pathogenesis of the familial form in which it is present in about 20%. The mechanisms by which the mutated enzyme produces the disease are not sufficiently know. The following hypothesis are considered: oxidative damage, disorganization of neurofilaments, toxic action of intracellular aggregates, disturbed mechanisms of protein synthesis or degradation, and increased glutamic acid toxicity due to damage of EAAT 2 mRNA, transporter of this acid. It is supposed that motor neuron death is due to various mechanisms caused by SOD-1 enzyme mutations. Pathological changes suggest that biochemical processes leading to neurodegeneration in familial ALS form related or unrelated to SOD-1 mutation, and in sporadic form may be very similar.  相似文献   

20.
OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a common, fatal motor neuron disorder with no effective treatment. Approximately 10% of cases are familial ALS (FALS), and the most common genetic abnormality is superoxide dismutase-1 (SOD1) mutations. Most ALS research in the past decade has focused on the neurotoxicity of mutant SOD1, and this knowledge has directed therapeutic strategies. We recently identified TDP-43 as the major pathological protein in sporadic ALS. In this study, we investigated TDP-43 in a larger series of ALS cases (n = 111), including familial cases with and without SOD1 mutations. METHODS: Ubiquitin and TDP-43 immunohistochemistry was performed on postmortem tissue from sporadic ALS (n = 59), ALS with SOD1 mutations (n = 15), SOD-1-negative FALS (n = 11), and ALS with dementia (n = 26). Biochemical analysis was performed on representative cases from each group. RESULTS: All cases of sporadic ALS, ALS with dementia, and SOD1-negative FALS had neuronal and glial inclusions that were immunoreactive for both ubiquitin and TDP-43. Cases with SOD1 mutations had ubiquitin-positive neuronal inclusions; however, no cases were immunoreactive for TDP-43. Biochemical analysis of postmortem tissue from sporadic ALS and SOD1-negative FALS demonstrated pathological forms of TDP-43 that were absent in cases with SOD1 mutations. INTERPRETATION: These findings implicate pathological TDP-43 in the pathogenesis of sporadic ALS. In contrast, the absence of pathological TDP-43 in cases with SOD1 mutations implies that motor neuron degeneration in these cases may result from a different mechanism, and that cases with SOD1 mutations may not be the familial counterpart of sporadic ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号