首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Triosephosphate isomerase (TPI) deficiency is an autosomal recessive disorder of glycolysis characterized by multisystem disease and lethality in early childhood. Among seven unrelated Northern European kindreds with clinical TPI deficiency studied, a single missense mutation at codon 104 (GAG;Glu→GAC;Asp) predominated, accounting for 11/14 (79%) mutant alleles. In three families molecular analysis revealed compound heterozygosity for Glu104Asp and novel missense mutations. In two cases the second mutation was a Cys to Tyr substitution at codon 41(TGT→TAT) and in one an Ile to Val substitution at codon 170(ATT→GTT). The origin of the Glu104Asp mutation was defined by haplotype analysis using a novel G/A polymorphism at nucleotide 2898 of the TPI gene. Cosegregation of the low frequency 2898A allele with the G→C base change at nucleotide 315 supports a single origin for the Glu104Asp mutation in a common ancestor. Hum Mutat 10:290–294, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Most adults affected with HFE hereditary hemochromatosis (HH type 1, MIMmusical sharp 235200) are homozygous for the p.Cys282Tyr mutation in HFE (NC_000006.10, region 26195427 to 26205038). The aim of this study was to investigate the molecular basis of iron overload in a patient presenting with severe clinical HH with one c.845G>A (p.Cys282Tyr) allele only. Molecular and pedigree studies demonstrated the presence of the c.845G>A (p.Cys282Tyr) mutation in one allele whereas the other carried the c.187C>G (p.His63Asp) mutation plus a new c.128G>A (p.Gly43Asp) substitution in cis. A molecular modeling study of the p.[Gly43Asp;His63Asp] and p.His63Asp variants versus the wild type was carried out using molecular dynamics (MD) simulation in presence of implicit solvent. We found that the c.187C>G (p.His63Asp) mutation does not introduce any major change in the 1- domains of HFE whereas the c.128G>A (p.Gly43Asp) substitution is responsible for a modification of the dynamics and the structure of the Gln40-Ser45 loop, a critical region for HFE-TfR1 interaction thus impairing HFE-TfR1 normal contact. We conclude that the occurrence of complex alleles may be an alternative explanation for the variability of the phenotype in individuals who are compound heterozygous for c.[187C>G]+[845G>A] (p.[His63Asp]+[Cys282Tyr]).  相似文献   

3.
Genotype–phenotype correlations in cystic fibrosis (CF) may be difficult to establish because of phenotype variability, which is associated with certain CF transmembrane conductance regulator (CFTR) gene mutations and the existence of complex alleles. To elucidate the clinical significance of complex alleles involving p.Gly149Arg, p.Asp443Tyr, p.Gly576Ala, and p.Arg668Cys, we performed a collaborative genotype–phenotype correlation study, collected epidemiological data, and investigated structure–function relationships for single and natural complex mutants, p.[Gly576Ala;Arg668Cys], p.[Gly149Arg;Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys]. Among 153 patients carrying at least one of these mutations, only three had classical CF and all carried p.Gly149Arg in the triple mutant. Sixty‐four had isolated infertility and seven were healthy individuals with a severe mutation in trans, but none had p.Gly149Arg. Functional studies performed on all single and natural complex mutants showed that (1) p.Gly149Arg results in a severe misprocessing defect; (2) p.Asp443Tyr moderately alters CFTR maturation; and (3) p.Gly576Ala, a known splicing mutant, and p.Arg668Cys mildly alter CFTR chloride conductance. Overall, the results consistently show the contribution of p.Gly149Arg to the CF phenotype, and suggest that p.[Arg668Cys], p.[Gly576Ala;Arg668Cys], and p.[Asp443Tyr;Gly576Ala;Arg668Cys] are associated with CFTR‐related disorders. The present study emphasizes the importance of comprehensive genotype–phenotype and functional studies in elucidating the impact of mutations on clinical phenotype. Hum Mutat 33:1557–1565, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
MUTYH-associated polyposis (MAP) is an autosomal recessive adenomatous polyposis caused by biallelic germline mutations of the base-excision-repair gene MUTYH. In MAP patients of European origin, the combined allele frequency of the mutations p.Tyr179Cys and p.Gly396Asp ranges between 50 and 82%, while these mutations have not been identified in Far Eastern Asian populations, supporting the hypothesis that a founder effect has occurred at some point in European history. To investigate the natural history of the two common European MUTYH alleles, we genotyped six gene-flanking microsatellite markers in 80 unrelated Italian and German MAP patients segregating one or both mutations and calculated their age in generations (g) by using DMLE+2.2 software. Three distinct common haplotypes, one for p.Tyr179Cys and two for p.Gly396Asp, were identified. Estimated mutation ages were 305 g (95% CS: 271–418) for p.Tyr179Cys and 350 g (95% CS: 313–435) for p.Gly396Asp. These results provide evidence for strong founder effects and suggest that the p.Tyr179Cys and p.Gly396Asp mutations derive from ancestors who lived between 5–8 thousand years and 6–9 thousand years B.C., respectively.  相似文献   

6.
Pharmacological rescue of mutant cystic fibrosis transmembrane conductance regulator (CFTR) in cystic fibrosis (CF) depends on the specific defect caused by different mutation classes. We asked whether a patient with the rare p.Gly970Asp (c.2909G>A) mutation could benefit from CFTR pharmacotherapy since a similar missense mutant p.Gly970Arg (c.2908G>C) was previously found to be sensitive to potentiators in vitro but not in vivo. By complementary DNA transfection, we found that both mutations are associated with defective CFTR function amenable to pharmacological treatment. However, analysis of messenger RNA (mRNA) from patient's cells revealed that c.2908G>C impairs RNA splicing whereas c.2909G>A does not perturb splicing and leads to the expected p.Gly970Asp mutation. In agreement with these results, nasal epithelial cells from the p.Gly970Asp patient showed significant improvement of CFTR function upon pharmacological treatment. Our results underline the importance of controlling the effect of CF mutation at the mRNA level to determine if the pharmacotherapy of CFTR basic defect is appropriate.  相似文献   

7.
The Trichoderma reesei gene, rho3, encoding the functional homologue of the Saccharomyces cerevisiae small GTP-binding protein Rho3p was cloned as a suppressor of the secretion-deficient mutation sec15-1 in yeast. The encoded protein showed 61% amino acid identity to the Rho3 protein. Rescue of the growth defect of a RHO3 disruption strain by an expression vector carrying rho3 cDNA confirmed the functional homology with the S. cerevisiae RHO3 gene. In addition, overproduction of T. reesei RHOIII in this yeast strain appeared to improve the actin organization and chitin localization of the cells. Three putative mutant (rho3Gly20Val alleles of the T. reesei rho3 gene rho3 Thr25Asn, rho3Asp12Ala) were introduced into the wild-type yeast, in yeast with sec15 mutation and in yeast with Rho3p depletion. Cells expressing rho3Gly20Val displayed wild-type growth and those expressing rho3 Thr25Asn and rho3Asp126Ala had a loss-of-function phenotype.  相似文献   

8.
Factors underlying genetic predisposition for development of sporadic colorectal cancer are largely unknown. The fact that this cancer is more common in patients suffering from inflammatory bowel disease raises the question of the relationship between chronic inflammation and cancer. Toll-like receptors 2 (TLR2) and 4 (TLR4) are critical in initiating innate immune response and inflammation toward various bacteria commonly found in the intestine. Recent evidence about the association of polymorphisms in these genes with ulcerative colitis and Crohn's disease, as well as other inflammatory conditions, was the basis for our investigation of their role in sporadic colorectal cancer. We assessed genotype and allele frequencies of TLR2 GT microsatelite polymorphism, TLR2 Arg753Gln, TLR4 Asp299Gly and TLR4 Thr399Ile polymorphisms in 89 colorectal cancer patients and 88 age- and sex-matched controls. The frequency of TLR2 GT microsatelite alleles with 20 and 21 GT repeats was decreased (p = 0.0044 and p = 0.001, respectively), while the frequency of the allele with 31 GT repeats was increased (p = 0.0147) in patients. The mutant allele Asp299Gly of TLR4 gene was slightly more frequent in colorectal cancer patients (p = 0.0269). In conclusion, we report an association of microsatelite GT polymorphisms of TLR2 gene and Asp299Gly polymorphism of the TLR4 gene with sporadic colorectal cancer among Croatians.  相似文献   

9.
Metachromatic leukodystrophy is a lysosomal storage disorder caused by the deficiency of arylsulfatase A. Sequencing of the arylsulfatase A genes of a patient affected with late infantile metachromatic leukodystrophy revealed that the patient is a compound heterozygote of two alleles carrying two deleterious mutation each. One allele bears a splice donor site mutation together with two polymorphisms and an additional missense mutation (Gly 122>Ser). The splice donor site mutation and the Gly 122>Ser substitution have been described recently but on different alleles. The other allele carries two missense mutations causing a Gly 154>Asp and a Pro 167>Arg substitution. When arylsulfatase A cDNAs carrying these mutations separately or in combination were transfected into baby hamster kidney cells expression of arylsulfatase A activity could not be detected. Linkage of mutations was verified by sequencing of the parental DNAs. Biosynthesis studies performed with the patients' fibroblasts show that the enzyme carrying both mutations is synthesized in almost normal amounts but is rapidly degraded in an early biosynthetic compartment. The occurence of two disease causing mutations on the same allele is a novel phenomenon in metachromatic leukodystrophy and as far as lysosomal storage diseases are concerned have so far only been described in Fabry disease and in the complex glucocerebrosidase alleles associated with Gaucher disease. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Fibroblast growth factor receptor 1 (FGFR1) is an idiopathic hypogonadotropic hypogonadism (IHH)-associated gene, mutated in approximately 10% of the patients with this condition. Through targeted gene sequencing of 153 males with IHH and 100 healthy controls, we identified 10 mutations in FGFR1 from IHH patients with a frequency of 5.9% in the Chinese population of central China. These included nine missense mutations(NM_023110.2, p.Gly687Arg, p.Ala608Asp, p.Gly348Glu, p.Asn296Ser, p.Gly226Asp, p.Arg209Cys, p.Gly97Arg, p.Val71Met, p.Gly70Arg) and a splicing mutation c.1430 + 1G > T. in vitro and in silico analyses of FGFR1 variants were conducted to study the impact of the identified mutations. Our findings indicated that the splicing mutation dramatically affected premRNA processing, causing exon 10 and 6 nucleotides in the 3′ end of exon 9 to be completely skipped. Two variants (p.Gly687Arg and p.Ala608Asp) markedly impaired tyrosine kinase activity, while the other variants had limited impact on the mitogen-activated protein kinase (MAPK) signaling pathway. However, the functional impairment of the mutant receptors was not always consistent with the phenotypes, indicating that FGFR1 mutations might cause IHH in conjunction with other mutant genes. In this study, we expanded the knowledge on the mutation spectrum of FGFR1 in IHH patients and explored the genotype-phenotype relationship.  相似文献   

11.
We recently reported a dilated cardiomyopathy (DCM) causing mutation in a novel disease gene, TNNC1, which encodes cardiac troponin C (TnC). We have determined how this mutation, Gly159Asp, affects contractile regulation when incorporated into muscle fibres. Endogenous troponin in rabbit skinned psoas fibres was partially replaced by recombinant human cardiac troponin containing either wild-type or Gly159Asp TnC. We measured both the force–pCa relationship of these fibres and the activation rate using the caged-Ca2+ compound nitrophenyl-EGTA. Gly159Asp TnC had no significant effect on either the Ca2+ sensitivity or cooperativity of force generation when compared to wild type. However, the mutation caused a highly significant (ca. 50%) decrease in the rate of activation. This study shows that whilst not affecting the force–pCa relationship, the mutation Gly159Asp causes a significant decrease in the rate of force production and a change in the relationship between the rate of force production and generated force. In vivo, this mutation may cause both a slowing of force generation and reduction in total systolic force. This represents a novel mechanism by which a cardiomyopathy-causing mutation can affect contractility.  相似文献   

12.
More than 500 mutations have been identified in the CFTR gene, making it an excellent system for testing mutation scanning techniques. To assess the sensitivity of denaturing gradient gel electrophoresis (DGGE), we collected a representative group of 202 CFTR mutations. All mutations analyzed were detected by scanning methods other than the DGGE approach evaluated in this study. DGGE analysis was performed on 24 of the 27 exons and their flanking splice site sequences. After optimization, 201 of the 202 control samples produced an altered migration pattern in the region in which an alteration occurred. The remaining sample was sequenced and found not to have the reported mutation. The ability of DGGE to identify novel mutations was evaluated in three Asian CF patients with four unknown CF alleles. Three novel Asian mutations were detected—K166E, L568X, and 3121-2 A→G (in homozygosity)—accounting for all CF alleles. These results indicate that an optimized DGGE scanning strategy is highly sensitive and specific and can detect 100% of mutations. Hum Mutat 9:136–147, l997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Hypertrophic cardiomyopathy occurs as an autosomal dominant familial disorder or as a sporadic disease without familial involvement. We describe a missense mutation of the β-cardiac myosin heavy chain (MHC) gene, a G to T transversion (741 Gly→Trp) identified by direct sequencing of exon 20 in four individuals affected with familial hypertrophic cardiomyopathy. Three individuals with sporadic hypertrophic cardiomyopathy, whose parents are clinically and genetically unaffected, had sequence variations of exon 34 of the α-cardiac MHC gene (a C to T transversion, 1658 Asp→Asp, resulting in FokI site polymorphism), of intron 33 of the α-cardiac MHC gene (a G to A and an A to T transversion), and also of intron 14 of the β-cardiac MHC gene (a C to T transversion in a patient with Noonan syndrome). Including our case, 30 missense mutations of the β-cardiac MHC gene in 49 families have been reported thus far worldwide. Almost all are located in the region of the gene coding for the globular head of the molecule, and only one mutation was found in both Caucasian and Japanese families. Missense mutations of the β-cardiac MHC gene in hypertrophic cardiomyopathy may therefore differ according to race. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Thyroid peroxidase (TPO) is the key enzyme in the synthesis of thyroid hormones. Defects in the TPOgene are reported to be the cause of congenital hypothyroidism due to a Total Iodide Organification Defect (TIOD). This type of defect, where iodide taken up by the thyroid gland cannot be oxidized and bound to protein, is the most common hereditary inborn error causing congenital hypothyroidism in the Netherlands. Denaturing Gradient Gel Electrophoresis (DGGE) of PCR amplified genomic DNA was used to screen for mutation in the TPO gene of TIOD patients from nine apparently unrelated families, and seven different mutations were detected. Three frameshift mutations were found: a 20 bp duplication in exon 2, a 4 bp duplication in exon 8, and an insertion of a single nucleotide (C) at pos. 2505 in exon 14. In addition, four single nucleotide substitutions were identified: one single-base, mutation resulted in a premature termination codon (C → T at pos. 1708 in exon 10), two single-base substitutions changed an amino acid in highly conserved regions of the gene (Tyr → Asp in exon 9 and Glu → Lys in exon 14). The fourth single-base mutation located at the exon 10/intron 10 border altered a conserved Gly into Ser and could also affect splicing. Nine TIOD patients from five families were compound heterozygotes and six patients from four families were homozygous for one of the mentioned mutations in the TPO gene. © 1995 Wiley-Liss, Inc.  相似文献   

15.
The predicted mutability profile (MUTPRED) of the phenylalanine hydroxylase (PAH) gene shows that the 48 CpG sites (template and atemplate strands) are either empty of known mutations (7 sites), harbour “PKU” alleles involving CpG doublets (16 sites), or contain mutations that do not involve a C→ T or G→ A substitution in the doublet. These hypermutable sites harbour 32 different mutations in association with at least 66 different haplotypes and hyperphenylalaninemia. The E280K mutation in exon 7 of the PAH gene is a cause of phenylketonuria. It occurs on four different haplotypes in Europeans and on haplotypes 1 and 2 in Quebec. Whereas a single recombination event could explain the two haplotype associations in Quebec, the mutation does involve a CpG dinucleotide. By analyzing multiallelic markers 5′ (STR) and 3′ (VNTR) to the E280K allele on 12 mutant and 30 normal chromosomes, we conclude that recurrent mutation is the likely origin of E280K in Quebec. The PAH mutation databse shows that the allele accounts for 1.5% of PKU chromosomes worlwide. Hum Mutat 9:316–321, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Gaucher disease is the most prevalent lysosomal storage disease. It is panethnic and results from an inherited deficiency of glucocerebrosidase. Most mutations to date have been identified among Jewish and non-Jewish Caucasian patients; mutations in Chinese patients are largely unknown. We have performed nucleotide sequence analysis of PCR-amplified glucocerebrosidase genomic DNA from five unrelated Chinese patients affected with type 1 (non-neuropathic) Gaucher disease. A novel heterozygous C → T mutation at cDNA nucleotide position 475 (R120W) was detected in a patient who is also heterozygous for a C → T transition at cDNA nucleotide position 259 (R48W). In a second patient, a novel, heterozygous T → G transversion at cDNA 226 (F37V) was detected. Mutation 1448 (L444P), the most prevalent mutation among non-Jewish Caucasian Gaucher patients, was found in the heterozygous form in four patients. The mutations in the second Gaucher allele in the other three patients are mutations 254 (G46E), 680 (N188S), and 754 (F213I), which were recently reported in Korean, Arab, and Chinese (Taiwanese) patients. We have developed screening methods that utilize PCR amplification of glucocerebrosidase genomic DNA and Eco571, Nci1, Hinc11, BsaJ1, and Bsr1 restriction endonuclease analyses for the detection of each of these mutations. The population genetics of some of these Gaucher alleles and their implications in genotype/phenotype correlation are discussed. Am. J. Med. Genet. 71:172–178, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Peters plus syndrome (PPS) is a rare autosomal‐recessive disorder characterized by Peters anomaly of the eye, short stature, brachydactyly, dysmorphic facial features, developmental delay, and variable other systemic abnormalities. In this report, we describe screening of 64 patients affected with PPS, isolated Peters anomaly and PPS‐like phenotypes. Mutations in the coding region of B3GALTL were identified in nine patients; six had a documented phenotype of classic PPS and the remaining three had a clinical diagnosis of PPS with incomplete clinical documentation. A total of nine different pathogenic alleles were identified. Five alleles are novel including one frameshift, c.168dupA, p.(Gly57Argfs*11), one nonsense, c.1234C>T, p.(Arg412*), two missense, c.1045G>A, p.(Asp349Asn) and c.1181G>A, p.(Gly394Glu), and one splicing, c.347+5G>T, mutations. Consistent with previous reports, the c.660+1G>A mutation was the most common mutation identified, seen in eight of the nine patients and accounting for 55% of pathogenic alleles in this study and 69% of all reported pathogenic alleles; while two patients were homozygous for this mutation, the majority had a second rare pathogenic allele. We also report the absence of B3GALTL mutations in 55 cases of PPS‐like phenotypes or isolated Peters anomaly, further establishing the strong association of B3GALTL mutations with classic PPS only.  相似文献   

18.
The vast majority of both polymorphic and sporadic G6PD variants are due to single missense mutations. In the four polymorphic variants that have two point mutations, one of the mutations is always 376 A→G (126 Asn→Asp), which on its own gives rise to the nondeficient polymorphic variant, G6PD A. In a study of G6PD deficient patients who presented with clinical favism in Spain, we have found a new polymorphic variant that we have called G6PD Malaga, whose only abnormality is a 542 A→T (181 Asp→Val) mutation. This is the same mutation as previously found in association with the mutation of G6PD A in the double mutant, G6PD Santamaria. G6PD Malaga is associated with enzyme deficiency (class III), and the enzymic properties of G6PD Malaga and G6PD Santamaria are quite similar, indicating that in this case the effects of the two mutations are additive rather than synergistic. G6PD Santamaria might have been produced by recombination between G6PD A and G6PD Malaga; however haplotype analysis, including the use of a new silent polymorphism, suggests that the same 542 A→T mutation has taken place independently in a G6PD B gene to give G6PD Malaga and in a G6PD A gene to give G6PD Santamaria. These findings help to outline the relationship and evolution of mutations in the human G6PD locus. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Experimental data have shown an upregulated expression of toll-like receptors, particularly toll-like receptor 4 (TLR4), in neurodegeneration. The Asp299Gly polymorphism of the TLR4 gene has been associated with an attenuated receptor signalling and a blunted inflammatory response. In the present study, we sought to determine whether this common genetic variant could influence susceptibility to late-onset Alzheimer's disease (LOAD) in an Italian population sample. A cohort of 277 LOAD patients and 300 cognitively healthy controls were genotyped for the TLR4 Asp299Gly polymorphism using restriction isotyping. The frequency of the minor 299Gly allele was significantly higher in the controls than in the LOAD cases (7.2% versus 3.1%, respectively, P=0.003). Additionally, the frequency of the variant genotypes (Asp/Gly and Gly/Gly) was 13.0% in the controls and 5.4% in LOAD patients (P=0.002). After adjustment for age, gender, and the APOE varepsilon4 carrier status, the odds ratio for the development of LOAD associated with the Asp/Gly and Gly/Gly versus Asp/Asp genotype was 0.37 (95% CI: 0.20-0.69, P=0.002). Our data further support a role for innate immunity in neurodegeneration and give the first evidence that the TLR4 Asp299Gly variant may be protective toward the development of LOAD.  相似文献   

20.
Metachromatic leukodystrophy (MLD), a lysosomal storage disease caused by the deficiency of arylsulfatase A (ASA), is inherited as an autosomal recessive trait, and its frequency is estimated to be 1 in 40,000 live births. Genomic DNA from 21 MLD patients (14 late-infantile and 7 juvenile cases) was amplified in four overlapping PCR fragments and tested by allele-specific oligonucleotide (ASO) for the two common mutations 459+1G→A and P426L. These mutations were found in only 28.6% of the alleles studied. The remaining alleles were analyzed by chemical mismatch cleavage (CMC) and automatic sequencing. In addition to five previously reported mutations (459+1G→a, A212V, R244C, R390W, P426L), 10 novel mutations were identified: 9 missense mutations (S95N, G119R, D152Y, R244H, S250Y, A314T, R384C, R496H, K367N) and one 8 bp deletion in exon 1, the first mutation reported in this exon. These methods allowed us to identify 76% of the alleles tested. Genotype-phenotype correlations could be established for some of these mutations. These results confirm the heterogeneity of mutations causing MLD and suggest that CMC is a reliable and informative screening method for point mutation detection in the arylsulfatase A gene. Hum Mutat 9:234–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号