共查询到20条相似文献,搜索用时 15 毫秒
1.
Jintao Yi Xianqin Han Fengying Gao Le Cai Ying Chen Xiulong Deng Xun Li Jun Xue Hui Zhou 《RSC advances》2022,12(32):20544
Early glucose detection is important in both healthy people and diabetic patients. Glucose biosensing based on glucose oxidase (GOX) is a common method. However, native proteins are mostly membrane impermeable and are prone to degradation in complex sample environments. Herein, we report a facile one-step biomineralization method by simply mixing aqueous solutions of hemin and barium nitrate with glucose oxidase (GOX) to form Ba–hemin@GOX composites. Glucose (Glu) is introduced through self-driven sampling to trigger the GOX-catalysed production of hydrogen peroxide, which could help the subsequent 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation reaction catalysed by Ba–hemin to yield the blue-coloured product. The sensor exhibited a detection limit as low as 3.08 μM. The operability and accuracy of the Ba–hemin@GOX biosensor were confirmed by the quantitative determination of glucose in real samples, such as tap water, serum and drinks. Moreover, the Ba–hemin@GOX-based colorimetric biosensor showed good selectivity, storage stability and recoverability. The experimental results reveal that a GOX activity of more than 90% was still maintained even after being incubated at 60 °C for 30 minutes, and Ba–hemin@GOX could be reused for glucose detection at least six times. Even after 30 days of storage, the relative activity was still more than 90%. Overall, the developed Ba–hemin@GOX biosensor provides a valuable and general platform for applications in colorimetric biosensing and medical diagnostics.The Ba–hemin@GOX composite is used for sensitive glucose detection. 相似文献
2.
In this communication, using rice wine residue (RWR) as the support, an edible γ-cyclodextrin-metal–organic framework/RWR (γ-CD-MOF/RWR) composite with a macroscopic morphology was synthesized. The obtained edible composite is promising for applications in drug delivery, adsorption, food processing, and others.An edible metal–organic framework/rice wine residue composite was made with large surface area for potential applications in drug delivery, adsorption, food processing, and others.As a typical class of porous materials, metal–organic frameworks (MOFs) have attracted increasing attention since being first proposed by Yaghi and co-workers.1 Over the past two decades, owing to their large surface area, ultrahigh porosity and tunable pore size,2 MOFs have exhibited great prospects for gas storage and separation,3,4 catalysis,5–8 sensors,9 drug delivery,10–12etc. Among numerous reported MOFs, γ-cyclodextrin-MOF (γ-CD-MOF), which is connected by the (γ-CD)6 units of alkaline earth metal ions, was initially synthesized and reported by Stoddart et al.13,14 in the 2010s. Owing to the –OCCO– groups derived from γ-CD, this kind of MOF is edible and therefore opens a new path for preparing green, biocompatible and edible MOF materials.13,15,16 For example, Stoddart et al.11 reported a co-crystallization approach to trap ibuprofen and lansoprazole inside γ-CD-MOF, and the resultant composite microspheres can be used for sustained drug delivery. Zhang et al.17 proposed a strategy to graft cholesterol over the surface of γ-CD-MOF to form a protective hydrophobic layer to improve its water stability. Many researchers succeeded in preparing oral delivery medicine with high drug loading and an enhanced therapeutic effect by combining the drug molecules with γ-CD-MOF.16,18–20 These works present the excellent application prospects of γ-CD-MOF in the medical field.Since MOFs possess so many attractive advantages, extensive studies have focused on combining MOFs with many other functional materials (metal nanoparticles, quantum dots, carbon matrices and polyoxometalates, etc.) by means of the synergistic effect, leading to the formation of novel composites designed for targeted applications.21–28 However, these reported composites were still presented as loose powders, which may not be convenient for the applications. Therefore, the question of how to prepare MOFs-based composites for larger particles at low cost is of great significance. On the other hand, as a traditional alcoholic beverage, rice wine has been popular in southern China and some other Asian nations for thousands of years.29 The rice wine lees or rice wine residue (RWR) is a by-product of the fermentation process of rice wine. It is a mixture of proteins, amino acids and polysaccharides. It is traditionally a health food in some Asian nations.30 The edibility, extensive source, low cost and specific macroscopic shape make RWR a potential functional material for further use of MOFs.Herein, a facile and environmental-friendly strategy has been developed to realize the growth of γ-CD-MOF on rice wine residue, resulting in the formation of an edible MOF/RWR composite in the shape of rice grains. The material characterization confirmed the obtained composite possesses the characteristics of MOF. Except for the edible γ-CD-MOF/RWR, other MOF/RWR composites (HKUST-1, ZIF-67 and MIL-100(Fe)/RWR composites; shown in Fig. S1†) were prepared to demonstrate the universality of this synthesis strategy.The synthesis procedure of the γ-CD-MOF/RWR composite is schematically illustrated in Fig. 1. The rice wine residue was soaked in deionized water for 12 h and then washed with deionized water three times before vacuum freeze-drying. Similar to the synthesis of γ-CD-MOF powder,15 KOH was dissolved into water. Then certain amounts of the aforementioned dry rice wine residue were soaked into the K+-containing solution for 2 h in order to absorb the sufficient potassium ions. K+ was then linked by the coordination of –OCCO– units in γ-CD and RWR with the three-dimensional interconnected network. After vapor diffusion of MeOH and some other procedures described in the synthesis of γ-CD-MOF powder (seen in ESI), the γ-CD-MOF/RWR composite (Fig. 2) was obtained. This method is convenient as no extra binders are needed during the whole process. The same procedure was employed to prepare the RWR composites with other MOFs (HKUST-1, ZIF-67 and MIL-100(Fe)). And the syntheses are briefly described in the ESI. The images of the obtained composites are shown in Fig. S1.†Open in a separate windowFig. 1Schematic illustration of the synthesis procedure of γ-CD-MOF/RWR composite.Open in a separate windowFig. 2Digital photo of the γ-CD-MOF/RWR composite.The rice wine residue, of which the elemental analysis is shown in Table S1,† is mainly composed of polysaccharides and proteins. Thus, a broad peak at around 22.2° in the XRD patterns of rice wine residue can be observed (Fig. S2†), which is due to its poor crystallinity.31 The XRD patterns of γ-CD-MOF and γ-CD-MOF/RWR composite samples are shown in Fig. 3a. The characteristic peaks at 5.6°, 6.9°, 13.3°, 16.6°, 20.6° and 23.2°, observed from the XRD patterns of γ-CD-MOF, agree with the previously reported works.32,33 Meanwhile, compared with γ-CD-MOF, the γ-CD-MOF/RWR composite shows similar characteristic peaks with lower intensity, indicating a lower crystallinity of the MOF within the composite. Fig. 3b shows the FT-IR spectra of different samples. Compared with the rice wine residue, the peaks in regions 1 and 2 of γ-CD-MOF and γ-CD-MOF/RWR can be ascribed to the stretching vibration of –CH2 and –C–O–C– of the MOF, respectively.15,34 These results further confirm the formation of the γ-CD-MOF in the γ-CD-MOF/RWR composite.Open in a separate windowFig. 3XRD patterns (a) and FT-IR spectra (b) of γ-CD-MOF/RWR composite, γ-CD-MOF and RWR.The SEM images were collected to further investigate the micromorphology of the as-prepared samples. As shown in Fig. 4a, a three-dimensional layered network structure and rich macropores of the rice wine residue rough surface can be seen. γ-CD-MOF (Fig. 4b) exhibits a uniform body-centered cubic shape with an average size of 4.27 μm, which is in accordance with the reported works.15,35,36 Meanwhile, the images of the γ-CD-MOF/RWR composite (Fig. 4c and d) show that the cubic γ-CD-MOF crystals are well dispersed on the surface of the rice wine residue and even partially integrated into the framework of the rice wine residue. Compared with the pristine γ-CD-MOF, some γ-CD-MOF in γ-CD-MOF/RWR is not an intact cubic structure, exhibiting a significantly different morphology. This suggests a synergistic effect between the MOF crystals and the rice wine residue during the growth of MOF crystals, rather than a simple physical mixture of the two materials. The thermal stability of the γ-CD-MOF/RWR composite was investigated via TGA analysis. As shown in Fig. S3,† the decomposition temperature of γ-CD-MOF/RWR composite slightly increased compared with those of pristine γ-CD-MOF and rice wine residue. Moreover, the γ-CD-MOF/RWR composite was stable in water, methanol and ethanol (shown in Fig. S4†) even under mild stirring. These results indicate an improved physiochemical stability of γ-CD-MOF after the incorporation of rice wine residue. This finding further confirms the synergistic effect between them.Open in a separate windowFig. 4SEM images of rice wine residue (a), γ-CD-MOF (b) and γ-CD-MOF/RWR composite (c and d). Fig. 5a shows the nitrogen sorption isotherms of the γ-CD-MOF and γ-CD-MOF/RWR composite. Both pristine γ-CD-MOF and γ-CD-MOF/RWR exhibit typical type-I isotherms, demonstrating their microporous structures. The pore size distributions of pure γ-CD-MOF and γ-CD-MOF/RWR (Fig. 5b) confirm the existence of micropores (between 1 and 2 nm). The calculated Brunauer–Emmett–Teller (BET) surface areas, micropore volume and total pore volume are listed in 35,37 The specific surface area of the γ-CD-MOF/RWR composite is 651 m2 g−1, which is significantly higher than that of the pure rice wine residue (10.8 m2 g−1). Thus, the increase in the specific surface area of γ-CD-MOF/RWR composite can be attributed to the growth of γ-CD-MOF on the RWR support. Therefore, γ-CD-MOF/RWR composite inherits both the high porosity of γ-CD-MOF and the macroscopic morphology of rice wine residue, which should contribute to its practical applications.Open in a separate windowFig. 5N2 adsorption and desorption isotherms (a) and pore size distributions (b) of γ-CD-MOF/RWR composite and corresponding comparative samples.Summary of the BET areas (SBET), micropore volume (Vmicro) and total pore volume (Vtot) of γ-CD-MOF, γ-CD-MOF/RWR composite and pure rice wine residue
Open in a separate windowTo further investigate the universality of this synthesis strategy, different MOFs (i.e., HKUST-1, ZIF-67 and MIL-100(Fe)) and their corresponding composites were prepared and investigated. Digital photos of different samples (Fig. S1†) show that all composites maintain the original shape of rice wine residue. Meanwhile, the colours of composites vary with different MOFs. Moreover, the XRD results in Fig. S5–S7† confirm the growth of various MOFs on rice wine residue. Therefore, these results demonstrate that this synthesis strategy is universally applicable. Moreover, compared to other MOF-based composites, it should be noted that the composites synthesized via this strategy exhibit a macroscopic shape rather than being a loosely packed fine powder. Considering the industrial demand for enhanced mass transfer with low pressure drop, the MOF/RWR composites are promising for industrial applications.In conclusion, a facile and environmental-friendly method has been developed to prepare a γ-CD-MOF/RWR composite without extra binders. The edibility of γ-CD-MOF and rice wine residue has been well demonstrated in the literature,16,38–42 demonstrating that the γ-CD-MOF/RWR composite is also edible. The growth of γ-CD-MOF on rice wine residue is based on the synergetic effect between the two components, rather than a simple physical mixture of two materials. Due to the large pore size and high BET specific surface area, the edible γ-CD-MOF/RWR composite in the shape of rice will be more convenient for applications including drug delivery, food processing, adsorption, gas separation, catalysis and others. The MOF/RWR composites can be also an excellent precursor for carbon-based material or catalysts.30 The synthetic method developed here might give inspiration for designing and preparing MOF-based composites in the shape of rice with the utilization of RWR. 相似文献
Samples | S BET (m2 g−1) | V micro (cm3 g−1) | V tot (cm3 g−1) |
---|---|---|---|
γ-CD-MOF | 1096 | 0.39 | 0.51 |
γ-CD-MOF/RWR composite | 651 | 0.22 | 0.28 |
RWR | 10.8 | 0.024 | 0.038 |
3.
Priscilla Rocío-Bautista Vernica Pino Juan H. Ayala Catalina Ruiz-Prez Oriol Vallcorba Ana M. Afonso Jorge Pasn 《RSC advances》2018,8(55):31304
The CIM-80 material (aluminum(iii)-mesaconate) has been synthetized in high yield through a novel green procedure involving water and urea as co-reactants. The CIM-80 material exhibits good thermal stability with a working range from RT to 350 °C with a small contraction upon desolvation. Moreover, this material is stable in water at different pH values (1–10) for at least one week, and shows a LC50 value higher than 2 mg mL−1. The new material has been tested in a microextraction methodology for the monitoring of up to 22 water pollutants while presenting little environmental impact: only 20 mg of CIM-80 and 500 μL of acetonitrile are needed per analysis. The analytical performance of the CIM-80 in the microextraction strategy is similar to or even better for several pollutants than that of MIL-53(Al). The average extraction efficiencies range from ∼20% for heavy polycyclic aromatic hydrocarbons to ∼70–100% for the lighter ones. In the case of the emerging contaminants, the average extraction efficiency can reach values up to 70% for triclosan and carbamazepine.A low cytotoxic MOF prepared with an environmental-friendly approach, as a novel extractant of water pollutants using a microextraction method. 相似文献
4.
Metal–organic gelation represents a promising approach to fabricate functional nanomaterials. Herein a series of Zr-carboxylate gels are synthesized from rigid pyrene, porphyrin and tetraphenyl ethylene-derived tetracarboxylate linkers, namely Zr-TBAPy (H4TBAPy = 1,3,6,8-tetrakis(4-carboxylphenyl)pyrene), Zr-TCPE (H4TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), and Zr-TCPP (H4TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin). The gels are aggregated from metal–organic framework (MOF) nanoparticles. Zr-TBAPy gel consists of NU-901 nanoparticles, and Zr-TCPP gel consists of PCN-224 nanoparticles. The xerogels show high surface areas up to 1203 m2 g−1. MOF gel films are also anchored on the butterfly wing template to yield Zr-MOF/B composites. Zr-TBAPy and Zr-TCPE gels are luminescent for solution-phase sensing and vapour-phase sensing of volatile organic compounds, and exhibit a significant luminescence quenching effect for electron-deficient analytes. Arising from the high porosity and good dispersion of luminescent MOF gels, rapid and effective vapour-sensing of nitrobenzene and 2-nitrotoluene within 30 s has been achieved via Zr-TBAPy film or Zr-TBAPy/B.Zr-based MOF nanomaterials are developed via a metal–organic gelation method for rapid and effective luminescence vapour-sensing. 相似文献
5.
Derivatives based on metal frameworks (MOFs) are attracting more and more attention in various research fields. MOF-based derivatives x% MnOx–ZnO are easily synthesized by the thermal decomposition of Mn/MOF-5 precursors. Multiple technological characterizations have been conducted to ascertain the strengthening interaction between Mn species (Mn2+ or Mn3+) and Zn2+ (e.g., XRD, FTIR, TG, XPS, SEM, H2-TPR and Py-FTIR). The 5% MnOx–ZnO exhibits the highest NO conversion of 75.5% under C3H6-SCR. In situ FTIR and NO-TPD analysis showed that monodentate nitrates, bidentate nitrates, bridged bidentate nitrates, nitrosyl groups and CxHyOz species were formed on the surface, and further hydrocarbonates or carbonates were formed as intermediates, directly generating N2, CO2 and H2O.Derivatives based on metal frameworks (MOFs) are attracting more and more attention in various research fields. 相似文献
6.
Rajendran Ramachandran Wenlu Xuan Changhui Zhao Xiaohui Leng Dazhi Sun Dan Luo Fei Wang 《RSC advances》2018,8(7):3462
Cerium metal–organic framework based composites (Ce-MOF/GO and Ce-MOF/CNT) were synthesized by a wet chemical route and characterized with different techniques to characterize their crystal nature, morphology, functional groups, and porosity. The obtained Ce-MOF in the composites exhibit a nanorod structure with a size of ∼150 nm. The electrochemical performance of the composites was investigated in 3 M KOH and 3 M KOH + 0.2 M K3Fe(CN)6 electrolytes. Enhanced electrochemical behavior was obtained for the Ce-MOF/GO composite in both electrolytes and exhibited a maximum specific capacitance of 2221.2 F g−1 with an energy density of 111.05 W h kg−1 at a current density of 1 A g−1. The large mesoporous structure and the presence of oxygen functional groups in Ce-MOF/GO could facilitate ion transport in the electrode/electrolyte interface, and the results suggested that the Ce-MOF/GO composite could be used as a high-performance supercapacitor electrode material.The presence of oxygen functional groups in GO enhances the charge storage behavior of Ce-MOF/GO composites for use as supercapacitor electrode materials. 相似文献
7.
Jinyun Peng Liying Wei Yuxia Liu Wenfeng Zhuge Qing Huang Wei Huang Gang Xiang Cuizhong Zhang 《RSC advances》2020,10(60):36828
Vanillin is widely used as a flavor enhancer and is known to have numerous other interesting properties, including antidepressant, anticancer, anti-inflammatory, and antioxidant effects. However, as excess vanillin consumption can affect liver and kidney function, simple and rapid detection methods for vanillin are required. Herein, a novel electrochemical sensor for the sensitive determination of vanillin was fabricated using an iron phthalocyanine (FePc)-based metal–organic framework (MOF). Scanning electron microscopy and transmission electron microscopy showed that the FePc MOF has a hollow porous structure and a large surface area, which impart this material with high adsorption performance. A glassy carbon electrode modified with the FePc MOF exhibited good electrocatalytic performance for the detection of vanillin. In particular, this vanillin sensor had a wide linear range of 0.22–29.14 μM with a low detection limit of 0.05 μM (S/N = 3). Moreover, the proposed sensor was successfully applied to the determination of vanillin in real samples such as vanillin tablets and human serum.A novel electrochemical sensor based on an iron phthalocyanine (FePc) MOF for the sensitive detection of vanillin. 相似文献
8.
Recently, much effort has been dedicated to ultra-thin two-dimensional metal–organic framework (2D MOF) nanosheets due to their outstanding properties, such as ultra-thin morphology, large specific surface area, abundant modifiable active sites, etc. However, the preparation of high-quality 2D MOF nanosheets in good yields still remains a huge challenge. Herein, we report 2D cadmium-based metal–organic framework (Cd-MOF) nanosheets prepared in a one-pot polyvinylpyrrolidone (PVP)-assisted synthesis method with high yield. The Cd-MOF nanosheets were characterized with good stability and dispersion in aqueous systems, and were highly selective and sensitive to the antibiotic metronidazole (MNZ) with low limit of detection (LOD: 0.10 μM), thus providing a new and promising fluorescent sensor for rapid detection of MNZ in aqueous solution.Except PVP was added for Cd-MOF nanosheets, the preparation process of bulk and Cd-MOF nanosheets was similar. 相似文献
9.
Two bifunctional CdS–MOF composites have been designed and fabricated. The hybrids exhibited synergistic photocatalytic performance toward two cascade reactions under visible light integrating photooxidation activity of CdS and Lewis acids/bases of the MOF. The composite further promoted the photodegradation of dyes benefiting from effective electron transfer between the MOF and CdS.Two bifunctional CdS–MOF composites have been successfully fabricated and exhibited synergistic photocatalytic performance toward two-step cascade reactions and dye photodegradation.Cascade reactions are usually required for the synthesis of pharmaceuticals, pesticides and various fine chemicals,1 especially for heterocyclic compounds.1b Typically, benzylidene malononitrile, an essential intermediate for pharmaceutical production,1f is normally prepared through a two-step reaction involving first oxidation of benzyl alcohol and then a Knoevenagel condensation of benzaldehyde with malononitrile.2d Generally, the first step is mainly concentrated on the precious metal catalysts, and usually requires organic solvent, high temperatures, or high O2 pressures, which largely limits its large-scale application.2 The second Knoevenagel reaction is traditionally catalyzed by weak bases under homogeneous conditions, which is not favourable for recovery and recycling of catalysts.2c Therefore, it is of great importance to develop a low-cost, stable and environmentally-friendly multifunctional catalyst.Solar energy, as an abundant natural resource, has attracted significant interest in photocatalytic water splitting, CO2 or organic substrate transformations.3,4 However, given that natural solar radiation is scattered, intermittent and constantly fluctuating, increasing the conversion rate of solar energy into chemical energy through photosensitive materials remains to be a great challenge.5 Significantly, a typical semiconductor material, CdS, displays excellent photocatalytic performance for many chemical reactions under light irradiation, such as photooxidation due to its a narrow band gap energy (2.4 eV) and efficient visible light absorption.6 However, the fact that a rapid recombination of photoelectrons and holes in CdS, and easy agglomeration of CdS nanoparticles (NPs) greatly impedes its practical application.6d,7 Therefore, stable and effective supports should be required to stabilize pure CdS NPs.Metal organic frameworks (MOFs),8 featuring ordered porosities and large surface areas, have been widely used to stabilize various guest molecules, including metal nanoparticles, semiconductors and quantum dots.7,8d,9 Recently, MOF-based composites have attracted intensive attention in photocatalysis field.5a,9f,10 Unfortunately, most MOFs exhibit a wide bandgap and only absorb ultraviolet light region.7,11 In addition, pure MOFs generally have a single active site, largely limiting catalytic reaction types.9d Therefore, photoactive CdS combined with the advantages of MOFs can help construct a synergistic hybrid material.7Bearing above idea in mind, we have successfully fabricated a bifunctional CdS/NH2-MIL-125 photocatalyst based on photosensitive CdS and active NH2-MIL-125 (Scheme 1). The cooperative effect greatly improved photocatalytic performance of the composite toward the cascade reaction of selective oxidation of benzyl alcohol to benzaldehyde tandemly with a condensation of benzaldehyde with malononitrile. The superior catalytic activity mainly benefits from excellent photooxidation activity of CdS while the outer NH2-MIL-125 plays multiple roles; it acts as a Lewis base site, accelerates the reaction by O2 enrichment in air atmosphere, and stabilizes the CdS cores. Furthermore, effective electron transfer between MOF and CdS endows the hybrid outstanding photo-degradation performance toward organic pollutants.Open in a separate windowScheme 1Schematic illustration for the preparation of CdS/MOF hybrid.The crystallographic structure of CdS/NH2-MIL-125 7c,d is analyzed and confirmed using powder X-ray diffraction (PXRD). As shown in Fig. 1a, the as-synthesized NH2-MIL-125 has identical diffraction patterns as the simulated NH2-MIL-125, which indicates the successful synthesis of MOF. For the diffraction patterns of CdS/NH2-MIL-125, except for the typical diffraction peaks of MOF, two additional peaks appear at 2-theta values of 26.5° and 43.9° are assignable to CdS. And the peak intensities are enhanced along with increased CdS loadings. N2 sorption experiments reveal that the Brunauer–Emmett–Teller (BET) surface areas of NH2-MIL-125 and 15 wt% CdS/NH2-MIL-125 are 956 and 613 m2 g−1, respectively (Fig. 1b). The decreased surface areas indicate that CdS NPs may be successfully loaded on the MOF, and are well stabilized by the pores. The morphology of 15 wt% CdS/NH2-MIL-125 is investigated by scanning electron microscopy (SEM). Fig. 1c shows the retained octahedral morphology of MOF with an average diameter of 200–300 nm. In addition, the transmission electron microscopy (TEM) image shows uniform dispersion of CdS particles (average size, 3.7 nm) throughout MOF (Fig. 1d), further demonstrating their successful assembly. The actual contents of CdS in CdS/NH2-MIL-125 samples have been confirmed by inductively coupled plasma atomic emission spectrometry (ICP-AES). The percentages by weight of CdS are very close to the nominal values (Table S1, ESI†).Open in a separate windowFig. 1(a) PXRD patterns of simulated NH2-MIL-125, as-synthesized NH2-MIL-125, and CdS/NH2-MIL-125. (b) N2 sorption isotherms of NH2-MIL-125 and 15 wt% CdS/NH2-MIL-125 at 77 K. (c) SEM and (d) TEM images of 15 wt% CdS/NH2-MIL-125 and (inset in d) the corresponding size distribution of CdS NPs.The cascade reaction between benzyl alcohol and malononitrile to produce benzylidene malononitrile under visible light irradiation has been investigated by CdS/NH2-MIL-125. The reaction involves two steps including the first photocatalytic oxidation of benzyl alcohol to form benzaldehyde, and the second Knoevenagel reaction of benzaldehyde and malononitrile. As shown in †). These results highlight the important roles of each component in CdS/NH2-MIL-125 and their excellent synergistic effects toward cascade reaction.Cascade reactions of benzyl alcohol oxidation followed by Knoevenagel condensationa
Open in a separate windowaReaction conditions: 0.5 mmol benzyl alcohol, 1.5 mmol malononitrile, 100 mg catalysts, 5 mL solvent, 80 °C, visible light (λ ≥ 420 nm).b15 mg CdS + 85 mg NH2-MIL-125.cNo products or negligible products.dWithout visible light irradiation.eRT.f50 °C.Inspired by the excellent catalytic performance of CdS/NH2-MIL-125, another bifunctional CdS@MIL-101 catalyst based on the photocatalytic activity of CdS and Lewis acidity of MIL-101 is prepared (Fig. S1, ESI†). The retained crystallinity of MIL-101 upon loading CdS has been verified by PXRD patterns. The peak intensities of the CdS also increased with its higher loadings (Fig. S2, ESI†). The BET surface areas of as-synthesized MIL-101 and 15 wt% CdS@MIL-101 are 2900 and 2320 m2 g−1, respectively, implying that MIL-101 cavities are possibly occupied by CdS NPs (Fig. S3, ESI†). The SEM image of CdS@MIL-101 shows the retained octahedral morphology of MIL-101 with an average diameter of 500–600 nm (Fig. S4, ESI†). The TEM image confirms uniform dispersion of CdS NPs (average size, 2.6 nm) throughout MOF, further demonstrating MOF cavities are successfully occupied by tiny CdS NPs (Fig. S5, ESI†). The cascade reaction involved photocatalytic oxidation of benzyl alcohol to benzaldehyde, and then aldimine condensation of benzaldehyde and aniline to give N-benzylideneaniline1d,g has been investigated by CdS@MIL-101. As expected, the hybrid material displays the best catalytic activity compared with those of CdS and MIL-101 alone (†). The actual contents of CdS in CdS@MIL-101 are also analyzed by ICP-AES (Table S1, ESI†). Among these composites, the catalytic performance of 7.5 wt% CdS@MIL-101 is the best, which may be due to easier aggregation of CdS particles as increased loading and induced active sites in lower CdS contents ( Entry Catalyst t (h) Conv. (%) Select. (%) –CHO Product 1 CdS 2 30 100 2 30 wt% CdS@MIL-101 2 62 100 4 100 100 3 15 wt% CdS@MIL-101 2 56 100 4 61 100 4 7.5 wt% CdS@MIL-101 2 90 100 2.5 100 100 5 3.75 wt% CdS@MIL-101 2 41 100 6 MIL-101 2 0 7b 7.5 wt% CdS@MIL-101 2 <10% 8c 7.5 wt% CdS@MIL-101 2 <10% 9d 7.5 wt% CdS@MIL-101 2 0 10 15 wt% CdS/NH2-MIL-125 2 <10% 100
Entry | Catalyst | Time/h | Solvent | Conv. of 1 | Select. of 2 |
---|---|---|---|---|---|
1 | 15 wt% CdS/NH2-MIL-125 | 24 | CH3CN | 97% | 93% |
2 | 30 wt% CdS/NH2-MIL-125 | 24 | CH3CN | 86% | 89% |
3 | 7.5 wt% CdS/NH2-MIL-125 | 24 | CH3CN | 74% | 91% |
4b | CdS + NH2-MIL-125 | 24 | CH3CN | 20% | 100% |
5 | NH2-MIL-125 | 24 | CH3CN | —c | — |
6 | CdS | 24 | CH3CN | 96% | 5% |
7d | 15 wt% CdS/NH2-MIL-125 | 24 | CH3CN | — | — |
8 | No catalyst | 24 | CH3CN | — | — |
9 | 15 wt% CdS/NH2-MIL-125 | 6 | CH3CN | 69% | 72% |
10 | 15 wt% CdS/NH2-MIL-125 | 16 | CH3CN | 94% | 80% |
11 | 15 wt% CdS/NH2-MIL-125 | 20 | CH3CN | 96% | 85% |
12 | 15 wt% CdS/NH2-MIL-125 | 24 | DMF | — | — |
13 | 15 wt% CdS/NH2-MIL-125 | 24 | MeOH | 10% | 100% |
14e | 15 wt% CdS/NH2-MIL-125 | 24 | CH3CN | — | — |
15f | 15 wt% CdS/NH2-MIL-125 | 24 | CH3CN | 95% | 73% |
16 | 7.5 wt% CdS@MIL-101 | 24 | CH3CN | 90% | — |