首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Global rotavirus surveillance has led to the detection of many unusual human rotavirus (HRV) genotypes. During 1996–2004 surveillance within the African Rotavirus Network (ARN), six P[8],G8 and two P[6],G8 human rotavirus strains were identified. Gene fragments (RT‐PCR amplicons) of all 11‐gene segments of these G8 strains were sequenced in order to elucidate their genetic and evolutionary relationships. Phylogenetic and sequence analyses of each gene segment revealed high similarities (88–100% nt and 91–100% aa) for all segments except for gene 4 encoding VP4 proteins P[8] and P[6]. For most strains, almost all of the genes of the ARN strains other than neutralizing antigens are related to typical human strains of Wa genogroup. The VP7, NSP2, and NSP5 genes were closely related to cognate genes of animal strains (83–99% and 97–99% aa identity). This study suggests that the ARN G8 strains might have arisen through VP7 or VP4 gene reassortment events since most of the other gene segments resemble those of common human rotaviruses. However, VP7, NSP2 (likely), and NSP5 (likely) genes are derived potentially from animals consistent with a zoonotic introduction. Although these findings help elucidate rotavirus evolution, sequence studies of cognate animal rotavirus genes are needed to conclusively determine the specific origin of those genes relative to both human and animal rotavirus strains. J. Med. Virol. 81:937–951, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
An ovine rotavirus (OVR) strain, 762, was isolated from a 30-day-old lamb affected with severe gastroenteritis, in Zaragoza, Spain, and the VP4, VP7, VP6, NSP4, and NSP5/NSP6 genes were subsequently characterized molecularly. Strain OVR762 was classified as a P[14] rotavirus, as the VP4 and VP8* trypsin-cleavage product of the VP4 protein revealed the highest amino acid (aa) identity (94% and 97%, respectively) with that of the P11[14] human rotavirus (HRV) strain PA169, isolated in Italy. Analysis of the VP7 gene product revealed that OVR762 possessed G8 serotype specificity, a type common in ruminants, with the highest degree of aa identity (95-98%) shared with serotype G8 HRV, bovine rotavirus, and guanaco (Lama guanicoe) rotavirus strains. Moreover, strain OVR762 displayed a bovine-like NSP4 (genotype E2) and NSP5/NSP6 (genotype H3), and a VP6 genotype I2, as well as a long electropherotype pattern. This is the first report of a lamb rotavirus with P[14] and G8 specificities, providing additional evidence for the wide genetic and antigenic diversity of group A rotaviruses.  相似文献   

3.
Porcine rotavirus strains (PoRVs) bearing human-like VP4 P[6] gene alleles were identified. Genetic characterization with either PCR genotyping or sequence analysis allowed to determine the VP7 specificity of the PoRVs as G3, G4, G5 and G9, and the VP6 as genogroup I, that is predictive of a subgroup I specificity. Sequence analysis of the VP8* trypsin-cleavage product of VP4 allowed PoRVs to be characterized further into genetic lineages within the P[6] genotype. Unexpectedly, the strains displayed significantly higher similarity (up to 94.6% and 92.5% at aa and nt level, respectively) to human M37-like P[6] strains (lineage I), serologically classifiable as P2A, or to the atypical Hungarian P[6] human strains (HRVs), designated as lineage V (up to 97.0% aa and 96.1% nt), than to the porcine P[6] strain Gottfried, lineage II (<85.1% aa and 82.2 nt), which is serologically classified as P2B. Interestingly, no P[6] PoRV resembling the original prototype porcine strain, Gottfried, was detected, while Japanase P[6] PoRV clustered with the atypical Japanase G1 human strain AU19. By analysis of the 10th and 11th genome segments, all the strains revealed a NSP4B genogroup (Wa-like) and a NSP5/6 gene of porcine origin. These findings strongly suggest interspecies transmission of rotavirus strains and/or genes, and may indicate the occurrence of at least 3 separate rotavirus transmission events between pigs and humans, providing convincing evidence that evolution of human rotaviruses is tightly intermingled with the evolution of animal rotaviruses.  相似文献   

4.
Rotaviruses are the major etiological agents of diarrhea in children less than 5 years of age. Two unusual rotavirus strains not previously reported in India, G11P[25] (CRI 10795) and G3P[3] (CRI 33594) were isolated from faecal samples of asymptomatic children in India. The strains were characterized by sequence analysis of the genes encoding the VP7, VP4, VP6, and NSP4. The G11P[25] strain was closely related to the human G11P[25] strains from Bangladesh (with 98% identity at the nucleotide [nt] level and the amino acid [aa] level for the VP7 gene and 96% identity at the nt and 98% at the aa level for the VP4 gene). The G3P[3] strain was found to be related to a G3P[3] strain isolated in Thailand (CMH222; 88% identity at the nt level and 97% at aa level for the VP7 gene and 84% identity at the nt level and 90% at the aa level for the VP4 gene). Phylogenetic analysis of the VP6 and the NSP4 genes revealed that the Vellore G11P[25] strain was of VP6 subgroup II and NSP4 genotype B. The G3P[3] strain was identified as NSP4 genotype C and the VP6 gene showed 97% identity at the deduced amino acid level with strain CMH222 (Thailand) strain but did not cluster with sequences of SGI, SGII, SGI+II or SG-nonI/nonII. Both strains had gene segments of animal rotavirus origin suggesting inter-species transmission of rotavirus, and in the case of G11P[25] possibly underwent reassortment subsequently with human strains resulting in an animal-human hybrid strain.  相似文献   

5.
Analysis of archival stool collections provides an invaluable source of virus strains and genetic material that may be exploited for molecular, epidemiological, and biological studies. The aim of this study was the molecular characterization of unusual human rotavirus (HRV) strains displaying atypical combinations of electropherotype (e-type) and VP4 and/or VP7 genotypes. Analysis of a panel of archival stools collected in northern Italy revealed continual circulation of P[8]G1 HRVs during 1987-1990 and the onset of P[6] + P[8]G1 strains after 1989. Interestingly, nine G1 strains, associated with either P[8], P[4] + P[8], P[6] + P[8], or untypeable VP4 genes, and two P[4]G1 + G2 strains, displayed short RNA e-type. The genetic constellation of the unusual strains was investigated by analysis of the VP4, VP6, VP7, and NSP4 genes. All the G1 strains with short e-type were subgroup (SG)II or SGI + SGII, and possessed a NSP4 of genogroup B or A + B. Conversely, the P[4]G1 + G2 strains were SGI and possessed a genogroup A NSP4. Sequence analysis of the VP7 and VP4 genes revealed that the unusual P[8]G1 and P[4]G1 + G2 viruses emerged by reassortment of strains circulating locally, rather than by introduction of new strains.  相似文献   

6.
The human rotavirus G1P[8] strain is one of the most common rotaviruses worldwide, including Korea. Six Korean G1P[8] human rotaviruses, isolated using cell culture techniques, were characterized on the basis of sequence differences in VP7, VP4, VP6, and NSP4 genes to elucidate the evolutionary relationships in the community. All strains had a long RNA electropherotype, supported by VP6 gene analysis, clearly associated with subgroup II specificity. The phylogenetic analysis of VP7 gene sequences showed that they all clustered into lineage I, as reported for G1 strains in Japan, China, Vietnam, and Thailand. In addition, phylogenetic analysis of the VP4 gene showed that they belong to two distinct lineages, P[8]‐II and P[8]‐III. With respect to the NSP4 gene, all strains belonged to genotype B. An understanding of the ecology and molecular evolution of rotaviruses circulating in the country is very important for the development of vaccines and vaccination strategies. This study provides new information concerning the genetic variability of the rotavirus strain G1P[8] occurring most commonly as a vaccine candidate. J. Med. Virol. 82: 886–896, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
A rare genotype G6P[9] was identified in two human group A rotavirus strains designated as KF14 and KF17, that were detected in stool specimens from children with diarrhea in Japan. VP7 gene sequences of these two strains were identical and genetically closely related to G6 human rotavirus strains reported in European countries and the United States. To our knowledge, this is the first report of detection of a G6 human rotavirus in Japan. For further genetic analysis to elucidate the origin of the G6 rotavirus, nearly full-length sequences of all 11 RNA segments were determined for the KF17 strain. The complete genomic constellation of KF17 was determined as G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3, a novel genotype constellation for human rotavirus. Phylogenetic analysis indicated that VP6, VP1-3, and NSP2 genes of KF17 clustered with bovine-like G6 human strains and some animal strains into sub-lineages distinct from those of common DS-1-like G2 human rotaviruses. On the other hand, KF17 genes encoding VP4, NSP1, and NSP3-5 showed high sequence identities to the human G3P[9] strain AU-1, and clustered with AU-1 and some feline strains within the same lineage. These findings suggested that the G6P[9] human rotavirus detected in Japan may have occurred through reassortment among uncommon bovine-like human rotaviruses and human/feline AU-1-like rotaviruses.  相似文献   

8.
Summary. Molecular characterization of two porcine group A rotavirus strains (HP113 and HP140), detected from eastern India, revealed a VP7 closely related to those of human G6P[14] strains, VP4 with a borderline P[13] genotype, and VP6 related to bovine and human SGI strains rather than porcine SGI and/or SGII group A rotaviruses. Both strains had NSP4 and NSP5 of porcine origin. Therefore, to our knowledge, the present study is the first report of detection of group A rotavirus strains with G6P[13] genotype specificities and provides evidence for independent segregation of the VP6- and NSP4-encoding genes in porcine group A rotaviruses.  相似文献   

9.
In 2004, an epidemiological survey of human rotavirus infection in Chiang Mai, Thailand detected two uncommon human rotavirus strains (CMH120/04 and CMH134/04) bearing AU-1-like G3P[9] genotypes in 1 year old children hospitalized with acute gastroenteritis. The CMH120/04 and CMH134/04 rotavirus strains were characterized by molecular analyses of their VP6, VP7, VP8*, and NSP4 gene segments as well as the determination of RNA patterns by polyacrylamide gel electrophoresis (PAGE). Analysis of the VP8* gene revealed a high level of amino acid sequence identities with those of P[9] rotavirus reference strains, ranging from 94.9% to 98.3%. The highest identities were shared with the human rotavirus AU-1 strain at 97.8% and 98.3% for CMH120/04 and CMH134/04 strains, respectively. Analysis of the VP7 gene sequence revealed the highest identities with G3 human rotavirus strain KC814 at 96.6% and 96.2% for CMH120/04 and CMH134/04 strains, respectively. Based on the analyses of VP7 and VP8* genes, CMH120/04 and CMH134/04 belonged to G3P[9] genotypes. In addition, analyses of VP6 and NSP4 sequences revealed a VP6 subgroup (SG) I, with NSP4 genetic group C specificities. Moreover, both strains displayed a long RNA electrophoretic pattern. The finding of uncommon G3P[9] rotaviruses in pediatric patients provided additional evidence of the genetic/antigenic diversities of human group A rotaviruses in the Chiang Mai area of Thailand.  相似文献   

10.
During the 2004 surveillance of rotaviruses in Wuhan, China, a G4P[6] rotavirus strain R479 was isolated from a stool specimen collected from a 2‐year‐old child with diarrhea. The strain R479 had an uncommon subgroup specificity I + II, and analysis of the VP6 gene suggested that it was related to porcine rotaviruses. In the present study, full‐length nucleotide sequences of all the RNA segments of R479 were determined and analyzed phylogenetically to identify the origin of individual RNA segments. According to the rotavirus genotyping system based on 11 RNA segments, the genotype of R479 was expressed as G4‐P[6]‐I5‐R1‐C1‐M1‐A1‐N1‐T7‐E1‐H1. This genotype includes the porcine‐like VP6 genotype (I5) and bovine‐like NSP3 genotype (T7). Phylogenetic analysis revealed that R479 genes encoding VP1, VP2, VP3, VP6, VP7, VP8*, NSP1, NSP4, and NSP5 were more closely related to those of porcine rotaviruses than human or other animal rotaviruses. In contrast, it was remarkable that the NSP3 gene of R479 was genetically closely related to only a bovine rotavirus strain UK. The NSP2 gene of R479 was also unique and clustered with only the G5P[8] human strain IAL28 and G3P[24] simian strain TUCH. These results suggested that R479 may be a reassortant virus having the NSP3 gene from a bovine rotavirus in the genetic background of a porcine rotavirus, with an NSP2 gene related to the porcine‐human reassortant strain IAL28. To our knowledge, R479 is the first porcine–bovine reassortant rotavirus isolated from a human. J. Med. Virol. 82:1094–1102, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
During a surveillance study (November 2001-March 2005), one rare G15P[11] and two rare G15P[21] bovine group A rotavirus strains were detected in diarrhoeic calves in Eastern India. Sequence analysis of the VP8*, VP6, NSP4 and NSP5 genes of the G15P[11] strain confirmed its bovine origin. Although the NSP4 and NSP5 genes of the two G15P[21] strains were of bovine origin, their VP6 genes shared higher nucleotide and amino acid identities with simian strain SA11 (92.5-93.1% and 98.5-98.7%) than bovine strains (88.5-88.9% and 97-97.2%), and by phylogenetic analysis, exhibited clustering with SA11, distantly related to bovine strains. All these pointed towards a possible reassortment event of VP6 gene between bovine and simian (SA11-like) strains. Therefore, the present study provided molecular evidence for bovine origin of G15 strains and revealed a rare instance of genetic diversity in the bovine VP6 gene, otherwise conserved in group A rotavirus strains from cattle.  相似文献   

12.
Rotavirus genome segment 4, encoding the spike outer capsid VP4 protein, of a porcine rotavirus (PoRV) strain, 134/04-15, identified in Italy was sequenced, and the predicted amino acid (aa) sequence was compared to those of all known VP4 (P) genotypes. The aa sequence of the full-length VP4 protein of the PoRV strain 134/04-15 showed aa identity values ranging from 59.7% (bovine strain KK3, P8[11]) to 86.09% (porcine strain A46, P[13]) with those of the remaining 25 P genotypes. Moreover, aa sequence analysis of the corresponding VP8* trypsin cleavage fragment revealed that the PoRV strain 134/04-15 shared low identity, ranging from 37.52% (bovine strain 993/83, P[17]) to 73.6% (porcine strain MDR-13, P[13]), with those of the remaining 25 P genotypes. Phylogenetic relationships showed that the VP4 of the PoRV strain 134/04-15 shares a common evolutionary origin with porcine P[13] and lapine P[22] rotavirus strains. Additional sequence analyses of the VP7, VP6, and NSP4 genes of the PoRV strain 134/04-15 revealed the highest VP7 aa identity (95.9%) to G5 porcine strains, a porcine-like VP6 within VP6 genogroup I, and a Wa-like (genotype B) NSP4, respectively. Altogether, these results indicate that the PoRV strain 134/04-15 should be considered as prototype of a new VP4 genotype, P[26], and provide further evidence for the vast genetic and antigenic diversity of group A rotaviruses.  相似文献   

13.
In recent years an apparent increase in the frequency of detection of G3P[8] rotaviruses has been observed worldwide. Similarly, in Italy G3P[8] strains have been detected sporadically and in a scattered fashion over 20 years, whereas in 2003 and 2005 G3P[8] rotavirus activity increased markedly. By analysis of the VP7, VP4, VP6, and NSP4 genes of a selection of G3P[8] rotaviruses detected between 1993 and 2005, a remarkable sequence conservation was observed in the VP7, VP4, and VP6 genes. By converse, after 2002 the Italian G3P[8] strains were found to possess unique mutations in significant regions of the NSP4 protein. J. Med. Virol. 81:2089–2095, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Kirkwood  Carl D.  Gentsch  Jon R.  Glass  Roger I. 《Virus genes》1999,19(2):113-122
Two major and one minor genotype of the rotavirus NSP4 gene have been described. The sequences of 29 NSP4 genes from rotavirus isolates obtained in the United States during the 1996–1997 rotavirus season (types P[8]G1, P[8]G9, P[4]G2 and P[6]G9) and 10 strains isolated during previous rotavirus seasons (types P[8]G1 and P[4]G2) were determined. All NSP4 genes from strains with short E types (6 P[4]G2, 4 P[6]G9) belonged to genotype NSP4A, whereas all 19 strains with long E types (16 P[8]G1, 3 P[8]G9) had NSP4 genes of genotype NSP4B. Genetic variation within genotypes was low (2.3% for both NSP4A and NSP4B), confirming that the NSP4 genes are highly conserved. Nonetheless, at least two distinct sub-lineages could be detected within each genotype: strains isolated in the same year, regardless of geographic location, were more closely related or even identical at the deduced amino acid level; strains isolated in different years were more distinct. Thus, geographic distance did not affect genetic distance. Northern hybridization analysis with NSP4A and NSP4B total gene probes failed to detect any unusual combinations of the VP6 and NSP4 genes in 31 additional isolates from the 1996–1997 rotavirus season.  相似文献   

15.
16.
Shi H  Chen J  Li H  Sun D  Wang C  Feng L 《Archives of virology》2012,157(10):1897-1903
The fifth most important G genotype, G9 rotavirus, is recognized as an emerging genotype that is spreading around the world. Sequence analysis was completed of a rare group A rotavirus, strain G9P[23], that was designated rotavirus A pig/China/NMTL/2008/G9P[23] and abbreviated as NMTL. It was isolated from a piglet with diarrhea in China. Nucleotide sequence analysis revealed that the VP7 gene clustered within the G9 lineage VId. The VP4 gene clustered within the rare P[23] genotype. NMTL is the first porcine G9 stain reported in China. Thus, to further characterize the evolutionary diversity of the NMTL strain, all gene segments were used to draw a phylogenetic tree. Based on the new classification system of rotaviruses, the NMTL sequence revealed a G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotype with close similarity to human Wa-like and porcine strains. The results showed that (i) NSP2 and NSP4 genes of NMTL exhibited higher genetic relatedness to human group A rotaviruses than to porcine strains, (ii) the VP2 and VP4 genes clustered with porcine and porcine-like human strains, and (iii) VP1 genes clustered apart from the Wa-like human and porcine clusters. In view of rotavirus evolution, this report provides additional evidence to support the notion that the human and porcine rotavirus genomes might be related.  相似文献   

17.
An unusual strain of human rotavirus G3P[10] (CMH079/05) was detected in a stool sample of a 2‐year‐old child admitted to the hospital with severe diarrhea in Chiang Mai, Thailand. Analysis of the VP7 gene sequence revealed highest identities with unusual human rotavirus G3 strain CMH222 at 98.7% on the nucleotide and 99.6% on the amino acid levels. Phylogenetic analysis of the VP7 sequence confirmed that the CMH079/05 strain formed a cluster with G3 rotavirus reference strains and showed the closest lineage with the CMH222 strain. Analysis of partial VP4 gene of CMH079/05 revealed highest degree of sequence identities with P[10] rotavirus prototype strain 69M at nucleotide and amino acid levels of 92.9% and 94.6%, respectively. Phylogenetic analysis of the VP4 sequence revealed that CMH079/05 and 69M clustered closely together in a monophyletic branch separated from other rotavirus genotypes. To our knowledge, this is a novel G–P combination of G3 and P[10] genotypes. In addition, analyses of VP6, NSP4, and NSP5/6 genes revealed these uncommon genetic characteristics: (i) the VP6 gene differed from the four other known subgroups; (ii) the NSP4 gene was identified as NSP4 genetic group C, an uncommon group in humans; and (iii) the NSP5/6 gene was most closely related with T152, a G12P[9] rotavirus previously isolated in Thailand. The finding of uncommon G3P[10] rotavirus in this pediatric patient provided additional evidence of the genetic diversity of human group A rotaviruses in Chiang Mai, Thailand. J. Med. Virol. 81:176–182, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Summary.  We report the first detection of P[14], G8 rotaviruses isolated in Egypt from the stool of children participating in a 3 year study of rotavirus epidemiology. Two strains, EGY1850 and EGY2295, were characterized by a serotyping enzyme immunoassay (EIA), virus neutralization, and sequence analysis of the genes encoding VP7 and the VP8* portion of the VP4 gene. These two strains shared a high level of homology of their VP7s (87.8% nucleotide [nt], 97.2% amino acid [aa]) and VP4s (89.6% nt, 97.1% aa) and had the highest VP7 identity to serotype G8 (>82% nt, >92% aa) and VP4 identity to genotype P[14] (≥81% nt, >91% aa) strains. Serological results with a VP7 G8-specific and VP4 P[14]-specific neutralizing monoclonal antibodies supported the genetic classification of EGY1850 and EGY2295 as P[14], G8. Genogroup analysis supports earlier findings that human G8 rotaviruses may be genetically related to bovine rotaviruses. These findings demonstrate that our understanding of the geographic distribution of rotavirus strains is incomplete, emphasize the need to monitor rota- virus serotypes, and extend the known distribution of serotype G8 and genotype P[14] strains in Africa. Received Nvember 3, 1998 Accepted February 14, 1999  相似文献   

19.
Rotaviruses are the major etiological agents of diarrhea in children less than 5 years of age. The commonest G types in humans are G1-4 and G9. G12 is a rare human rotavirus (HRV) strain first reported in the Philippines. In this study, 13 G12 strains obtained from a community-based cohort and a hospital-based surveillance system in 2005 were characterized by phylogenetic analysis of partial nucleotide sequences of VP7, VP6, and NSP4 genes. Sequence and phylogenetic analysis of VP7 gene sequences showed that these southern Indian strains had the greatest homology with G12 strains recently reported from eastern India (97-99% identity both at the nucleotide level and deduced amino acid level) and less homology with the prototype G12 strain, L26 (89-90% identity at the nucleotide level and 90-94% at the deduced amino acid level). Phylogenetic analysis of the VP6 and the NSP4 genes revealed that the Vellore G12 strains belonged to VP6 subgroup II and NSP4 genotype B. The P types associated with these strains were P[6] and P[8]. A G12 type-specific primer was designed for inclusion in an established VP7 G-typing multiplex RT PCR, and tested against a panel of known G types and untyped samples and was found to detect G12 strains in the multiplex-PCR. Close homology of the South Indian G12 strains to those from Kolkata suggests that G12 HRV strains are emerging in India. Methods for characterization of rotaviruses in epidemiological studies need to be updated frequently, particularly in developing countries.  相似文献   

20.
During the surveillance of rotavirus strains that were circulating in Argentinean children from 2000 to 2004, seven rotaviruses were detected bearing the genotype combination G9P[8]. The molecular characterization of the VP7 and NSP4 genes and the RNA migration patterns support the hypothesis that rotaviruses G9 could have been reintroduced into Argentina as a novel G9P[8] strain, rather than represent VP7 gene reassortants from G9P[6] strains that had been circulating previously in this country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号